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Abstract 
Dial locks are commonly used to secure a person’s items. 
Commercially available dial locks often use four or five 
wheels of letters, allowing a user to select a word as a com-
bination. In order to evaluate the security of these locks, we 
create a game, with an instance created by the lock designer, 
and played by a lock owner and a thief. In the game, the lock 
owner chooses a word as a combination, and the thief creates 
a brute force strategy to try all possible combinations that 
yield words until the combination is found. To accomplish 
the task, the thief will solve a version of the Probabilistic 
Travelling Salesman Problem (PTSP) by creating an a priori 
tour through all the words a lock can create. The goal for the 
game designer, then, is to create a lock configuration that 
maximizes the expected length of the best possible PTSP 
tour. This paper describes a Genetic Algorithm (GA) ap-
proach to design a near-optimal game, i.e. a lock configura-
tion that makes it as difficult for the thief to crack. An analy-
sis of the output of the GA shows that the locks that the sys-
tem creates are significantly more secure than both commer-
cial locks, in the context of this game.. 

Introduction   
Figure 1 displays a common combination lock, in which an 
owner selects a n letter combination, chosen from sets of let-
ters provided for each position. The most common configu-
rations have four or five wheels with 10 letters on each 
wheel. Often a space is provided on the last wheel, so that a 
user can choose the space at the end of the combination for 
an n – 1 letter word. To analyze the security of these locks, 
we formulate a game, whose instance is created by a lock 
designer and played by a thief and a lock owner. In this 
game, the designer would like to choose a configuration for 
the lock that makes it difficult for the thief to discover the 
combination chosen by a lock owner. A lock owner chooses 
a word at random that can be made by the lock. The thief 
creates a plan to try all the possible words as combinations, 
with as few expected operations as possible. 
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 More specifically, the formulation of this competition as 
a game uses the following rules and assumptions. First, we 
assume that the lock owner will choose as a combination, 
with equal probability, one of the dictionary words that can 
be made from the lock. The lock owner will set the initial 
state of the lock so that it initially it is not a dictionary word. 
The thief, starting from the initial state, will select an order 
to visit all possible words that minimizes the expected num-
ber of operations needed to check every dictionary word. 
We define an operation as either a turn of a wheel or an at-
tempt to open the lock. The problem that the thief is solving 
is a version of the NP-hard Probabilistic Travelling Sales-
man Problem (PTSP) (Jaillet 1988).  
 Under the threat environment represented by this game, 
the lock designer must set two parameters: the letters on 
each wheel and the ordering of the letters within a wheel. 
Generally speaking, to maximize the length of the PTSP so-
lution, the designer would like to create a design with a large 
number of possible words and a large distance between each 
word. Given the intractability of the PTSP problem, the lock 
design problem is also intractable. 
 To manage this intractability, the lock design algorithm 
estimates the optimal PTSP tour length through a using an 
algorithm that provides a lower bound for the length of this 
optimal tour. A GA algorithm then attempts to find the lock 

 

 
Figure 1. A 4-letter code combination lock 
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design which maximizes the length of this lower bound for 
the PTSP tour length.  
 The lock configuration from the GA is then compared to 
commercially available dial locks. The results indicate that 
the lock configuration found by our algorithm greatly in-
creased the amount of work required for the thief, with an 
increase of 77.4% operations on average and a 56.7% in-
crease in the total number of words our lock can create. 
While these locks likely had additional design criteria, this 
significant improvement suggests that viewing the security 
of commercially available locks in the context of this game 
could improve their security. 

Related Work 
The PTSP is a well-studied stochastic routing problem in 
combinatorial optimization. In the PTSP, a demand to visit 
each node occurs (with probability p) or does not occur 
(with probability 1 − p) during a given day. In the Travelling 
Salesman Problem (TSP), the objective is to find the shortest 
tour through all the cities such that no city is visited twice, 
and the salesman returns at the end of the tour back to the 
starting city. However, in the PTSP the objective is to mini-
mize the expected length of the a priori tour where each cus-
tomer requires a visit only with a given probability (Marina-
kis and Marinaki 2010). The a priori tour can be seen as a 
template for the visiting sequence of all customers. In a 
given instance, the salesman travels along the a priori tour 
until all customers that should be visited are reached. The 
remaining ones that do not need to be visited will simply be 
skipped. The TSP can be treated as a special case of the 
PTSP. The main difference between PTSP and TSP is that 
in PTSP the probability of each node being visited is be-
tween 0.0 and 1.0 while in TSP the probability of each node 
being visited is 1.0 (Liu 2007).  

