
Domain Reconstruction for UWB Car Key Localization
Using Generative Adversarial Networks

Aleksei Kuvshinov,1 Daniel Knobloch,2 Daniel Külzer,2 Elen Vardanyan,3 Stephan Günnemann1, 4

1Technical University of Munich, Department of Informatics
2BMW Group, Hufelandstraße 1, 80937 Munich, Germany

3Technical University of Munich, Department of Mathematics
4Technical University of Munich, Munich Data Science Institute

kuvshino@in.tum.de, {daniel.kd.knobloch, daniel.kuelzer}@bmw.de, elen.vardanyan@tum.de, guennemann@in.tum.de

Abstract

We consider the car key localization task using ultra-
wideband (UWB) signal measurements. Given labeled data
for a certain car, we train a deep classifier to make the pre-
diction about the new points. However, due to the differences
in car models and possible environmental effects that might
alter the signal propagation, data collection requires consider-
able effort for each car. In particular, we consider a situation
where the data for the new car is collected only in one en-
vironment, so we have to utilize the measurements in other
environments from a different car. We propose a framework
based on generative adversarial networks (GANs) to generate
missing parts of the data and train the classifier on it, miti-
gating the necessity to collect the real data. We show that the
model trained on the synthetic data performs better than the
baseline trained on the collected measurements only. Further-
more, our model closes the gap to the level of performance
achieved when we would have the information about the new
car in multiple environments by 35%.

Key Localization Task
Following the trend of mobile payment solutions, a new and
emerging use case is formed by using a smart device (e.g.,
cell phone) as a car key. Starting from recently introduced
near-field communication (NFC)-based car access, the next
step constitutes hands-free or passive entry to the car via the
personal smart device. In other words, this means that the ve-
hicle owner can keep his smart device in his pocket, and the
car unlocks automatically upon approach. The ‘Digital Car
Key’ is standardized (Car Connectivity Consortium (CCC)
2021), and its commercial launch was recently announced
(BMW 2021). Its underlying technology relies on two dif-
ferent wireless technologies, Bluetooth and ultra-wideband
(UWB). Moreover, a back end is required for owner pair-
ing (key setup) or friend sharing (key lending), while the car
access functionality works independently of an available in-
ternet connection.

Upon approaching the vehicle, a Bluetooth connection be-
tween the smart device and car is established. Security pro-
tocols are exchanged, and the communication partners agree
upon UWB connection parameters. Next, said UWB con-
nection is established to allow secure ranging of the smart

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Illustration of the UWB car access use case with
an exemplary number of UWB antennas (N = 4) and exem-
plary clusters (c1, c2, c3).

device (see Figure 1). For that, the vehicle is equipped with
N UWB antennas or anchors. The UWB technology en-
ables precise localization thanks to its pulse duration of 2 ns.
Moreover, the available time of flight (ToF) data prevents re-
lay attacks, fulfilling highest security requirements. With the
help of the UWB car key (CCC Digital Key) localization, the
vehicle locks or unlocks and targeted lights might welcome
the vehicle owner at a few meters distance.

However, the UWB-based key localization task requires
complex and costly vehicle calibration due to its frequency
range of 3GHz to 10GHz and resulting reflections or
shielding for most materials. The digital car key has to work
in many environments (e.g., free-field or underground park-
ing) that feature individual and different propagation char-
acteristics. For solid system performance, all possible smart
device locations in and outside the vehicle have to be mea-
sured in a total of 4 to 5 environments. On top of that, each
new car model requires a new measurement campaign as a
vehicle’s form factor, interior, and materials usually differ.
Even model variants might require special treatment due to
glass roofs or engine types.

Data The localization decision is based on the anchors’
received signal strength and ToF measurements. Consider-
ing vehicle A parked in environment 1, our input data to the

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

12552



classifier is xA1 ∈ R2N . Our classifier performs the ‘sim-
ple’ decision of the key being outside or inside the vehicle.
For that, a total of 4000–6000 measurements for both cases
(forming a balanced data set) and per environment are used.
Additionally, the measurements are labeled by one of the 17
regions in or around the car (e.g., inside rear, inside front)
where they were taken. We refer to these location labels as
clusters (see Figure 1 for examples showing clusters c1, c2,
and c3).

