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Abstract

Fairness related to locations (i.e., “where”) is critical for the
use of machine learning in a variety of societal domains in-
volving spatial datasets (e.g., agriculture, disaster response,
urban planning). Spatial biases incurred by learning, if left
unattended, may cause or exacerbate unfair distribution of
resources, social division, spatial disparity, etc. The goal of
this work is to develop statistically-robust formulations and
model-agnostic learning strategies to understand and promote
spatial fairness. The problem is challenging as locations are
often from continuous spaces with no well-defined categories
(e.g., gender), and statistical conclusions from spatial data are
fragile to changes in spatial partitionings and scales. Existing
studies in fairness-driven learning have generated valuable
insights related to non-spatial factors including race, gen-
der, education level, etc., but research to mitigate location-
related biases still remains in its infancy, leaving the main
challenges unaddressed. To bridge the gap, we first propose a
robust space-as-distribution (SPAD) representation of spatial
fairness to reduce statistical sensitivity related to partitioning
and scales in continuous space. Furthermore, we propose a
new SPAD-based stochastic strategy to efficiently optimize
over an extensive distribution of fairness criteria, and a bi-
level training framework to enforce fairness via adaptive ad-
justment of priorities among locations. Experiments on real-
world crop monitoring show that SPAD can effectively re-
duce sensitivity in fairness evaluation and the stochastic bi-
level training framework can greatly improve the fairness.

Introduction
The goal of spatial fairness, or fairness by “where”, is to
reduce biases that have significant linkage to the locations
or geographical areas of data samples. Such biases, if left
unattended, may cause or exacerbate unfair distribution of
resources, social division, spatial disparity, and weaknesses
in resilience or sustainability (CNBC 2020).

In the following, we illustrate the societal importance of
spatial fairness using an example application context in agri-
culture. Food production is witnessing tremendous supply
stresses as a result of rapidly increasing population, cli-
mate change, etc. The urgency of the problem has led to
major national and international efforts to monitor crops
at large scales (e.g., G20’s GEOGLAM global agriculture
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(a) Global F1: 0.573 (b) Global F1: 0.572

Figure 1: Spatial bias examples. (a) and (b) show F1-scores
of tomato classification by the same model (trained twice).

monitoring initiative), and these systems and alike heavily
rely on both satellite Earth-observation imagery and learn-
ing methods (Kamilaris et al. 2018; Kussul et al. 2017; Jia
et al. 2019). More importantly, resulting products such as
crop maps and acreage estimates (Olofsson et al. 2014) are
used to inform critical actions (e.g., distribution of subsi-
dies (NASEM 2018; Bailey and Boryan 2010; Boryan et al.
2011)) to mitigate risks (e.g., natural disturbance incurred
food shortage) and support local farmers, which are neces-
sary for sustainability and stability. However, current prod-
ucts used to support these important decisions are largely
subject to unfairness across locations. For example, predic-
tion accuracy in one region can be easily compromised to
pursue better results at other places (e.g., Fig. 1), which can
be especially hurtful for small holders (CNBC 2020). Simi-
larly, they can lead to unfair damage estimations (e.g., yield
decrease) due to floods, drought and hurricanes, which are
often used to calculate farm insurance. Broadly, spatial fair-
ness has important implications in decision-making across
many domains, including disaster management (e.g., floods,
wildfires), large-scale carbon monitoring which affects car-
bon tax, transportation (e.g., traffic and accident prediction,
delivery estimation, demand forecast), and many more.

The formulation and enforcement of spatial fairness in-
troduce several major challenges. First, unlike traditional
categorical-attribute-based fairness (e.g., race- or gender-
based), spatial domain is a continuous space, which means
the “categories” are not well-defined or given-for-free. Sec-
ond, statistics (e.g., fairness scores based on variance) cal-
culated from spatial datasets are fragile or sensitive to both
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space-partitionings and scales, which is also known as the
modifiable areal unit problem (MAUP; detailed in Def. 2).
In other words, conclusions on “fair” or “unfair” can be eas-
ily altered by simple changes in partitionings or scales. The
lack of consideration on MAUP has led to major societal
concerns such as the recent debate on partisan gerrymander-
ing at the US Supreme Court (NPR 2019).