The PTSP belongs to the class of NP-hard problems 
(Bertsimas, Jaillet, and Odoni 1990). This means that there 
is no known polynomial time algorithm for its solution. 
Therefore, there have been algorithms created with powerful 
heuristics to find good suboptimal solutions in reasonable 
amounts of time. 
 Let’s consider this routing problem with a set of n nodes 
(Jaillet 1988). On any given instance of the problem, only a 
subset consisting of k out of the n nodes (0 ≤ k ≤ n) must be 
visited. However, the exact k nodes that must be visited are 
not known a priori. The length of an actual tour can be de-
fined as the length of this a priori path from the start node to 
the last of the k nodes in a given instance. Since the instance 
is chosen from a probability distribution, and the tour is set 
before this instance is known, the goal is to minimize the 
expected length of this tour. 
 Using a similar approach to the PTSP, the lock designer 
wants to create as hard an instance of the PTSP problem as 

possible. Thus, the goal is to create a lock configuration that 
maximizes the expected length of this a priori tour through 
all the potential words.  

Since the PTSP is NP-hard, we will not try to solve it ex-
actly. Rather, we will use a lower bound on the PTSP prob-
lem as an estimate of the fitness for the optimal PTSP tour. 
Lower bounds for the TSP problem have been established 
for a variety of reasons in the past, including speeding up 
branch-and-bound algorithms (Christofides 1972). These 
lower bounds include ones derived from the Minimum 
Spanning Tree, and repeated reduction of the distance ma-
trix through a contraction algorithm. 

As discussed earlier in this paper, the task of finding the 
optimal lock configuration is an intractable problem. In this 
work, we use a Genetic Algorithm (GA) to find a near opti-
mal solution to this intractable problem. Genetic Algorithms 
are a family of computational models inspired by evolution. 
These algorithms encode a potential solution to a specific 
problem on a simple chromosome-like data structure and ap-
ply recombination operators to these structures in such a 
way as to preserve critical information (Whitley 1994). Ge-
netic algorithms simulate natural selection through the in-
corporation of a survival-of-the-fittest approach. A popula-
tion is seeded with individuals that represent initial guesses 
at a good solution. Then, a crossover process combines ge-
netic material of existing individuals to create a new gener-
ation of solutions (Dwivedi et. al. 2012). As part of the com-
bination process, there is typically the chance of a mutation 
event which simulates mutations in real chromosomes. 
These mutations serve to widen the search of the solution 
space.  

A Genetic Algorithm for Lock Configuration 
Optimization 

The performance of the Genetic Algorithm for lock design 
depends mostly on the encoding scheme and the choice of 
genetic operators, including the initial population, the selec-
tion, the crossover, and the mutation operators. Before in-
troducing the details of these operators, we first describe the 
lower bound for the PTSP problem that will be used to de-
termine a solution’s fitness. 

Lower Bound for PTSP Solution 
The thief’s goal is to find an a priori tour through all the 
words that minimizes the expected number of operations, 
where an operation is defined either as a turn of the dial one 
position or an attempt to open the lock. The idea behind the 
lower bound for the PTSP problem is that the a priori tour 
must change one or more dials to move to a new word and 
then attempt to open the lock.  

To calculate this lower bound, we start by averaging the 
minimum distance between a word and the two closest 
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words. Let 𝑑𝑖 be the 𝑖𝑡ℎ distance in this list when ordered 
from least to greatest. This ordering represents the order in 
which the thief could visit the words, with the idea that the 
thief would start by trying words that are close together be-
fore moving on to words that require more operations to 
reach.  

We use the average because for each word we must move 
to the word, and then we must also move away from the 
word. Note that we make an adjustment to the last entry in 
this list of possible words, 𝑑𝑛. Rather than taking the aver-
age of the distances to two closest words, we use just the 
distance to the closest word. The rationale is that the thief 
will not need to move off of the last word in the list.  

