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Abstract

A key challenge for decision makers when incorporating
black box machine learned models into practice is being
able to understand the predictions provided by these mod-
els. One set of methods proposed to address this challenge
is that of training surrogate explainer models which approx-
imate how the more complex model is computing its predic-
tions. Explainer methods are generally classified as either lo-
cal or global explainers depending on what portion of the data
space they are purported to explain. The improved coverage
of global explainers usually comes at the expense of explainer
fidelity (i.e., how well the explainer’s predictions match that
of the black box model). One way of trading off the advan-
tages of both approaches is to aggregate several local explain-
ers into a single explainer model with improved coverage.
However, the problem of aggregating these local explainers is
computationally challenging, and existing methods only use
heuristics to form these aggregations.

In this paper, we propose a local explainer aggregation
method which selects local explainers using non-convex op-
timization. In contrast to other heuristic methods, we use an
integer optimization framework to combine local explainers
into a near-global aggregate explainer. Our framework al-
lows a decision-maker to directly tradeoff coverage and fi-
delity of the resulting aggregation through the parameters of
the optimization problem. We also propose a novel local ex-
plainer algorithm based on information filtering. We evalu-
ate our algorithmic framework on two healthcare datasets:
the Parkinson’s Progression Marker Initiative (PPMI) data set
and a geriatric mobility dataset from the UCI machine learn-
ing repository. Our choice of these healthcare-related datasets
is motivated by the anticipated need for explainable preci-
sion medicine. We find that our method outperforms exist-
ing local explainer aggregation methods in terms of both fi-
delity and coverage of classification. It also improves on fi-
delity over existing global explainer methods, particularly in
multi-class settings, where state-of-the-art methods achieve
70% and ours achieves 90%.

Introduction

When applying machine learning and AI models in high risk
and sensitive settings, one of the biggest challenges for de-
cision makers is to rationalize the insights provided by the
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model. In applications such as precision medicine, both pre-
diction accuracy (e.g., anticipated efficacy of treatment) and
transparency of how predictions are made are key for ob-
taining informed consent. However, the models that typi-
cally achieve the highest levels of accuracy also tend to be
extremely complex, and even machine learning experts de-
scribe them as “black boxes” because it is difficult to explain
why certain predictions are made (Breiman 2001). One pop-
ular approach to resolve this trade off between explainabil-
ity and accuracy is to extract simple explainer models from
complex black box models. These models are intended to
provide a simplified facsimile of the true model that is more
useful for human interpretation of the generated predictions.

Two important widely-used metrics for evaluating ex-
plainer models are fidelity and coverage. Fidelity measures
how well the explainer’s predictions match the predictions
of the original black box model, and coverage measure the
fraction of the data universe that is reasonably explained by
the explainer model. Explainer methods are generally clas-
sified as either global or local, based on how they trade off
between these two quantities. Global explainers attempt to
explain the full black box model across the entirety of the
data. These models have a hard constraint to provide 100%
coverage, often at the expense of fidelity. Local explainers,
on the other hand, sacrifice coverage to potentially provide
higher fidelity explanations in a smaller region of the data,
usually centered around one single prediction.

Recent proposals suggest finding a middle ground be-
tween these two extremes by forming global (or near-global)
explainers by aggregating local explainer models (Ribeiro,
Singh, and Guestrin 2016). This approach would allow the
decision-maker to trade off among coverage, fidelity, and ex-
plainability: including more local explainers in the aggregate
model would improve coverage and fidelity, at the cost of
a more complex—and hence less interpretable—aggregate
model. However, the problem of computing the best sub-
set of local explainers to explain a given black box model
is combinatorial in nature, and hence computationally chal-
lenging to solve. All existing methods for building aggre-
gate explainers use only heuristic approaches, and thus do
not provide theoretical performance guarantees.

In this work, we present a novel way of constructing
provably optimal aggregate explainer models from local ex-
plainers. We use an integer programming (IP) optimization



framework that trades off between coverage of the aggregate
model and fidelity of the local explainers that comprise the
aggregate model. We also propose a local explainer method-
ology that uses an information filter for feature selection,
and is designed for use in aggregation. We empirically val-
idate the performance of this framework in two healthcare
applications: Parkinson’s Disease progression and geriatric
mobility. These experimental results show that our model
provides higher fidelity than existing methods. In this ap-
plication, a clinician would use a black box model for their
initial diagnosis of a patient, and then use that patient’s data
in the particular local explainer selected by our algorithm to
understand why the black box model made its prediction.

Related Work

Our paper builds on previous work in the broader field of in-
terpretable machine learning. The two primary types of in-
terpretable learning include models that are interpretable by
design (Aswani et al. 2019), and black box models that can
be explained using global explainer (Wang and Rudin 2015;
Lakkaraju, Bach, and Leskovec 2016; Ustun and Rudin
2016; Bastani, Bastani, and Kim 2018) or local explainer
(Ribeiro, Singh, and Guestrin 2016, 2018) methods.