Despite the importance of spatial fairness for the use of
deep learning in societal applications, research on this topic
is still in its infancy and has barely been studied explic-
itly in the context of deep learning. The traditional line
of research on fairness and equity in space mainly focuses
on direct analysis over existing maps or their derivatives
(e.g., COVID-19 statistics, access to resources) (Karaye and
Horney 2020; Thebault-Spieker, Hecht, and Terveen 2018;
Thebault-Spieker, Terveen, and Hecht 2017), which does not
aim to address spatial fairness issues entangled with ma-
chine learning or deep learning techniques, i.e., improving
the techniques’ ability to preserve spatial fairness in train-
ing or prediction. Extensive learning-based fairness research
has been conducted, which largely focus on pre-defined
categorical-attribute-based fairness (e.g., race and gender),
including regularization (Zafar et al. 2017; Yan and Howe
2019; Kamishima, Akaho, and Sakuma 2011; Serna et al.
2020), sensitive category de-correlation (Sweeney and Na-
jafian 2020; Zhang and Davidson 2021; Alasadi, Al Hilli,
and Singh 2019), data collection/filtering strategies (Jo and
Gebru 2020; Yang et al. 2020; Steed and Caliskan 2021),
and more (e.g., a recent survey (Mehrabi et al. 2021)). These
fairness-aware methods have been used for tasks related to
face detection (Serna et al. 2020; Alasadi, Al Hilli, and
Singh 2019), language processing (Sweeney and Najafian
2020; Cho et al. 2021), online bidding (Nasr and Tschantz
2020; Ilvento, Jagadeesan, and Chawla 2020), etc. However,
existing formulations and methods have yet to address the
new challenges brought by spatial fairness, where conclu-
sions can be easily flipped due to the statistical sensitivity
introduced by MAUP. Finally, heterogeneity-aware learning
(Xie et al. 2021a,b) automatically captures differences in
data distributions in space, but has not considered fairness.

We aim to tackle the challenges by exploring new for-
mulations and model-agnostic learning frameworks that are
spatially-explicit and statistically-robust. Specifically, our
contributions are:

• We propose a SPace-As-Distribution (SPAD) representa-
tion to formulate and evaluate the spatial fairness of learn-
ing models in continuous space, which mitigates the sta-
tistical sensitivity problems introduced by MAUP.

• We propose a SPAD-based stochastic strategy to effi-
ciently optimize over an extensive distribution of candi-
date criteria for spatial fairness, which are needed to har-
ness MAUP.

• We propose a bi-level player-referee training framework
to enhance spatial fairness enforcement via adaptive ad-
justments of training priorities among locations.

Experiments on real datasets show that the proposed
SPAD-based formulation and stochastic training can effec-
tively promote fairness with improved robustness against

MAUP-incurred sensitivity. The bi-level training also im-
proves the stability of the model and fairness results com-
pared to traditional regularization-based paradigms.

Key Concepts
Definition 1 Partition p vs. Partitioning P . In this paper, a
partitioning P splits an input space into m individual parti-
tions pi, i.e., P = {p1, ..., pi, ..., pm}.

Definition 2 Modifiable Areal Unit Problem (MAUP).
MAUP states that statistical results and conclusions are sen-
sitive to the choice of space partitioning P and scale. A
change of scale (e.g., represented by the average area of
{pi | ∀pi ∈ P}) always infers a change of P but not vice
versa. MAUP is often considered as a dilemma as statisti-
cal results are expected to vary if different aggregations or
groupings of locations are used.

Definition 3 Fairness measure Mfair. A statistic used to
evaluate the fairness of a learning model’s performance
over several mutually-exclusive groups of individuals. For
example, Mfair can be variance of accuracy across groups.
In this paper, groups are defined by partitions p ∈ P .