Challenges The main challenge from an automotive man-
ufacturer’s perspective is the measurement complexity. Each
model requires measurements in multiple environments,
constituting a lengthy, costly, and error-prone task. The
novel idea of this work is to use artificial intelligence (AI)
to replace part of the measurements. Hence, regarding the
emerging AI application, the challenge for the deep learning
framework is to transform available measurement data to a
completely missing domain.

For the rest of the paper, we assume to have one car used
for extensive data collection (the default one) in multiple
environments and one new car (the target one) where only
the measurements from a single environment are available
to train the model. The task is to train a classifier for the
target car data under the described conditions.

Contributions We propose a framework based on genera-
tive adversarial networks (GANs) that allows for the recon-
struction of a completely missing domain by learning a tran-
sition mapping from the available data sets. This enables
the UWB key localization application rollout to an origi-
nal equipment manufacturer (OEM)’s model range at sig-
nificantly reduced cost. Using the generated data, we train
a classifier for a new car model to decide whether the smart
device is inside or outside the vehicle. Our experiments show
a superior performance of the proposed framework com-
pared to the baseline trained on the available data only.

Missing Domain Reconstruction
For the following sections, we denote the default and target
cars as A and B, as well as the default and target environment
as environments 1 and 2. The corresponding domains are
called A1, A2, B1, and the missing one B2. Note that we
have multiple target environments and train the described
models for each of them separately.

To be able to deploy the classifier and have good per-
formance in the real-life scenario, we have to train it us-
ing the knowledge from as much available data as possible.
The simplest approach would be to train the classifier on the
available data from the target car, that is, its default environ-
ment B1. However, as we show in the experiments, utilizing
the data A1 and A2 from the default car significantly im-
proves upon that baseline.

The idea is to reconstruct B2 and use the new data to train
the classifier. Note that we have the data either from the same
car but the wrong environment (B1) or the same environ-
ment but the different car (A2). Therefore, our ultimate goal
is to construct a mapping that, given the input points from
A2 and B1, generates data points in B2. That means the task

CycleGAN-AB

C
yc
le
G
A
N
-1
2

A1

A2

B1

B2

Figure 2: Four domains (depicted as circles) and four gen-
erators (arrows). The CycleGAN-12 unit (with the genera-
tors G12 and G21 and discriminators D12 and D21) operates
between the environments while the CycleGAN-AB unit
(GAB, GBA, DAB and DBA) maps data between the cars. Dot-
ted arrows indicate the difference in the loss function when
the generators are trained for the B1–B2 and A2–B2 pairs
(see Section Missing Domain Reconstruction for details).

is to learn a transfer function that simulates measurements in
a different environment and the same car (B1 → B2 trans-
fer, G12 in Figure 2). In addition, we learn a mapping that
generates the data points in the same environment but from
a car with a different geometry (A2→ B2 transfer, GAB in
Figure 2).

CycleGAN Framework Unlike standard generative mod-
els (e.g., standard GAN proposed by Goodfellow et al.), dur-
ing the training phase, we do not have any data samples from
B2, the data distribution that we have to approximate. In-
stead, we have a sample from the source domain that we
have to convert into a sample from a new domain. Thus, the
generation procedure has to be conditioned on that input.
Still, since the target domain B2 is unavailable during train-
ing, it is impossible to train a conditional generator directly
on B1 and B2.

For that purpose, we adapted the CycleGAN model de-
veloped to solve the image-to-image translation task by
Zhu et al. (2017). One CycleGAN unit consists of two
GANs (two generator-discriminator pairs, for the forward
and backward direction) coupled with each other by the so-
called cycle and identity losses. Having two dimensions in
our set of domains, cars, and environments, we learn two
CycleGAN units for each of the mappings described above.
The full setup is shown in Figure 2. Once trained on an avail-
able pair of domains, we use the generators G12 and GAB
to correspondingly reconstruct domain B2 from B1 and A2.
We show the hyperparameters used to train CycleGANs in
Section Experiments.