After sorting the list of distances, we must add one to each 
distance to simulate the thief attempting to open a lock. 
Thus, the fitness of a solution S, 𝐹(𝑆), is estimated as: 

 
𝐹(𝑆) =

1

𝑛
∑ ∑ (𝑑𝑖

𝑛
𝑖=1 + 1)𝑛

𝑖=1            (1) 
 
To better illustrate this fitness estimation, consider the 

following example. Assume that the list of words is: BAKE, 
CAKE, FAKE, FORK, FORM, and FORT. Now, assume 
the lock has a configuration as shown in Figure 2, with an 
starting code of BZKE.  The optimal PTSP will visit the 
words in the order given by the list above. First, the thief 
will change the combination of BZKE to BAKE and try to 
open the lock, requiring two operations.  Next the thief will 
change the combination from BAKE to CAKE requiring 
two more operations, and a running total of 4 operations.  
Working through the remaining words, the running number 
of operations for each word of 2, 4, 6, 10, 12, and 14.  Sum-
ming these operations and dividing by 6, yields a fitness of 
7.92 expected operations. 

Tables 1 and 2 show the calculation for the lower bound 
of the fitness of this solution. We start by taking the average 
of the two closest words for each possible word in the list, 
as shown in Table 1.  

Next, we sort these distances and add one to each value 
to calculate the list of sorted distances. Note that after we 
sum the distances running total, we make an adjustment for 
the last entry in the list, 𝑑𝑛, since we do not need to move 
from the last word tried. Therefore, for this specific exam-
ple, 𝐹(𝑆)  =  7.75. 

Solution Representation 
A lock in the GA is encoded as lists of symbols, one per 
wheel, as shown in Figure 3. The symbols can be either let-
ters or a blank space. The order of the letters corresponds to 
the order of the letter in the wheels. All of the mutation and 
crossover operations, described later, will ensure that the 
symbols on a wheel are unique. 
 

Wheel 1 Wheel 2 Wheel 3 Wheel 4 
PTNSBCADRM UEOCSRAIMP TRAMNCDSEP A SCDEOTPI 

Figure 3. Lock representation of a four-wheel lock used in 
the GA code. 

Initializing the Population 
Setting the initial population for the GA is crucial to the 
speed and the convergence of the algorithm (Abdoun, 
Abouchabaka, and Tajani 2012). In our approach, the initial 
group of lock configurations is set by three initialization op-
erators. The operators are chosen uniformly at random, and 
each creates a single configuration. This process is repeated 
until the population reaches a size of 40 solutions.  

Initialization Based on Dictionary Words. This initializa-
tion operator chooses a random word from the dictionary 
that is equal to or less than the length of the number of 
wheels a lock has. It then adds each letter of that word to 
each wheel of a lock depending on the position of the letter 
in that word. This heuristic is repeated until every wheel of 
the lock is filled to their max letter size, in our case 10 letters 
per wheel. 

Initialization Based on Letter Frequency. This initializa-
tion operator simulates a raffle process where the letters are 
chosen with a probability equal to the frequency that the let-
ter appears in the dictionary. When choosing a letter for the 
𝑖𝑡ℎ wheel, the frequency for a letter is the proportion of 

Wheel 1 Wheel 2 Wheel 3 Wheel 4 
BCFX AOXZ KRXZ EKMT 

Figure 2. Simple lock configuration. 

 

Word Nearest Words 
Ave. Distance to Nearest 

Words  
BAKE CAKE FAKE 1.5 
CAKE BAKE FAKE 1 
FAKE CAKE BAKE 1.5 
FORK FORM FORT 1.5 
FORM FORK FORT 1 
FORT FORM FORK 1.5 

Table 1. Distances to nearest words for each word in 
the word list. 

Sorted 𝑑𝑖’s Distances Running Total 
2 2 
2 4 

2.5 6.5 
2.5 9 
2.5 11.5 
2.5 14 

Sum of Distances: 47 
Adjustment: 0.5 

𝑭(𝑺): 7.75 

Table 2. Calculation of the lower bound for the fitness. 
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words where this letter is used as the 𝑖𝑡ℎ letter in a word 
whose length is less than or equal to the number of dials on 
the lock. 