Without loss of generality, in this paper we use partition-
ings P that follow a s1 × s2 pattern (i.e., s1 rows by s2
columns) as examples. Fig. 2 shows an illustrative example
of the effect of MAUP on spatial fairness evaluation. Fig. 2
(a1) and (b1) show two example spatial distributions of pre-
diction results (green: correct; red: wrong): (a1) has a large
bias where the left side has 100% accuracy and the right side
has 0%, and (b1) has a reasonably even distribution of each.
However, as shown in Fig. 2 (a2-3) and (b2-3), different par-
titionings or scales can lead to completely opposite conclu-
sions, making fairness scores fragile in the spatial context.

(a1) Distribution A

(b1) Distribution B

(a2) Unfair (a3) Fair

(b2) Unfair (b3) Fair

Legend
Correct 
prediction
Incorrect 
prediction

Figure 2: Illustrative examples showing the sensitivity of
fairness evaluation to space-partitionings and scales.

Formulation and Method
In this section, we first propose a novel space-as-distribution
(SPAD) formulation to mitigate MAUP-incurred statisti-
cal sensitivity for fairness evaluation. Then, we propose a
SPAD-based stochastic strategy as well as a bi-level train-
ing framework to enforce spatial fairness for an input deep
network F selected by users.
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Figure 3: Distributional representation by SPAD.

Space as a Distribution of Partitionings
As grouping of locations is needed to calculate common
metrics (e.g., accuracy) for fairness evaluation, in this pa-
per we focus on scenarios where space-partitionings P are
used to generate location groups; in other words, each par-
tition p ∈ P is analogical to a group based on gender or
race in related fairness studies. However, due to the MAUP
dilemma (Def. 2), conclusions drawn from most – if not all
– of common statistical measures are fragile to the variabil-
ity in space-partitionings and scales. If this issue is ignored,
then one may unintentionally or intentionally introduce ad-
ditional bias (e.g., partisan gerrymandering (NPR 2019)).

Thus, instead of relying on fragile scores calculated
from a fixed partitioning or scale, we propose a SPace-As-
Distribution (SPAD) representation to define spatial fairness.
The idea is to go beyond a single partitioning or scale by
treating space-partitionings at different scales {P} as out-
comes of a generative process governed by a statistical dis-
tribution. As mentioned in key concepts, we use the s1×s2-
type of partitioning as a concrete example in this paper; our
formulation and method do not depend on the type of parti-
tioning. Following this, an example generative process may
follow a joint two-dimensional distribution Prob(s1, s2)
where s1, s2 ∈ Z+, s1 ≤ rowmax, s2 ≤ colmax (e.g., 10).
By default, one may assume a uniform distribution where
Prob(s1, s2) = (rowmax · colmax)

−1 (for equal-size parti-
tioning). This scheme also allows users to flexibly impose a
different distribution or prior.

With the SPAD representation, spatial fairness becomes
a distribution of scores, which can more holistically re-
flect fairness situations across a diverse set of partitions and
scales. As an example, Fig. 3 (a1) and (b1) show the same set
of partitioning samples (different patterns and scales) over-
laid on top of distributions A and B in Fig. 2, respectively.
The variance of accuracy across partitions for all 6 partition-
ing samples are aggregated in (a2) and (b2), where lower
variance means fairer results. As we can see, with the dis-
tributional extension, the majority of scores reflect our ex-
pected results on the fairness evaluation for distributions A
and B, and the partitioning samples leading to unexpected
results become outliers (highlighted by red arrows).