Models that are interpretable by design are perhaps the
gold standard for interpretable ML. However, these models
often require significant domain knowledge to formulate and
train, and are not suited for exploratory tasks such as the
precision healthcare applications we study in Section .

Global explainer methodology attempts to train an ex-
plainable model (e.g., a decision tree with minimal branch-
ing) to match the predictions of a black box model across
the entirety of its feature space. While these models provide
some understanding on the general behavior of the black box
model, if the relationship between features and black-box
predictions is too complex, then the global explainer may
remove subtleties that are vital for explanation.

Local explainer methods attempt to train simpler models
centered around the prediction for a single data point. The
most commonly used local explainer methods are Local In-
terpretable Model-Agnostic Explanations (LIME) (Ribeiro,
Singh, and Guestrin 2016) and anchors (Ribeiro, Singh, and
Guestrin 2018). While local methods cannot validate the full
black box model, they are useful for understanding the sub-
tleties and justification for particular predictions. In recent
literature several other local explainer methods have been
proposed that draw inspiration from this stream (Rajapak-
sha, Bergmeir, and Buntine 2019; Sokol and Flach 2020;
Plumb, Molitor, and Talwalkar 2018).

A third option which has been explored in recent litera-
ture, is that of aggregating several local explainer models to
form a near-global explainer, as a method for improving the
tradeoff between fidelity and coverage. Generally speaking,
these methods have a budget for the maximum number of
local explainers that can be incorporated into the aggrega-
tion and attempt to maximize possible coverage and fidelity
within this budget. One method proposed to form such ag-
gregate explainers is the submodular pick method (Ribeiro,
Singh, and Guestrin 2016), which computes feature impor-
tance scores and greedily selects the features with highest
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importance. (van der Linden, Haned, and Kanoulas 2019)
argue the Submodular Pick Algorithm has its limitations on
predicting global behaviors from local explainers, and that
the choice of aggregation function for local explainers is im-
portant for performance. They introduce the Global Aggre-
gations of Local Explanations (GALE) method, which can
be used to analyze how well the aggregation explains the
model’s global behavior. They compared the performance
of global LIME aggregation with other global aggregation
methods for binary and multi-class classification tasks, and
found that different aggregation approaches performed best
in binary and multi-class settings. A recently proposed ag-
gregation method (called GLocalX) hierarchically combines
local explainers to from global explainers (GLocalX) (Setzu
et al. 2021). This methodology could be incorporated in to
our optimization approach as pre-processing.

The methodology we propose in this paper builds on top
of these existing explainer aggregation methods. In con-
trast to existing approaches which are heuristic in nature,
we formulate the problem of choosing local explainers for
the aggregate as an optimization problem. By doing so, our
methods can produce explainer aggregates that provide both
higher fidelity and higher coverage than existing approaches.
In addition, our formulation includes parameters that allows
for a direct tradeoff between coverage, fidelity, and inter-
pretability. We believe this approach is especially appropri-
ate for problems in explainable precision healthcare, where
the relationship between diagnostic screening measures and
the diagnosis is quite complex, and the model should incor-
porate the richness of this relationship in its predictions.

We propose a local explainer approach in Section that in-
cludes a feature selection subroutine to improve explainabil-
ity. Prior work on feature selection includes instance-wise
feature selection (Chen et al. 2018) and Instance-wise Vari-
able Selection using Neural Networks (INVASE) (Yoon, Jor-
don, and van der Schaar 2018). These approaches select the
important features for each sample point using networks for
classification with and without the features. Shapley values
have also been used for complex model predictions, such as
Shapley Sampling Values (étrumbelj and Kononenko 2014;
Aas, Jullum, and Lgland 2019) and Shapley Additive Expla-
nations (SHAP) (Lundberg and Lee 2017; Lundberg et al.
2020), which computes Shapley values and presents the ex-
planation as an additive feature attribution method. In con-
trast to these methods, our feature selection approach relies
on a mutual information filter (Brown et al. 2012) to iden-
tify important features. While mutual information has been
used in the past for feature selection, we introduce a compu-
tationally efficient way to compute this mutual information
for the use of training local explainer models.

Our Contributions

In this paper, we formulate the problem of aggregating local
explainers into an aggregate explainer algorithm as a non-
convex optimization problem. In particular, we show that
this aggregation problem can be written as an integer pro-
gram (IP), that can be solved effectively using commercial
solvers. This formulation is also helpful as it allows us to
directly tradeoff coverage and fidelity of the resulting aggre-



gation through parameters of the optimization problem. This
approach provides flexibility to the practitioner to adapt the
algorithm to the specific needs of her use case. Our approach
easily handles multi-class prediction problems that arise in
complex application domains such as precision healthcare,
as well as the traditionally-studied binary classification.