Initialization Based on Random Letter Selection. This in-
itialization operator is a simple random letter selector. The 
operator simply chooses letters or the space at random until 
the lock dials are filled. The operator makes sure that the 
letters are not repeated in a wheel. 

Selection 
A selection algorithm selects solutions to combine to create 
a new solution in the next generation. While there are many 
different types of selection, we will use the most common 
type, roulette wheel selection (Abdoun, Abouchabaka, and 
Tajani 2012). In roulette wheel selection, the individuals in 
the population are given a probability of being selected to 
generate chil-dren for the next population, that is directly 
proportion-al to their fitness. Therefore, in this approach, in-
dividuals who have high values of the fitness function are 
more likely to be chosen among the individuals to generate 
the children. After selecting two of these solutions, called 
parents, two children are then created by applying a crosso-
ver algorithm to the parents. 

Crossover 
After a pair of parents are selected from the pool, the cross-
over operation creates two new solutions based on these par-
ents. Our approach uses a modified ordered crossover 
method (OX) as the crossover operator, an approach that has 
proven to be one of the best approaches for the TSP (Abdoun 
and Abouchabaka 2011).  

This modified order crossover method is used when the 
problem is order based, like the problem in our research. 
Given two parent chromosomes, two crossover points 
(called crossover sites) are selected at random, partitioning 
the solutions into a left, middle, and right portion. The or-
dered two points crossover sites behave as follows: child 1 
inherits its left and right section from parent 1 and its middle 
section is determined by the middle section in parent 2. The 
same thing happens to child 2 but with parent 2 being the 
left and right sections instead, and the middle section deter-
mined by parent 1. 

 
Figure 4. OX Crossover operator using only one wheel. 

Figure 4 shows an example of the crossover algorithm 
OX with only one wheel. First, the crossover points are se-
lected, which are at the fourth and seventh letter, in the ex-
ample. The letters are then copied from a corresponding par-
ent, at and before the first crossover point. and at and after 
the second crossover point.  

The modification to the OX algorithm then follows. Ra-
ther than simply copy the middle section from the other par-
ent, the operator starts copying letters from the other parent 
after the first crossover point, skipping any letters that have 
already been selected. We wrap around to the beginning of 
the wheel when looking for this next letter, if necessary. For 
example, in Figure 4, we cannot start by copying the letter 
C to child 2 because a C already appears in the wheel. The 
same is true of the letter F. Instead, we skip these letters and 
start copying from parent 1 at the G. Similarly, for child 1, 
normally the letter I would appear as the sixth letter. How-
ever, since it already appears in the wheel, we skip it, adding 
the N and the S from parent 2.  

The modified OX operator is applied to all of the wheels 
in a similar fashion. Different crossover points are chosen, 
at random, for each wheel. 

Mutation 
After creating child solutions, GA’s typically apply muta-
tion operators. Our approach applies five mutation opera-
tions, each one running a random number of times between 
0 and 50. The mutation produced by the operator is dis-
carded if it does not yield an improvement in fitness. The 
first two mutations are designed to increase the number of 
words that can be made with the letters on the lock. The last 
three are designed to place the letters in such a way that the 
number of operations needed to visit all words increases. 

Mutation based on a Random Word. The first mutation 
chooses a random letter from a random word in the diction-
ary and ensures that letter is present in the lock. The operator 
first picks a wheel and a letter to add at random. Then, with 
equal probability, it randomly picks a letter already config-
ured in that wheel and replaces it with the letter chosen be-
fore.  

Mutation Based on Underutilized Letters. This mutation 
operator first picks a letter and the wheel to insert that letter 
at random. Then, it selects the letter that participates in the 
fewest number of words in that wheel. The fitness after this 
change is then evaluated. If this new solution creates more 
words, the operator terminates. Otherwise, the operator will 
try to find a different replacement letter for a limited number 
of times.  