Once a distribution of scores is obtained from the SPAD
representation, summary statistics can be conveniently used
for fairness evaluation based on application preferences
(e.g., mean). Finally, with SPAD, the formal formulation of
spatial-fairness-aware learning is defined as follows:

min
Θ

∫
Γ

Prob(Γ) ·Mfair(FΘ,MF ,PΓ)dΓ (1)

where F is an input deep network with parameters Θ; Γ pa-
rameterizes a space-partitioning P (e.g., number of rows and
columns for s1×s2-partitionings); Prob(Γ) is the probabil-
ity of PΓ; MF is a metric used to evaluate the performance
of a model F (e.g., F1-score); and Mfair is a fairness mea-
sure (loss) that is defined as:

Mfair(FΘ,MF ,P) =
∑
p∈P

d(MF (FΘ, p), EP)

|P| (2)

where p is a partition in P (Def. 1), d(·, ·) is a distance mea-
sure (e.g., squared or absolute distance), MF (FΘ, p) is the
score (e.g., F1-score) of FΘ on p’s training data, |P| is the
number of partitions in P , and EP is another key variable,
which represents the mean performance of partitions p ∈ P
(weighted or unweighted by sample sizes). If MF (FΘ, p)
has a large deviation from the mean, the model FΘ is poten-
tially unfair across partitions. Finally, EP here is calculated
from a base model FΘ0

, where parameters Θ0 are trained
without any consideration of spatial fairness:

EP =
∑
p∈P

MF (FΘ0
, p)

|P|
(3)

The benefit of using FΘ0
to set the mean is that, ideally,

we want to maintain the same level of overall model perfor-
mance (e.g., F1-score without considering spatial fairness)
while improving spatial fairness. Thus, this choice automat-
ically takes the overall model performance into considera-
tion as the objective function (Eq. (1)) will increase if FΘ’s
overall performance diverges too far from it (e.g., a model
that yields a 0 F1-scores on all partitions – which is fair but
poor – will not be considered as a good candidate).

SPAD-based Stochastic Training
A direct way to incorporate the distributional SPAD repre-
sentation into the training process – either through loss func-
tions or the bi-level method to be discussed in the next sec-
tion – is to aggregate results from all the partitionings {P}
for each iteration or epoch. However, this is computationally
expensive and sometimes prohibitive. For example, the num-
ber of possible partitionings can be exponential to data size
(e.g., the number of sample locations) when general parti-
tioning schemes are considered (e.g., arbitrary, hierarchical,
or s1 × s2 partitionings with unequal-size cells). Even for
equal-size s1×s2 partitionings, there can be easily over hun-
dreds of candidates when large s1 and s2 values (e.g., 10, 40,
or more) are used for large-scale applications.

Thus, we propose a stochastic training strategy for SPAD
to mitigate the cumbersome aggregation. Considering SPAD
as a statistical generative process G, in each iteration or
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Figure 4: SPAD-based stochastic training strategy.

epoch, we randomly sample a partitioning from G and use
it to evaluate fairness-related loss (Def. 3). For example, for
equal-size s1×s2 partitionings, each time the generator may
randomly sample (s1, s2) from a joint discrete distribution
(Fig. 4). In this way, the probability of each partitioning (Eq.
(1)) is automatically taken into consideration during opti-
mization over epochs. In addition, in scenarios where the
difficulty of achieving fairness varies for different partition-
ings, the SPAD-based stochastic strategy may accelerate the
overall convergence. It may first help a subset of partition-
ings reach good fairness scores faster without the averaging
effect, which may in turn help related partitionings to move
out local minima traps. In practice, we have three further
recommendations for implementation:
• Unconstrained initial training: Ideally, we wish to main-

tain a high overall performance (e.g., F1-scores) while im-
proving fairness across locations. However, it can be pre-
mature to try to find a balance between the two objectives
when the model still has a very poor overall performance
(e.g., untrained). Hence, we keep fairness-related losses or
constraints on-hold at the beginning, and optimize param-
eters by pure prediction errors till stable.

• Epoch as a minimum unit: Deep network training of-
ten involves mini-batches (i.e., a middle-ground between
stochastic and batch gradient descent). As a result, the
combined randomness of mini-batches and SPAD-based
stochastic strategy may make the training unstable. Thus,
using epoch as a minimum unit for changing partitioning
samples can help reduce the superposed randomness.