New losses To summarize, we have eight networks to
train: a pair of a generator and discriminator for each of the
four directions (A→ B, B→ A, 1→ 2, 2→ 1, see Figure 2).
Note that while B2 is not available, we still have to ensure
that the model is aware of its presence. Otherwise, assume
one would train CycleGAN-12 consisting of G12 and G21

12553



separately from CycleGAN-AB. This is done by using A1
as the source domain and A2 as the target domain. Then the
network would learn the mapping on the data from car A and
be applicable to its specific geometry only. Instead, we are
aiming at learning a transfer function applicable to the target
car B as well.

To make it possible, in addition to the standard CycleGAN
losses (marked by ‘–’ below), we introduce the new ones
(marked by ‘*’). The full list of the loss terms we use for
training CycleGANs is shown below.
• Adversarial and identity losses, CycleGAN-12.

– [LG1.1] G12 loss: (D12(G12(xA1))− 1)2

– [LD1.1] D12 loss: (D12(xA2)−1)2+D12(G12(xA1))
2

– [LG1.2] G21 loss: (D21(G21(xA2))− 1)2

– [LD1.2] D21 loss: (D21(xA1)−1)2+D21(G21(xA2))
2

– [LI1] ‖G12(xA2)− xA2‖1 + ‖G21(xA1)− xA1‖1
• The adversarial and identity losses associated with

CycleGAN-AB ([LG2.x], [LD2.x] and [LI2]) are of the
same form as the losses above, but with the second do-
main being B1 instead of A2 (the first one is A1).

• Cycle losses associated with CycleGAN-12.
– [LC1.1] A1→ A2→ A1: ‖xA1 −G21(G12(xA1))‖1
– [LC1.2] A2→ A1→ A2: ‖xA2 −G12(G21(xA2))‖1
* [LC1.3] B1→ B2→ B1: ‖xB1 −G21(G12(xB1))‖1
* no B2→ B1→ B2 cycle since xB2 is missing.

• Cycle losses associated with CycleGAN-AB.
– [LC2.1] A1→ B1→ A1: ‖xA1 −GBA(GAB(xA1))‖1
– [LC2.2] B1→ A1→ B1: ‖xB1 −GAB(GBA(xB1))‖1
* [LC2.3] A2→ B2→ A2: ‖xA2 −GBA(GAB(xA2))‖1
* no B2→ A2→ B2 cycle since xB2 is missing.

• Cycle losses associated with both CycleGANs.
* [LC3.1] A1→ B1→ B2→ A2→ A1 cycle:

‖xA1 −G21(GBA(G12(GAB(xA1))))‖1
* [LC3.2] A1→ A2→ B2→ B1→ A1 cycle:

‖xA1 −GBA(G21(GAB(G12(xA1))))‖1
* [LC3.3] A1→ B1→ B2 vs. A1→ A2→ B2:

‖G12(GAB(xA1))−GAB(G12(xA1))‖1
Note that almost all new losses are of the same form as the
cycle loss from the standard CycleGAN and compare a given
ground truth sample to its reconstruction. However, the re-
construction is now generated using the synthetic points
from B2. This causes CycleGANs to learn meaningful map-
pings not only between the ‘simple’ domains A1, A2, and
B1 but for B1 � B2 and A2 � B2 as well.

Classification After the training of CycleGANs is com-
pleted, we create new data xB2 = G12(xB1) from B1 sam-
ples as well as xB2 = GAB(xA2) from A2 samples. In both
cases, we take the corresponding label and assign the same
one to the new sample in B2. Once we have the synthetic
data substituting the real points in B2, we train the classifier
on the union of B1 and synthetic B2. This way, it incorpo-
rates more knowledge about the geometry of car B, and we
use as much information as possible about the target envi-
ronment as well.