Mutation based on Random Swap. This mutation operator 
is a simple mutation that is based on randomness. The oper-
ator first chooses a wheel at random. Then, it picks two let-
ters in that wheel at random and swaps the locations of the 
letters. 
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Mutation to Interleave Common and Uncommon Letters. 
This mutation operator attempts to place commonly used 
letters next to uncommon letters in the wheels of a lock. This 
should increase the distance between words. The operator 
first chooses a wheel at random. Then, the operator divides 
the letters into two equal subsets, a common subset and an 
uncommon subset, based on the frequency that they appear 
in words. The operator then chooses a letter in that wheel at 
random, with position 𝑖, and checks if it is common or un-
common. Depending on the characteristic of letter 𝑖, the op-
erator checks that the letter 𝑖 + 1 is the opposite. If it is not, 
the operator chooses the first letter, of the opposite type, that 
it finds in that wheel and swaps both positions of the letters.  

Mutation Swapping Replacement Letters. This mutation 
operator seeks to separate pairs of letters that occur in words 
that differ only in the pair of letters. For example, there are 
a large number of pairs of four-letter words that are identical 
with the exception of containing either an “a” or an “i” as 
the second letter, for example, “tack” and “tick”, or “bake” 
and “bike”. This operator would try to place the “a” and the 
“i” at some distance away in the second wheel.  

To do this, the operator first picks a wheel and a letter in 
that wheel at random. Then, the operator goes through all 
the words that the lock can create and finds the letter that 
appears with this chosen one in the most number of similar 
words. The operator then moves this letter to a random lo-
cation between 3 and 5 turns from the original letter.  

Insertion 
The GA uses elitism when inserting new solutions in the 
population. Rather than replacing all parents with new solu-
tions, elitism preserves the best solutions in the population 
(Chakraborty and Chaudhuri 2003). The best 40 solutions 
are always retained regardless of whether they were present 
in the population prior to the generation of new solutions. 

Experimental Results 
To solve the lock designer’s problem, an experiment was 
performed with three goals in mind: to find a lock that will 
create the greatest number of words, to find a configuration 
of this lock that maximizes the lower bound fitness, and to 
compare commercially available locks to this optimal lock 
configuration. The experiments found locks that produce us-
able combinations for more than 55% of the possible com-
binations. The results contained some surprises that indicate 
that heuristic approaches to lock design are not likely to 
yield good results. Moreover, the best lock found by the GA 
system greatly outperformed commercial locks with about a 
60% increase in both the number of words that are possible 
as well as the lower bound on the expected number of oper-
ations needed for a thief to break the lock.  

 
Table 3. Fitness and number of words in every run. 

Overview of Results 
The GA was designed and implemented in Java. The word 
list used in the experiment came from a dataset containing 
the 333,333 most commonly-used single words on the Eng-
lish language web, as derived from the Google Web Trillion 
Word Corpus (Norvig 2008). This list includes 12,977 3-let-
ter strings and 31,140 4-letter strings. The list is larger than 
typical dictionaries because it includes non-word strings that 
appear in web pages like “aaaa” and “yolo.” It seems rea-
sonable that these common non-word strings would make 
likely combinations chosen by lock owners. 

To evaluate the performance of the GA, the algorithm ran 
25 times each with a population size of 40 that evolved for 
100 generations. Figure 5 plots the fitness of the best solu-
tion in each generation for these 25 runs. The GA performs 
consistently, with rapid improvement in early generations 
and plateaus to roughly the same fitness in later generations.  

Table 3 displays statistics for the central tendencies and 
dispersion of the best solution in each of the 25 runs. As seen 
in the table, the number of words, which can be made by the 
locks, and the fitness of the best solution were consistent 
across these optimization runs. This consistency suggests 
that the design of the GA does well in avoiding being stuck 
in local optima far from the global optima. 

Best Lock Configuration 
The best lock configuration found in the 25 runs is displayed 
in Figure 6. There are some surprising results in this lock 
that suggest that simpler optimization approaches to lock de-
sign will not work as well as the GA.  

Figure 5. Fitness of best solution every run by generation. 
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Figure 6. Best lock configuration design found by GA. 