Additionally, we design a new methodology for training
local explainers for effective use in aggregation. Our lo-
cal explainer algorithm directly computes locally significant
features using an information filter, and we are the first to
use information filters in local explainers. We introduce a
novel computationally efficient algorithm for this filtering
step, and our approach results in simpler (i.e., more inter-
pretable) local explainers compared to prior work that used
regularization for feature selection.

To validate our results, we compare our optimization
based methodology against four other state of the art meth-
ods on two real world data sets. Both data sets come
from the applications in the healthcare space. The first uses
the Parkinson’s Progression Marker Initiative (PPMI 2019),
where we create explainer methods for a model tasked with
screening patients for Parkinson’s Disease. The second uses
a dataset of Geriatric activity, where we explain the predic-
tions of a model that classifies the physical activity of geri-
atric patients to prevent falling. Our experiments show that
our optimization method outperforms many of the existing
explainer methods in terms of fidelity and coverage. In par-
ticular, when we examine cases of explaining multi-class
model predictions, our explainer method can achieves 90%
fidelity at 40-50% coverage, while existing global methods
only achieved 70% fidelity, albeit at 100% coverage. Our re-
sults show that our approach on the Pareto frontier of the fi-
delity and coverage tradeoff. Our IP framework outperforms
existing aggregation methods in terms of both coverage and
fidelity across all potential aggregation budgets (i.e., num-
bers of local explainers in the aggregate model).

Explainer Aggregation Methodology

Explainer models which can generalize to a large portion
of the feature space are critical transparency. However, an
explainer that is constrained to explain the entire feature
space is likely have low fidelity since, by design, the ex-
plainer model is less complex than the black box model it is
purported to explain. However, simpler models can achieve
higher fidelity by attempting to explain the local behavior of
the black box model at the cost of lower coverage.

One way to address the tradeoff between coverage and fi-
delity is to create a near-global aggregate explainer model
by combining several local explainer models. Existing ap-
proaches have used this idea (Ribeiro, Singh, and Guestrin
2016) by formulating the construction of an aggregate ex-
plainer as an optimization problem: maximize coverage of
the explainer subject to a constraint on the total number
of local explainers included in the aggregate. Solving this
optimization problem is conjectured to be computationally
intractable (Ribeiro, Singh, and Guestrin 2016), and prior
work has only attempted to solve it using heuristics.

In this section, we formulate the problem of constructing
the aggregate explainer from an arbitrary black-box model,
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explicitly as an integer linear program that can be solved ef-
ficiently using commercial solvers, and allows us to directly
trade off coverage and fidelity.

Mathematical Programming Formulation of
Aggregation Problem

To formulate the optimization problem of constructing the
aggregate explainer, we must first formally define the con-
cepts of coverage and fidelity.

Let X C R™ be the feature space that is modeled with
a black box function, and let f : X — Z, be the black
box function of interest. Let £ C Z, be the label space
in the image of f. We consider our explanation task over a
dataset D containing n ordered pairs (x;,y;) for i € [n],
where x; € X are the feature values and y; € L is the class
label which has been generated by f. That is, y; = f(z;).

Let g;, : X — L denote a local explainer model that
explains the local behavior of the black box function f on
inputs within a ball of radius » € R, centered around the
pointz; € X Weuse X, :={x € X : ||z — ;]| < r}to
denote the region explained by g; ..

Define an aggregate explainer v to be a set of local ex-
plainers centered around a subset of points in D, where the
local explainer for point 2; € D has radius r;.! We will refer
to a generic local explainer g € ~y and corresponding region
of explanation X.

Using these quantities we define the coverage of aggre-
gate explainer ~y on data set D as the total number of points
in the data set that are covered by the explanation radius of
at least one explainer contained in y. We denote this as:

Cov(y,D) = Z 1z € X, ,].
z€D

max
i€{igi,r€v}

(D

Next we note that the fidelity of a single local explainer
is defined as the accuracy of that explainer with respect to
the predicted labels of the black box model. We emphasize
that fidelity captures the explainer’s ability to replicate the
predictions of the black-box model, and rather than ground
truth predictive accuracy.