Experiments
We refer to the classifier trained as described above as GEN.
In addition to it, we train two baseline models. The first is
called SRC and trained on a union of B1 and A2, the ground
truth (source) data available without training CycleGANs.
To have an upper bound that one achieves having the full
information about the target car, we train a model on B1 and
the true B2 (target data, collected for testing purposes) and
call it TGT.

For our experiments, we use data collected for two cars
in a different number of environments: 8 and 14. We treat
the car with less available environments as the default car A
and use the underground parking environment as the default
environment (available for both cars). The remaining seven
environments of car A are the target environments A2. For
each of these, we train the CycleGAN models as described
in Section Missing Domain Reconstruction separately. Note
that for the remaining six environments of car B, we do
not generate any synthetic B2 data. Therefore, we separately
evaluate models’ performance on the environments available
for both cars and the completely new environments from car
B. The former explains how well the generated data approx-
imates the corresponding true car B data from the common
environments. Whereas the latter indicates whether the mod-
els SRC and GEN are able to generalize to completely new
environments, which is a highly desirable property when de-
ployed.

Additionally, since we have the information about the de-
vice’s location, we want to train CycleGANs tailored to the
specific clusters. It is helpful because the transition map-
pings should not be the same for, e.g., inside and outside re-
gions. To achieve that, we first train the CycleGANs on the
data from all clusters. Then, starting from the latest model
checkpoint, we continue training a separate set of genera-
tors and discriminators on each cluster individually.

Setup: CycleGAN Training The architecture of the gen-
erators and discriminators is based correspondingly on the
ResNet and PatchGAN architectures adapted by Zhu et al.
(2017) (see the ResNet paper by He et al. (2016) and Isola
et al. (2017) for PatchGAN). However, to enable its usage
for the vector data, we add the first dense linear layer to all
networks with the output of shape 3×64×64. Additionally,
for the generators, we add the corresponding final dense lin-
ear layer with the vector-valued output. For the main part of
the generators, we use two downsampling blocks consisting
of a convolutional, batch normalizing, and activation layer,
followed by six ResNet and two upsampling blocks (with
a similar structure as the downsampling blocks). Each gen-
erator has 580 000 parameters. For more information, see
the CycleGAN paper and PyTorch implementation. For the
discriminators, we use PatchGAN with three convolutional
blocks from the CycleGAN implementation. Each discrimi-
nator has 335 000 parameters. In all eight networks, we have
16 filters in the last convolutional layer.

Each of the two CycleGANs is trained with their adversar-
ial losses ([LDx.x] and [LGx.x] above) as described by Zhu
et al. (2017), where we use the MSE GAN loss (‘lsgan’ op-
tion, introduced by Mao et al. (2017)). Furthermore, in addi-

12554



(a) Ground truth (b) Epoch 10 (c) Epoch 20

(d) Epoch 40 (e) Epoch 200 (f) Epoch 450

Figure 3: Two-dimensional principal component analysis (PCA)-visualization of the ground truth B2 data in comparison with
B1 (showing the difference between the environments) and generated B2 at different epochs during the training. The different
between B1- and B2-measurements in Figure 3a is reduced by the generated samples after the CycleGAN training is completed,
see Figure 3f.

tion to the cycle losses that improve the quality of the gener-
ated samples, we use the identity losses from the CycleGAN
framework. The idea was initially proposed by Taigman,
Polyak, and Wolf (2017) and applied by Zhu et al. (2017)
on some of the use cases to stabilize the training and further
improve the results. As we observe a similar effect in our
case, the training is more stable, and we keep the identity
loss for a certain number of epochs.

The weights are distributed as follows: discriminator and
generator losses ([LGx.x] and [LDx.x]) – 10, cycle losses
associated with only one CycleGAN ([LC1.x] and [LC2.x])
– 10, cycle losses coupling both CycleGANs ([LC3.x]) – 1,
identity losses ([LIx]) – 5 for the first 200 epochs then 0.
We use a starting learning rate of 0.0002 and keep it for 50
epochs. Afterward, it linearly decays for 200 epochs until
it reaches 1% of the initial value and stays at that level for
another 200 epochs. Overall, the training lasts 450 epochs.