 
First, the lock with the best fitness made 5,539 words, ra-

ther than the maximum of 5,540 found in other runs. Recall 
that since the PTSP uses a running total of distances, the ef-
fect of adding one more word is significant since the last 
word includes the sum of all previous distances. This result 
suggests that the letter selection and placement should be 
optimized together, as in the GA system. The best lock con-
figuration may not be found by a simpler, two-phase opti-
mization process, in which a system first selects letters and 
then selects ordering of the letters. 

Second, we had expected that the final wheel would con-
tain consonants with the space and the letter “e.” However, 
in the best lock, other vowels also appeared, and an exami-
nation of the dictionary confirmed that these vowels ap-
peared in a large number of words. The 8 most common con-
sonants in English are r, t, n, s, l, c, d, and p (Keating 2021). 
Table 4 shows the change in the number of words after sub-
stituting one of the consonants that was missing with one of 
the vowels. Note that the number of words after replacing 
one of these vowels with a consonant always decreased. 

The third surprise was that we expected that vowels in a 
wheel would be better to be separated, rather than appearing 
in adjacent spots. We had assumed that separating these let-
ters would increase the minimum distance between words. 
To confirm that the configuration is reasonable, we com-
pared the fitness in the configuration found by the GA with 
ones where the vowels were separated. The results, shown 
in Table 5, confirm that the configuration produced by the 
GA outperforms the other possibilities that were tested. 

Comparison with Commercial Locks 
Commercial lock design can also be evaluated within the 
context of the game design which the GA system is attempt-
ing to optimize. The analysis reveals that under the threat 
environment modeled by the game, the GA system’s lock 
design significantly outperforms commercial locks. 

 

Figure 7. Number of words possible in each lock 

 
Figure 8. Fitness of commercial lock configurations versus 
the fitness of the lock configuration designed by the GA. 

Vowel Consonant Words Before 
Replacement 

Words After 
Replacement 

A R 5539 5149 
A N 5539 5114 
A L 5539 5122 
I R 5539 5381 
I N 5539 5346 
I L 5539 5354 
O R 5539 5453 
O N 5539 5418 
O L 5539 5426 

Table 4. Effect of replacing a vowel with a common 
consonant in wheel 4 of the best lock. 

 

Wheel 
Num. 

GA 
Config-
uration 

Alter-
nate 
Config-
uration 

Fitness 
Before 
Change 

Fitness 
After 
Change 

1 AIMPS 
CRLND 

AMPSC 
IRLND 7567.246 7545.232 

2 AIRSM 
PCEUO 

ARISE 
MUPOC 7567.246 7505.651 

3 AIMTC 
PRNSD 

AMTCP 
IRNSD 7567.246 7542.555 

4 AS PC 
OTEDI 

AS PO 
CETID 7567.246 7542.918 

Table 5. Effect of rearranging letters in the GA lock. 
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As shown in Figure 7, the lock designed by the GA makes 

56.7% more words than the best commercial lock. Where 
the commercial locks are able to make words with about 1/3 
of the possible combinations, the GA designed lock makes 
words in more than 1/2 of the possible combinations. 

The larger number of possible words is a key reason why 
the GA designed lock also improves the difficulty of a brute 
force attack on the lock, as measured by the fitness. Figure 
8 shows that the GA lock increases the expected length of 
the PTSP tour required to break the lock by 77.4% over the 
commercial locks, on average. Thus, under the threat envi-
ronment considered by this paper, the GA lock is signifi-
cantly more secure than the commercial locks in the market. 

Limitations 
There are limitations in the analysis of the context of the 
game used to evaluate lock security. These limitations in-
clude assumptions about the likelihood that words will be 
chosen as combinations, the threat environment that locks 
face, and other important design criteria that are not incor-
porated in the game structure. 

First, the word list chosen for this study may not reflect 
commonly chosen passwords and within a word list, not all 
words will be equally likely to be chosen. If these non-uni-
form probabilities were incorporated, the PTSP tour would 
likely try to visit more common combinations first. 

