Model AI Assignments 2022

Todd W. Neller1, Jazmin Collins2, Daniel Schneider3, Yim Register4, Christopher Brooks5, Chiawei Tang6, Chaolin Liu6, Roozbeh Aliabadi7, Annabel Hasty8, Sultan Alarakabi9, Haotian Fang7, Harvey Yin7, and Joel Wilson7

1Gettysburg College, 2Arcadia University, 3Code.org, 4University of Washington, 5University of San Francisco, 6National Chengchi University, 7ReadyAI, 8Quest Academy, 9NEOM

Abstract

The Model AI Assignments session seeks to gather and disseminate the best assignment designs of the Artificial Intelligence (AI) Education community. Recognizing that assignments form the core of student learning experience, we here present abstracts of six AI assignments from the 2022 session that are easily adoptable, playfully engaging, and flexible for a variety of instructor needs. Assignment specifications and supporting resources may be found at http://modelai.gettysburg.edu.

FairKalaha: Fair Mancala Competition - Todd Neller

Through AI play of the game FairKalaha, students learn about game-tree search, alpha-beta pruning, heuristics, feature engineering, machine learning, time management, and related topics. Whereas Mancala presents a barrier for discerning good heuristics because of a significant first-player advantage, FairKalaha presents 254 boards where one or two pieces are redistributed from the standard Mancala initial state so as to be fair, i.e. two optimal players draw. Tournament software is provided in Java and Python, as well as a Ludii game definition file to facilitate client flexibility.

A simple minimax player with a simple heuristic is provided. Students are assigned to improve upon this player for real-time competition under time constraints in three primary ways. First, alpha-beta pruning makes the game-tree search more efficient. Second, time management strategies apportion limited computational time wisely in real-time play. Third, the challenge to devise an efficient, helpful heuristic encourages data collection, machine learning, and feature engineering.

While optimal play is computable for FairKalaha, adjustable computational time and memory constraints promise to allow greater challenges going forward to push the boundaries of clever, resource-bounded game agents.

Movement and Visual AI - Jazmin Collins

This three-day assignment plan is designed to teach the basic foundations of computer vision and visual AI at the middle school and high school levels. Geared towards those

Copyright © 2022, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
distributing resources, gauging real world infection rates, or health decisions.

Reflecting on Bias - Christopher Brooks

This set of assignments provides students with the opportunity to read about and reflect on the many different ways in which bias can occur in AI and ML problems. Students will learn about the technical definition of bias, how this relates to the more colloquial version, why it is so difficult to define what it means to be fair, and the importance of understanding what biases exist in real-world data sets. Also included are strategies and resources for class discussion, connecting to technical topics, and a discussion of specifications grading as an approach for assigning written work.

Projecting Your Data - Chiawei Tang and Chaolin Liu

In this assignment, we will use Pytorch to implement a Convolutional Neural Network (CNN) classifier for the MNIST datasets and discuss how to use Pytorch to build a custom dataset and design the model. After finishing the classifier, we will build an embedding projector based on the model to observe the behavior of the model on the dataset. This assignment will combine the concepts including classification, convolution neural network, and working with embeddings.

Different hyperparameters or model architectures can lead to different outputs on the same dataset, and different dimensionality reduction algorithms can change the way we project the embeddings into a 2D or 3D space, which in turn affects the way we interpret the model. After building the embedding projector, we will explore how the projection of the embeddings changes under different settings and analyze the behavior of the model.

This assignment is organized as follows:

- Part A. Data exploration
- Part B. Building the classifier
- Part C. Building the embedding projector
- Part D. Analyzing the embeddings

Much of this assignment is inspired by Google’s embedding projector (Smilkov et al. 2016), and we will explore how to make and improve our own embedding projector based on our needs.

Introduction to Problem-Solving With Data: A Fresh Squeeze on Data - Roozbeh Aliabadi, Annabel Hasty, Sultan Albarakati, Haotian Fang, Harvey Yin and Joel Wilson

Data bias arises when the available data does not represent the entire study population, often due to a small sample set. To facilitate a comprehensive introduction to data bias, this assignment provides an authentic way for students from third to fifth grade to explore and experiment with data bias. The 90-minute session in this assignment includes two main activities and requires no prerequisite knowledge or dependencies. The teacher and students work together to collect data and explore the relationship between data and bias in multimedia teacher resources, including a visual book, videos, web tools, and interactive quizzes. This assignment encourages students to examine data bias’s practical, real-life implications in a captivating story with vibrant characters and real-world problems. To achieve such AI educational goals, the storyline revolves around a young female character who successfully runs a lemonade stand with the help of her data scientist mother and a diverse group of friends. The story and lesson plans could be redesigned for high school or college level students utilizing the worksheet and online resources. Understanding data bias requires intensive study of statistics, machine learning, and data analytics with subsequent coursework.

References