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Abstract

Deep learning is a promising avenue to automate tedious
analysis tasks in biomedical imaging. However, its applica-
tion in such a context is limited by the large amount of la-
beled data required to train deep learning models. While ac-
tive learning may be used to reduce the amount of labeling
data, many approaches do not consider the cost of annotating,
which is often significant in a biomedical imaging setting. In
this work we show how annotation cost can be considered and
learned during active learning on a classification task on the
MNIST dataset.

Introduction
The training of supervised deep learning models requires
vast amount of labeled training data (Krizhevsky, Sutskever,
and Hinton 2012). This can be very challenging in research
fields such as biomedical imaging, where both the acquisi-
tion and the labeling of data are costly (Ronneberger, Fis-
cher, and Brox 2015). Active learning (AL) aims to alle-
viate this issue by reducing the required quantity of data
to label by selecting the most informative sample within
an unlabeled dataset. However, many AL approaches do
not consider the cost of annotating data and assume a uni-
form labeling cost for all data points (Settles 2011), which
may result in selecting samples that would be very costly to
acquire in practice. In this work, we tackle the AL prob-
lem with non-uniform sample costs. We first investigate
the performance of a commonly used AL approach, Monte
Carlo (MC) Dropout (Gal, Islam, and Ghahramani 2017),
on a synthetic classification task crafted using the MNIST
dataset (Deng 2012). We then highlight the possible trade-
offs between annotation cost and accuracy and show how
an unknown annotation cost can be learned during AL us-
ing previously labeled data, allowing to trade-off cost and
accuracy on-the-fly.

Methods
We consider uncertainty-based AL, where examples to label
are selected according to the uncertainty of the model on its
classifications, as a proxy for the information gained. The
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common query by committee strategy estimates the uncer-
tainty of a model using an ensemble of such models. This
strategy can be implemented by using MC Dropout to gen-
erate different outputs (Gal, Islam, and Ghahramani 2017)
followed by an acquisition function to aggregate the pre-
diction probabilities of those outputs. Similar to Gal, Islam,
and Ghahramani (2017), we consider the following acquisi-
tion functions: Bayesian Active Learning by Disagreement
(BALD), Entropy, and Standard Deviation (STD). In order
to emulate the context of biomedical imaging where large
images are acquired and we must decide which parts an ex-
pert should annotate, we consider the following task using
the MNIST dataset. On each AL iteration t = 1 . . . T , we
present the AL agent with a set St of |St| = N images,
from which the agent must select n < N images to label.
Images from previous iterations are never considered again,
i.e. St ∩ St′ = ∅ for t ̸= t′. This is similar to a biomedical
image acquisition setting in which an image is acquired at
every iteration, divided into N crops, and the AL agent must
decide which of the n crops to label. We adapt the convolu-
tional neural network (CNN) from Gal, Islam, and Ghahra-
mani (2017) as the predictive model for this task. We simu-
late the annotation cost of an image using two components:
i) a base acquisition cost that depends on the MNIST class,
and ii) an annotation cost calculated from the perimeter of
the binarized digit within each image. The uncertainty I and
the cost C are combined using a ratio inspired by Mack-
owiak et al. (2018):

v = Iα/Cβ , (1)

where α and β control the relative importance of uncertainty
and cost. Note that for β = 0, this falls back to the typical
AL problem where the acquisition cost is not considered.
The selected examples in our cost-sensitive AL are those
giving the most information per unit of cost. We tackle two
cost-sensitive AL settings: i) with known annotation costs
and ii) with learned annotation costs. In the latter, a CNN
is used to learn annotation costs at every iteration, using the
cost of previously labeled images as training data.

Experiments and Results
An initial training dataset of 20 images (2 of each class)
is randomly generated, emulating the way an expert would
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Repeat
1 2 3 4 5 Mean

BALD 0.67 0.75 1.04 0.59 0.62 0.73 ± 0.16
Entropy 0.71 0.85 0.87 0.65 0.65 0.75 ± 0.09
STD 0.57 0.53 0.79 0.53 0.59 0.60 ± 0.09

Table 1: Proportion of required images compared to random
selection to reach a classification accuracy of 90% with the
different AL acquisition functions.

likely generate the initial dataset (Gal, Islam, and Ghahra-
mani 2017). Then, on each iteration t = 1 . . . 48, the AL
agent is presented with N = 1000 images from which they
must select n = 10 images to label. This experiment is
repeated 5 times for each considered approach and the re-
sults are averaged. As a baseline, we first evaluate the dif-
ferent acquisition functions without considering cost on the
classification task. Results show that AL allows to reach a
higher accuracy than random selection for the same amount
of training data. We find that STD performs best, consis-
tently requiring the least training images to reach an accu-
racy of 90% (Table 1). For the following, we will therefore
use the STD acquisition function.

We next conduct experiments which consider the annota-
tion cost in the image selection phase. At first, the annotation
costs are assumed to be known prior to labeling. Annota-
tion cost and uncertainty are combined using Eq. 1, where
β ∈ [0, 0.5] and α = 1, to highlight the possible trade-offs
between cost and model performance. In these experiments,
T = 98 to better observe the behavior of cost-sensitive AL
over more iterations. Importantly, a base acquisition cost
was assigned to each class in order to make it more costly to
select more informative images, leading to a situation where
the trade-off between cost and accuracy is more difficult.
Figure 1 shows possible trade-offs between cost and accu-
racy depending on β. While the accuracy decreases with a
high β values, it is possible to reach an accuracy equal or su-
perior to that of random selection with a considerably lower
cost. For β < 0.2, the total annotation cost is higher than that
of random selection for the same number of training images.
As the number of training images increases, the trade-off be-
tween cost and accuracy becomes less important. This is ex-
pected as performance plateaus when enough training data
is used.

In a last experiment, we consider the setting where the
labeling cost is not known prior to labeling. A CNN is there-
fore used for learning the annotation cost of unlabeled data
using the known cost of previously acquired (labeled) data.
We consider β = 0.3 since this value allows to reach a
lower annotation cost than random selection for a minimal
sacrifice in accuracy. We observe that annotation costs can
be learned simultaneously with the classification task while
reducing the annotation cost compared to random and uni-
form cost selection (Figure 1). However, the predicted cost
is often underestimated, leading to a slightly lower cost ef-
ficiency for the same β value. When data acquisition and
annotation costs are unknown, this estimation still allows a
better performance than assuming a uniform cost (β = 0),
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Figure 1: Trade-off between annotation cost and classifica-
tion accuracy halfway through the AL process (iteration 50)
and at the end of the process (iteration 98) for different val-
ues of β and random selection. For learned cost, β = 0.3.
Error bars are the standard deviation of 3 repetitions.

and is therefore a viable method to consider annotation cost
in AL.

Conclusion
In this work, we show how annotation cost can be consid-
ered by AL agents and how it can be learned during the AL
process. While these preliminary results are limited to the
synthetic task crafted from the MNIST dataset, we plan on
deploying these methods on a real-world problem in biopho-
tonics, where the complexity of the data, its limited avail-
ability, and the difficulty of labeling images are consider-
able hurdles to deep learning applications. While many AL
methods have been proposed in the literature, they are often
evaluated without considering the limitations of a real image
acquisition cost and annotation process. Ultimately, we hope
that such AL approaches will increase the accessibility of
deep learning-based analysis to generate adequate datasets
in application fields where annotation and acquisition costs
are not negligible.
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