Figure 3 shows the two-dimensional projection of the
standardized true and generated data throughout the learn-
ing process. We use the PCA applied on a pair of datasets
and take the environment with five people inside the car in

the underground parking as the target one. In all six images,
the first two principal components of the target environment
from car B (B2 domain) are shown in orange. In Figure 3a,
we compare these points to the default environment from car
B (B1, depicted in blue). The overall coverage of the two
principal components shows the similarity between both en-
vironments. Note that we use the points from B1 as the input
for the generator, and it motivates the usage of the identity
loss in our case. It prevents the generator from outputting
points that are too different from B1 that already provides
a good starting point for an approximation of true B2. Nev-
ertheless, some gaps between these distributions are visible,
and we are able to improve by training the CycleGANs. Fig-
ures 3b–3f show the true and generated B2 (red points) at
a certain epoch during the training of CycleGANs. We see
that the difference between both datasets becomes smaller
during the training, and the approximation of the true B2
domain improves.

Setup: Classifier Training Since the main focus of this
work lies in the domain recovery task, we use a simple dense
classifier that already yields reasonable performance to save

12555



GEN TGT SRC
mean std mean std mean std

all 0.913 0.001 0.954 0.001 0.891 0.001
known 0.933 0.001 0.963 0.002 0.915 0.001
new 0.887 0.002 0.943 0.002 0.870 0.002

in 0.882 0.001 0.961 0.007 0.855 0.001
out 0.942 0.001 0.947 0.006 0.934 0.001

c1 0.860 0.008 0.853 0.036 0.876 0.009
c2 0.997 0.001 0.994 0.002 0.992 0.002
c3 0.995 0.001 0.993 0.002 0.994 0.001
c4 0.964 0.003 0.966 0.003 0.961 0.003
c5 0.986 0.001 0.983 0.002 0.985 0.001
c6 0.998 0.001 0.998 0.002 0.999 0.001
c7 0.804 0.012 0.853 0.020 0.718 0.010
c8 0.812 0.003 0.899 0.013 0.748 0.007
c9 0.996 0.001 0.997 0.002 0.997 0.002
c10 0.986 0.001 0.997 0.001 0.987 0.002
c11 0.993 0.002 0.998 0.001 0.990 0.002
c12 0.997 0.001 0.993 0.003 0.998 0.001
c13 0.996 0.001 0.992 0.003 0.991 0.002
c14 0.852 0.007 0.782 0.021 0.900 0.005
c15 0.741 0.005 0.973 0.006 0.686 0.004
c16 0.642 0.008 0.888 0.023 0.531 0.005
c17 0.983 0.002 0.951 0.011 0.974 0.003

Table 1: Performance of the classifiers GEN, SRC and
TGT on the different parts of the test data: all – com-
plete test set, known – common environments used for train-
ing CycleGANs, new – new environments, unseen during
CycleGAN training, in – points inside the car, out – points
outside the car, cx – points from the cluster x.

the training time in that stage. To solve the classification
task, we use a dense network with ReLU activations con-
taining two hidden layers. It has 16 input neurons (N = 8
anchors), 15 neurons in the first hidden layer, and 5 neurons
in the second one. We train it for 70 epochs with a learn-
ing rate of 0.001 using Adam optimizer by Kingma and Ba
(2015). We use Adam’s PyTorch implementation with the
standard parameters.

After the CycleGANs are trained, the points from car B
(both B1 and B2) are split into 70% train and 30% test data.
Model TGT is then trained on the train set, and all models
are evaluated on the test set without the default environment
B1 since GEN and SRC used it during training. Thus, the
test set consists of 30% of the data from the B2 environ-
ments. We do ten runs with random data splits to ensure the
statistical significance of the results. In Table 1, we show the
mean correct classification rate as well as its standard devia-
tion over the ten runs of the three competitors on the test set.