In addition, a brute force attempt to break the combination 
may not be the most likely attack on these locks. Other 
mechanisms including cutting the lock or picking the lock 
may be more likely real-world scenarios. 
Finally, there are certainly other design considerations that 
are important for these locks. For example, designers may 
want to be able to make certain words with the lock. In the 
commercially available locks, for example, some are able to 
make the words shown in Figure 1, including “runs,” “fast,” 
“bike” or “loop.” Other than “runs” which is a possible word 
in the GA lock configuration, these words appear to have 
been chosen not because their letters can be used for many 
other words, but rather for marketing reasons. 

Conclusions and Future Work 
In this paper, we analyzed the security of locks by formulat-
ing a game played between a lock designer and a thief. In 
the game, the thief will use an a priori tour for the PTSP 
problem to create a brute force strategy to find the combina-
tion. We presented a genetic algorithm (GA) system that at-
tempts to maximize the time required for this attack. 

The GA system produced significant improvements over 
commercial lock designs, in the context of this game. The 
number of words that could be created by the GA-designed 

lock is 56.7% more than commercial locks, and the diffi-
culty of a brute force attack increased by 77.4%. 
 Future work, planned by the authors, includes expanding 
the study to larger lock sizes and addressing some of the 
limitations of the current study. In addition to four-letter 
locks, five-letter locks are also commonly available. The ad-
dition of one more wheel increases the complexity of the 
problem by 27 choose 10, increasing the number of possible 
configurations by a factor of more than 8 million. The au-
thors would also like to explore the effect of assigning non-
uniform probabilities to the likelihood that a combination is 
chosen. Currently, most of the transitions between combina-
tions in the best PTSP tour would be accomplished with just 
1 or 2 operations. Using non-uniform probabilities could po-
tentially require that the thief visits combinations in an or-
dering that increases this number of operations. 

References 
Abdoun, O., and Abouchabaka, J. 2011. A Comparative Study of 
Adaptive Crossover Operators for Genetic Algorithms to Resolve 
the Traveling Salesman Problem. International Journal of Com-
puter Applications 31(11): 49-57. 
Abdoun, O.; Abouchabaka, J.; and Tajani, C. 2012. Analyzing the 
Performance of Mutation Operators to Solve the Travelling Sales-
man Problem. International Journal of Computer Applications 
2(1): 61-67. 
Bertsimas, D. J.; Jaillet, P.; and Odoni, A. R. 1990. A Priori Opti-
mization. Operations Research 38(6): 1019-1033. 
Chakraborty, B., and Chaudhuri, P. 2003. On The Use of Genetic 
Algorithm with Elitism in Robust and Nonparametric Multivariate 
Analysis. AUSTRIAN JOURNAL OF STATISTICS 32(1-2): 13-27. 
Christofides, N. 1972. Technical Note—Bounds for the Travel-
ling-Salesman Problem. Operations Research 20(5): 1044-1056. 
dio.org/10.1287/opre.20.5.1044. 
Dwivedi, V.; Chauhan, T.; Saxena, S.; and Agrawal, P. 2012. Trav-
elling Salesman Problem using Genetic Algorithm. National Con-
ference on Development of Reliable Information Systems, Tech-
niques and Related Issues (p. 25).  
Jaillet, P. 1988. A Priori Solution of a Traveling Salesman Problem 
in Which a Random Subset of the Customers are Visited. Opera-
tions Research 36(6): 929-936. 
Keating, B. 2021.  The frequency of the letters of the alphabet in 
English. https://www3.nd.edu/~busiforc/handouts/cryptog-
raphy/letterfrequencies.html/. Accessed 9/6/2021. 
Liu, Y.-H. 2007. A Hybrid Scatter Search for the Probabilistic 
Traveling Salesman Problem. Computers & Operations Research 
34: 2949-2963. doi.org/10.1016/j.cor.2005.11.008 
Marinakis, Y., and Marinaki, M. 2010. A Hybrid Multi-Swarm 
Particle Swarm Optimization algorithm for the Probabilistic Trav-
eling Salesman Problem. Computers & Operations Research 
37(3): 432-442. doi.org/10.1016/j.cor.2009.03.004 
Norvig, P. 2008.  Natural Language Corpus Data: Beautiful 
Data.   http://norvig.com/ngrams/. Accessed 9/7/2021. 
Whitley, D. 1994. A Genetic Algorithm Tutorial. Statistics and 
Computing 4: 65-85. 

12712