• Increasing frequency: Extending the last point, denote k
as the number of continuous epochs to train before a parti-
tioning sample is changed. At the beginning of training, a
biased model without any fairness consideration may need
more epochs to make meaningful improvements, which
means a larger k (e.g., 10) is preferred. In contrast, to-
wards the end of the training, a large k can be undesirable
as it may cause the model to overfit to a single partitioning
at the finish. Thus, we recommend a decreasing k (finally
k = 1) during training.

Bi-level Fairness Enforcement
A traditional way to incorporate fairness loss (e.g., Eq. (2))
is to add it as a term in the loss function, e.g., L = Lpred +

λ · Mfair, where Lpred is the prediction loss (e.g., cross-
entropy or dice loss) and λ is a scaling factor or weight. This
regularization-based formulation has three limitations when
used for spatial-fairness enforcement: (1) Since deep learn-
ing training often uses mini-batches due to data size, it is dif-
ficult for each mini-batch to contain representative samples
from all partitions {pi | ∀pi ∈ P} when calculating Mfair.
(2) To reflect true fairness over partitions, metrics MF used
in Mfair in Eq. (2) are ideally exact functions such as preci-
sion, recall or F1-scores. However, since many of the func-
tions are not differentiable as a loss function (e.g., with the
use of argmax to extract predicted classes), approximations
are often needed (e.g., threshold-based, soft-version), which
introduce extra errors. Additionally, as such approximations
are used to further derive fairness indicators (e.g., MF ), the
uncertainty created by the errors can be quickly accumulated
and amplified; and (3) The regularization term Mfair re-
quires another scaling factor λ, the choice of which directly
impacts final output and varies from problem to problem.

To mitigate these concerns, we propose a bi-level training
strategy that disentangles the two types of losses with differ-
ent purposes (i.e., Lpred and Mfair). Specifically, there are
two levels of decision-making in-and-between epochs:

• Partitioning-level (P): Before each epoch, a referee eval-
uates the spatial fairness using Eq. (2) with exact metrics
MF (e.g., F1-score); no approximation is needed as back-
propagation is not part of the referee. The evaluation is
performed on all partitions pi ∈ P , guaranteeing the rep-
resentativeness. Note that the model is evaluatable for the
very first epoch because the fairness-driven training starts
from a base model, as discussed in the previous section
and explanations for Eq. (2). Based on an individual par-
tition pi’s deviation d(MF (FΘ, pi), EP) (a summand in
Mfair’s numerator in Eq. (2)), we assign its learning rate
ηi for this epoch as:

ηi =
η′i − η′min

η′max − η′min

· ηinit (4)

η′i = max(−(MF (FΘ, pi)− EP), 0) (5)

where ηinit is the learning rate used to train the base
model, η′min = argminη′

i
{η′i | η′i > 0, ∀i}, and η′max =

argmaxη′
i
{η′i | ∀i}.

The intuition is that, if a partition’s fairness measure is
lower than the expectation Ep, its learning rate ηi will be
increased (relatively to other partitions’) so that its predic-
tion loss will have a higher impact during parameter up-
dates in this epoch. In contrast, if a partition’s performance
is the same or higher than the expectation, its ηi will be set
to 0 to prioritize other lower-performing partitions. Posi-
tive learning rates after the update are normalized back to
the range [0, ηinit] to keep the gradients more stable. This
bi-level design also relieves the need for an extra scaling
factor to combine the prediction and fairness losses.

• Partition-level (p): Using learning rates {ηi} assigned by
the referee, we perform regular training with the predic-
tion loss Lpred, iterating over data in all individual parti-
tions pi ∈ P in mini-batches.
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Dataset and Implementation Details
Dataset: Accurate mapping of crops is critical for estimat-
ing crop areas and yield, which are often used for distribut-
ing subsidies and providing farm insurance over space. Our
input X for crop and land cover classification is the multi-
spectral remote sensing data from Sentinel-2 in Central Val-
ley, California, and the study region has a size of 4096×4096
(∼6711 km2 at 20m resolution). We use the multi-spectral
data captured in August, 2018 for the mapping, and each lo-
cation has reflectance values from 10 spectral bands, which
are used as input features. The label y is from the USDA
Crop Data Layer (CDL) (CDL 2017; Ghosh et al. 2021). In
our tests, we randomly select 20%, 20%, and 60% of loca-
tions for training, validation and testing, respectively.