Results In Table 1, we report the performance of the three
models described above. Each column contains the correct
classification rate of the corresponding model on a spe-
cific part of the test data. We report the performance on
the full test set (row all), on the environments used to train
CycleGANs and the completely new environments from the
target car (known and new), on the points inside and outside

of the car (in and out) as well as on each of the clusters indi-
vidually (cx, all environments).

Classifier GEN trained on the generated B2 data outper-
forms SRC baseline by over two percentage points on the
whole data set and both environment groups. Having 91.3%
correctly predicted points against 95.4% for TGT (with the
absolute knowledge about car B), we close the gap between
the performance of the TGT and SRC models. Note that ini-
tially, only the default environment from that car was avail-
able for training GEN out of 14 used to train TGT. Further-
more, for known environments, the correct classification rate
of GEN almost reaches TGT with 93.3% against 96.3%
correspondingly. It illustrates that the synthetic B2 points
approximate the ground truth well enough to reach that high
level of performance on the reconstructed environments. On
the other hand, while the test error is larger on new envi-
ronments for all models, GEN is still outperforming SRC,
showing better capability to generalize to the unseen envi-
ronments.

For the most individual clusters with a significant differ-
ence between the error of TGT and SRC, we improve upon
the error of SRC. For the outside regions close to the win-
dows (cluster c7 – roof and c8 – windows), the classification
task is more challenging, resulting in worse performance for
all competitors (GEN, TGT, and SRC) than the error on the
full dataset. Another region with performance below aver-
age is in and around the open trunk (clusters c14 and c16).
In addition to the same problem as for c7 and c8, we observe
a higher error inside the open trunk (cluster c16) for SRC
compared to TGT. This phenomenon arises because several
data points inside the open trunk were recognized as outside
due to car A’s influence on the classifier.

Related Work
Note that our task falls into the broad category of transfer
learning problems solved by the machine learning methods
that utilize the knowledge from a known domain to achieve
better performance in a new one. Here we mention the most
relevant approaches that are related to our use case and the
chosen approach.

Conditional GANs There is a family of approaches that
use conditional GANs (Goodfellow et al. 2014; Zhao, Math-
ieu, and LeCun 2017; Mirza and Osindero 2014; Mao et al.
2017) to solve the image-to-image translation problem (e.g.,
recoloring or changing the style of a picture). Some of these
approaches require pairs of input-output samples (Isola et al.
2017; Karacan et al. 2016; Sangkloy et al. 2017) and other
work with unpaired data sets as in our use case (Aytar et al.
2017; Bousmalis et al. 2017; Liu and Tuzel 2016; Shrivas-
tava et al. 2017; Taigman, Polyak, and Wolf 2017; Zhu et al.
2017). CyCADA, presented by Hoffman et al. (2018), builds
upon the idea of the cycle consistent sample generation of
CycleGAN but uses it in a context of a downstream task.
While currently, we keep the training of the models for the
domain recovery and classification task separated, using Cy-
CADA or other approaches based on conditional GANs that
are aware of the downstream problem instead of CycleGAN
is a promising direction for further improvement.

12556



Multi-Domain Setting While the approaches above op-
erate in a situation with one source and one target domain,
there is a line of work that deals with more than two domains
and the (bi-directional) transitions across them. StarGAN
(Choi et al. 2018), StarGANv2 (Choi et al. 2020), and Radi-
alGAN (Yoon, Jordon, and Schaar 2018) are the recent ap-
proaches that learn a single generator that, given input from
one of the domains, is capable of producing images from a
different one. A typical use case is transitioning between fa-
cial expressions of the same person. Finally, CollaGAN (Lee
et al. 2019) was proposed specifically for missing image data
imputation and trains a generator that can estimate the data
in any domain utilizing the other clean data set.

While these models work in a similar scenario, two ma-
jor differences do not allow us to use them directly in our
use case, as shown in Figure 2. First, in our case, one of the
domains is completely missing, and its samples cannot be
used for training. Note that the approaches mentioned above
require data from all relevant domains for their training. For
example, if a certain facial expression is not present in the
training data set, it cannot be learned and afterward gener-
ated by the approaches like StarGAN. Second, the domains
in our case have a certain relation to each other (either the
same environment or the same car). This structure of the data
set is different from a collection of subsets with a changing
semantic feature. It is exactly this structure that allows us
the training of car-to-car and environment-to-environment
translation mappings as described in Section Missing Do-
main Reconstruction.

UWB Key Localization The proposed framework serves
as a means to reduce cost in the rollout of using a smart
device as a car key. Besides apparent and described ben-
efits, the UWB key localization application poses several
challenges (Knobloch 2017). In short, the major problem is
that the signal might be blocked, and a UWB antenna only
receives multiple reflections, i.e., non-line of sight (NLOS)
propagation paths or no signal at all. Classifying a received
signal as line of sight (LOS) or NLOS propagation would
considerably improve UWB localization accuracy. However,
the task is challenging and computationally complex, and a
first approach is described in (Jiang et al. 2020). While our
feature set has proven robust in practice, more complex fea-
tures for multi-path environments, and without direct NLOS
determination, are listed by Park et al. (2021). For a broader
overview of UWB-based (indoor) localization, we refer the
reader to the work by Shi and Ming (2016).

Conclusion
In this work, we present the UWB car key localization prob-
lem needed to be solved in order to enable a reliable way of
using a smart device as a car key. We discuss the challenges
related to a large number of application scenarios and the
need for extensive, costly data collection.

To overcome these issues, we propose an AI-based solu-
tion to replace most of the data required to train the model
for a new car with the generated samples. The novel ap-
proach allows training a simple classifier that consistently
outperforms the baseline trained on the available measure-

ments only. Furthermore, it nearly reaches the performance
of the model that had the full information about the envi-
ronments from the test set of the new car. In summary, with
the proposed approach, we contribute to the future deploy-
ment of the UWB car key technology and its efficient per-
formance.

Future Work Finally, we mention two directions of pos-
sible improvements.

The first one is related to the scalability and training
time of the described approach. Currently, we train two
CycleGAN units for each environment-cluster combination.
Even when it is not a concern now, since CycleGAN train-
ing and data generation is done a priori, we consider train-
ing a joint framework for multiple environments with fewer
generators and discriminators as a possible way to make the
framework more efficient.

The second idea for future work goes into the direction
of combining both stages: CycleGAN and classifier train-
ing. Currently, the information about the labels is used for
training CycleGANs only indirectly by training the models
on individual clusters (each of them is either an inside or
outside region). The idea of using the labels and training all
models jointly similar to CyCADA’s approach is an intrigu-
ing direction for future research.

References
Aytar, Y.; Castrejon, L.; Vondrick, C.; Pirsiavash, H.; and
Torralba, A. 2017. Cross-modal Scene Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 40(10): 2303–2314.
BMW. 2021. BMW Announces BMW Digital Key Plus
with Ultra-Wideband Technology Coming to the BMW
iX. https://www.press.bmwgroup.com/global/article/detail/
T0324128EN/bmw-announces-bmw-digital-key-plus-
with-ultra-wideband-technology-coming-to-the-bmw-
ix?language=en. Accessed: 2021-09-03.
Bousmalis, K.; Silberman, N.; Dohan, D.; Erhan, D.; and Kr-
ishnan, D. 2017. Unsupervised Pixel-Level Domain Adap-
tation with Generative Adversarial Networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 3722–3731.
Car Connectivity Consortium (CCC). 2021. Digital Key Re-
lease 3.0 (CCC-TS-101), Ver. 1.0.0.
Choi, Y.; Choi, M.; Kim, M.; Ha, J.-W.; Kim, S.; and Choo,
J. 2018. Stargan: Unified Generative Adversarial Networks
for Multi-Domain Image-to-Image Translation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 8789–8797.
Choi, Y.; Uh, Y.; Yoo, J.; and Ha, J.-W. 2020. Stargan v2:
Diverse Image Synthesis for Multiple Domains. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 8188–8197.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative Adversarial Nets. Advances in Neural In-
formation Processing Systems (NeurIPS), 27.