Implementation details: As mentioned in scope, we con-
sider s1×s2 partitionings. In experiments, to allow compar-
isons with non-stochastic-based SPAD methods (computa-
tionally expensive), we set the maximum values for s1 and
s2 to 5, which leads to 24 different equal-size partitionings
(the 1× 1 partitioning is excluded).

We use an 8-layer deep neural network (DNN) as a base
model to test the proposed SPAD method; SPAD does not as-
sume specific network architectures. The DNN model takes
inputs of multi-spectral data at each location and outputs the
land cover label. In our experiment, we first train an initial
DNN model for 300 epochs (converged) without consider-
ing the fairness, using Adam (α = 0.001) as the optimizer.
From this base model, we further implement different can-
didate approaches to improve fairness (variants with no base
model are also considered). Based on the strategy discussed
in stochastic training, at the beginning of fairness training,
we keep each sampled partitioning for 10 epochs before
moving onto the next, and iterate over 48 different samples
(i.e., can be interpreted as two full enumerations over all 24
partitioning candidates). In the middle stage, we keep each
partitioning for 5 epochs, and iterate over 96 samples (i.e.,
similar to four full enumerations). Finally, each epoch will
sample a new partitioning, which continues for 240 samples.
Overall there are 50 expected epochs for each partitioning.

Both weighted and unweighted F-1 scores are considered
as the performance metric MF in Eqs. (2) and (3).

Experiments
Our experiments aim to answer the following questions: 1

• Q1. Does the SPAD representation improve spatial fair-
ness over different space-partitionings?

• Q2. Does the bi-level training strategy improve over
regularization-based approaches?

• Q3. Is the SPAD-based stochastic training able to maintain
or improve fairness with smaller computational load?

• Q4. Can the proposed approach help reach a fairer so-
lution while maintaining a similar level of overall/global
performance? Does training from an unconstrained base
model (no fairness consideration) help reach this goal?

1Code is available at: https://github.com/ai-spatial/fair-ai-in-space

The results to these questions can serve as an initial base
for spatial-fairness-driven learning. Based on the questions,
our candidate methods are:

• Base: The base deep learning model (8-layer DNN) with-
out consideration of spatial fairness.

• Single: Spatial fairness is evaluated and improved using a
single space-partitioning P . Specifically, our experiment
includes Single-(1,4) and Single-(4,1), which use 1 × 4
and 4× 1 partitionings, respectively.

• REG: Spatial fairness is enforced using the SPAD repre-
sentation by a regularization term; the inclusion of a regu-
larizer is a common strategy in related work (Kamishima,
Akaho, and Sakuma 2011; Yan and Howe 2019). As F1-
score is not differentiable, we use standard approximation
via the threshold-based approach, which amplifies soft-
max predictions ŷ over a threshold γ to 1 to suppresses
others to 0 using 1−ReLU(1−A ·ReLU(ŷ− γ)), where
A is a sufficiently large number (A = 10000 in our tests).
The scaling factor λ for the regularizer is set to 5.

• SPAD: The proposed approach using the SPAD represen-
tation with the stochastic and bi-level training strategies.

• SPAD-GD: SPAD without the stochastic strategy, which
aggregates over gradients from all 24 partitionings before
making parameter updates in each round.

• SPAD-no-base: SPAD that starts training without using
an unconstrained base model (explained in the stochastic
training section). Since here we do not have a ready-to-
use expected performance (EP in Eq. (3)) from the base
model, we randomly initiate EP and dynamically update
it with the new learned parameters in each epoch.

• SPAD-10-eps: In the stochastic training, this version
keeps using each sampled partitioning for k = 10 epochs,
without decreasing k to 1 near the end, which may make
the model biased towards the last sample (explained in the
stochastic training section).

Comparison to the Regularization-based Method
We compare the fairness achieved by SPAD, the base DNN
model (without considering fairness) and the REG method
in Fig. 5. For each partitioning P (x-axis), we report the
mean of the absolute distances between F1-scores achieved
on each partition p and the average performance over all par-
titions {p ∈ P}; both weighted and unweighted F-1 scores
are considered. In Tables 1 and 2, we summarize the overall
performance (global F1-scores), the sum of mean absolute
distance S(d)mean and the sum of maximum absolute dis-
tance S(d)max across all partitionings using weighted and
unweighted F-1, respectively.

Fig. 5 shows that both SPAD and REG achieve lower
mean absolute distances over all space partitionings com-
pared to the base model, confirming the effectiveness of the
SPAD representation in improving the fairness (Q1). Com-
paring SPAD and REG, we can see that SPAD consistently
outperforms REG in the experiments (Q2), which shows that
the bi-level design is more effective in enforcing spatial fair-
ness than regularization terms by improving sample repre-
sentativeness, allowing the use of exact metrics (i.e., no need

12212



Figure 5: Fairness comparison amongst SPAD, REG and the base model over all the partitionings.

Method Weighted F1 S(d)mean S(d)max

Base DNN 0.572 1.379 3.799
REG 0.566 1.319 3.821
Single-(1,4) 0.576 1.356 3.666
Single-(4,1) 0.542 1.355 3.712
SPAD-GD 0.573 1.275 3.571
SPAD-10-eps 0.573 1.186 3.421
SPAD-no-base 0.507∗ 1.589∗ 4.595∗

SPAD 0.573 1.094 3.185

Table 1: Classification and fairness results by weighted F1
scores (∗ denotes results with low global F1 scores).

Method Unweighted F1 S(d)mean S(d)max

Base DNN 0.377 0.906 1.808
REG 0.381 0.799 1.808
Single-(1,4) 0.362 0.627 1.392
Single-(4,1) 0.368 0.685 1.517
SPAD-GD 0.372 0.602 1.384
SPAD-10-eps 0.361 0.582 1.393
SPAD-no-base 0.318∗ 0.469∗ 0.981∗

SPAD 0.374 0.549 1.337

Table 2: Classification and fairness results by unweighted F1
scores (∗ denotes results with low global F1 scores).

to use approximations of F1-scores for differentiability pur-
poses), and eliminating the need for an extra scaling factor
for the regularizer which may add extra sensitivity.

From the first columns of Tables 1 and 2, we can see that
SPAD is able to maintain a similar overall/global classifica-
tion performance compared to the base DNN, which does
not have any fairness consideration. Meanwhile, the second
and third columns in the tables show that our method can
significantly reduce the sums of mean and max absolute dis-
tance over all partitionings. This confirms that SPAD can
effectively promote the fairness without compromising the
classification performance (Q4).

Comparison to Partitioning-Specific SPAD
Next, we compare SPAD with non-SPAD-based variants that
only focus on a single partitioning to verify SPAD’s robust-
ness across a diverse set of partitionings. Fig. 6 shows the
fairness performance of partition-specific methods Single-
(1,4) and Single-(4,1). The overall trend is that SPAD
achieves better spatial fairness in most partitionings by mod-
eling space-partitionings as a distribution (Q1). In addition,
we can also observe that Single-(4,1) obtains a better fair-
ness result for the given partitioning (4,1), and similarly,
Single-(1,4) performs better for (1,4). However, their fair-
ness improvements are limited for other partitionings. This
conforms to the expectation that partitioning-specific meth-
ods are able to reach further improvements on a given P , but
cannot generalize well to the others. Tables 1 and 2 (rows 3-
4) show the weighted and unweighted F1-scores achieved
by Single-(1,4) and Single-(4,1). The numbers confirm that
the methods also have similar global F1-scores since our de-
sign takes the overall performance into account (Eqs. (2) and
(3)). However, they produce larger values of S(d)mean and
S(d)max, which again confirms the benefits for SPAD.