12557



He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Resid-
ual Learning for Image Recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 770–778.
Hoffman, J.; Tzeng, E.; Park, T.; Zhu, J.-Y.; Isola, P.;
Saenko, K.; Efros, A.; and Darrell, T. 2018. Cycada:
Cycle-Consistent Adversarial Domain Adaptation. In Inter-
national Conference on Machine Learning (ICML), 1989–
1998. PMLR.
Isola, P.; Zhu, J.-Y.; Zhou, T.; and Efros, A. A. 2017.
Image-to-Image Translation with Conditional Adversarial
Networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 1125–1134.
Jiang, C.; Shen, J.; Chen, S.; Chen, Y.; Liu, D.; and Bo, Y.
2020. UWB NLOS/LOS Classification Using Deep Learn-
ing Method. IEEE Communications Letters, 24(10): 2226–
2230.
Karacan, L.; Akata, Z.; Erdem, A.; and Erdem, E. 2016.
Learning to Generate Images of Outdoor Scenes from At-
tributes and Semantic Layouts. arXiv:1612.00215.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In Bengio, Y.; and LeCun, Y., eds.,
3rd International Conference on Learning Representations
(ICLR), Conference Track Proceedings.
Knobloch, D. 2017. Practical Challenges of Particle Fil-
ter Based UWB Localization in Vehicular Environments. In
Proceedings of the International Conference on Indoor Po-
sitioning and Indoor Navigation (IPIN), 1–5.
Lee, D.; Kim, J.; Moon, W.-J.; and Ye, J. C. 2019. Colla-
GAN: Collaborative GAN for Missing Image Data Imputa-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2487–2496.
Liu, M.-Y.; and Tuzel, O. 2016. Coupled Generative Adver-
sarial Networks. Advances in Neural Information Process-
ing Systems (NeurIPS), 29: 469–477.
Mao, X.; Li, Q.; Xie, H.; Lau, R. Y.; Wang, Z.; and
Paul Smolley, S. 2017. Least Squares Generative Adver-
sarial Networks. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2794–2802.
Mirza, M.; and Osindero, S. 2014. Conditional Generative
Adversarial Nets. arXiv:1411.1784.
Park, J.; Choi, H.-B.; Ko, Y.-B.; and Lim, K.-W. 2021. Lo-
cate UWB Smart Keys: Smart and Faster. In Proceedings
of the ACM International Workshop on Mobile Computing
Systems and Applications (HotMobile), 169–171.
Sangkloy, P.; Lu, J.; Fang, C.; Yu, F.; and Hays, J. 2017.
Scribbler: Controlling Deep Image Synthesis with Sketch
and Color. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 5400–5409.
Shi, G.; and Ming, Y. 2016. Survey of Indoor Position-
ing Systems Based on Ultra-Wideband (UWB) Technology.
In Wireless Communications, Networking and Applications,
1269–1278. Springer.
Shrivastava, A.; Pfister, T.; Tuzel, O.; Susskind, J.; Wang,
W.; and Webb, R. 2017. Learning from Simulated and Un-
supervised Images Through Adversarial Training. In Pro-

ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2107–2116.
Taigman, Y.; Polyak, A.; and Wolf, L. 2017. Unsupervised
Cross-Domain Image Generation. In 5th International Con-
ference on Learning Representations (ICLR), Conference
Track Proceedings.
Yoon, J.; Jordon, J.; and Schaar, M. 2018. RadialGAN:
Leveraging Multiple Datasets to Improve Target-Specific
Predictive Models Using Generative Adversarial Networks.
In International Conference on Machine Learning (ICML),
5699–5707. PMLR.
Zhao, J. J.; Mathieu, M.; and LeCun, Y. 2017. Energy-Based
Generative Adversarial Networks. In 5th International Con-
ference on Learning Representations (ICLR), Conference
Track Proceedings.
Zhu, J.-Y.; Park, T.; Isola, P.; and Efros, A. A. 2017. Un-
paired Image-to-Image Translation Using Cycle-Consistent
Adversarial Networks. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV), 2223–2232.

12558