Interestingly, in both the experiments with weighted and
unweighted F1-scores (Fig. 6), SPAD can often get very
close to the fairness scores achieved by partitioning-specific
methods on their sole-input P (except for (4,1) in the un-
weighted case). This shows there are potential dependency
relationships between partitionings. We also explored a vari-
ant that uses only finer or finest-scale partitionings. One is-
sue we observed is that the method faces difficulty in con-
vergence, leading to both poorer results on fine and coarse
scales. This is potentially due to the fact that fairness en-
forcement at finer-scale naturally leads to stricter criteria.
We will examine more effective methods to leverage such
potential dependency among partitionings in future work.

Validation of Stochastic Training Strategies
Finally, we validate the effectiveness of the SPAD-based
stochastic training strategy (Q3). We first compare to the
SPAD-GD approach, which aggregates gradients from all
partitionings in each epoch. Compared to our SPAD-based
stochastic approach, the aggregation in SPAD-GD leads to
a heavier computational load and requires longer training
time (i.e., 2.5 hours vs. 9.5 hours using NVIDIA Tesla K80
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Figure 6: Fairness comparison amongst SPAD, Single-(1,4), Single-(4,1), and the base model over all the partitionings.

Figure 7: Fairness comparison amongst different optimization methods.

GPU over two runs). Here we maintain the same number of
parameter updates for the two methods, and the only differ-
ence is that each SPAD update is made by gradients from
a sampled partitioning whereas each SPAD-GD update uses
average gradients from all partitionings. Fig. 7 shows their
performance comparison. We can see that the two methods
have about the same performance for the unweighted sce-
nario, which is expected. Interestingly, SPAD outperforms
SPAD-GD in the weighted scenario (upper part of Fig. 7).
One reason is that the added randomness from the stochastic
sampling in SPAD may allow a better chance for the training
to move out of local minima traps without the averaging ef-
fects, especially when fairness is harder to achieve at the be-
ginning for some partitionings. We also compare to SPAD-
10-eps which uses 10 epochs for each sampled partitioning
till the end of training. According to Fig. 7, SPAD-10-eps
has decreased overall fairness results compared to SPAD.
The reason is that SPAD-10-eps, without reducing the epoch
number per partitioning, tends to overfit to the last sample
partitioning, leading to poorer performance on the rest.

As a stable initial model state is helpful for fairness train-
ing, SPAD and other candidate methods start training from a
base model (discussed in implementation details). Here we
compare SPAD with SPAD-no-base, which enforces fairness
right at the start of training. According to its results in Ta-
bles 1 and 2 and fairness results in Fig. 7, the method has a
substantially reduced global F1-score compared to all other
methods (e.g., by 14%), making its fairness results not as in-

teresting (i.e., fair but poor). This shows that the base model
is beneficial in improving fairness while maintaining good
global performance. In addition, since SPAD-no-base starts
focusing on fairness when weights are still pre-mature, its
performance tends to be unstable for fairness as well (e.g.,
it may be lower-ranked in terms of both the global F1 score
and fairness scores as shown in Table 1).

Conclusions and Future Work
Understanding and controlling location-related bias are crit-
ical for fair resource distribution in many societal domains,
including agriculture, disaster management, etc. We pro-
posed a new formulation of spatial-fairness-aware learning
using the SPAD representation, which addresses statistical
sensitivities in fairness evaluation caused by MAUP. We also
proposed SPAD-based stochastic and bi-level training strate-
gies to enforce spatial fairness in learning. Experiments on
real-world agriculture monitoring data confirmed that the
proposed approach is effective in improving spatial fairness
while maintaining a similar level of overall performance.

In future work, we will explore new sampling strategies to
improve the computational efficiency of the approach, and
the use of the approach for other related scenarios such as
regression and dynamic spatio-temporal tasks. We will also
expand the types of distributions and partitionings used in
SPAD beyond the examples of uniform distribution and grid-
based partitionings. Finally, we will extend the method to
cover a larger variety of spatial data types.
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