We define the fidelity of aggregate explainer -y on data set
D as the minimum of the fidelity obtained by each individual
local explainer in «y. We first need to define D, as the number
of points in the data set contained in the explanation region
of g,ie., Dy = {x € D: z € X,;}. We denote this as:

= min = 3 1lg(x) = ()]
€D,

Fid(y, D) = min D]
9 x

2

While one could instead define the fidelity of ~ as the av-
erage of the fidelities of its component explainers, our choice
to use the minimum fidelity gives a stricter measure of how
well the aggregate explainer captures the behavior of the
black box model. This stricter measure is more appropri-
ate for the healthcare applications we consider in Section ,

"More generally, any local explainers can be aggregated into .
However, we assume the the explainer algorithm only has access
to points in D, so we restrict ourselves to only considering these
points. It is assumed that the radii 7; are parameters of the problem
and hence known to decision-maker.



where a minimum standard of care is required. Note also that
while we may be interested in the coverage and fidelity of
across the entirety of X', computing these quantities may be
intractable or impossible in practice when X" is not known
a priori. Thus we consider these quantities only across an
r-ball covering of our dataset.

Let K denote the budget of the maximum number of local
explainers that can be contained in +, and let ¢ be the mini-
mum fidelity required for the aggregate explainer. Then the
problem of computing an aggregate explainer can be formu-
lated as the following optimization problem:

max, {Cov(y,D):Fid(,D) > ¢,|7| < K}.  (3)

Reformulation as Integer Program (IP)

As written, optimization problem (3) is not trivial to solve,
and could require enumerating all possible subsets v of lo-
cal explainers. To address this challenge, we propose re-
formulating problem (3) as an Integer Program (IP) that
can be solved using commercial software. We first define
three sets of binary variables w;, y;, z;;. Let w; be a binary
variable that is equal to 1 if explainer g;,, € <. That is,
w; = 1[g; r, € 7]. Let y; be a binary variable that is equal
to 1 if point j is covered by the aggregate explainer ~y. That
isy; = 1[z; € UgeyXy]. Finally, let z;; be a binary variable
that is equal to 1 if explainer g; ,., € -y covers point x ;. That
is, z;; = 1[z; € Xj,,]. We now define the coverage and
fidelity of aggregate explainer v as IPs written in terms of
these three sets of variables.

Proposition 1. Cov(~v, D), the coverage of aggregate ex-
plainer v on dataset D, can be expressed with the following
set of integer variables and constraints:

Cov(v,D) = 375 U

st ozig <w;, 1,7 €n],
yi > zij, 4,7 € [n], )
Y < iz, J € [nl,
lzi — xjl|zi; <ri, 4,5 € [n].

Proof. Recall the definition of Cov(y, D) as given in Equa-
tion (1). We will directly reconstruct this definition us-
ing the binary variables defined above. First note that
through a simple direct substitution we obtain Cov(y, D)
Y weD MaX;e (i, e~} Zij- Since taking the maximum of bi-
nary variables is equivalent to the Boolean OR operator, we
see that y; = maX;e(i.y, e~} 2ij» Which provides us with
the first equality. The next two inequalities directly capture
that a local explainer g; ,., can only explain point z; if g; .,
is included in 7, which is a standard way of modeling con-
ditional logic in IP (Wolsey and Nemhauser 1999). The next
two constraints come from modeling the Boolean OR opera-
tor using integer constraints (Wolsey and Nemhauser 1999).
The final constraint ensures that a point x; can only be cov-
ered by an explainer g; ., if x; € & ., thus preserving the
local region of the local explainer.

Next we consider the minimum fidelity constraint.
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Proposition 2. The constraint Fid(vy, D) > ¢ can be mod-
eled using the following set of integer linear constraints:
i,j € [nl,
i1 (s () =gir, (2} — $)75 2 0, i € [n].

While the full proof of Proposition 2 is deferred to Ap-
pendix B, we note that the first two constraints ensure proper
local behavior of the local explainer as in Proposition 1. The
third constraint is derived by analysis of the definition of
Fid(y, D) in Equation (2), dis-aggregating the lower bound
constraint across all i € [n], and rewriting the new lower-
bound constraint to remove the min using properties of z;;.

We can then use these expressions to for coverage and fi-
delity to rewrite our optimization problem as an integer pro-
gram that can then be solved using commercial solvers.

Zij < wy,

(&)

Proposition 3. The optimization problem in (3),
maxy {Cov(7, D) : Fid(y, D) = ¢, [y| < K},
can be written as the following integer program:

n
max Zj:l Yi

st zij <wi, Yy, 4, € [nl,
Yi <D iex Zijy  J €[]
lzi — xjl|zi; <714, i, € [n],
=1 (L @=gir @)y = P75 20, i € [n],

ZieX w; < K,

Yj, Wiy Zij S {0, 1} Z,] S [TL}

(6)

Proof. The objective function and first four constraints
come directly from Propositions 1 and 2. The next constraint
comes using the definition of w; and direct substitution to
obtain that |y| = >""_, w;, which is then used to rewrite
the budget constraint from (3). The final constraint ensures
that our new variables are binary integers. O

Aggregate-Designed Efficient Local Explainer

While our main contribution in this paper is the local ex-
plainer aggregation methodology, we have additionally de-
signed a new methodology for training local explainers for
effective use in aggregation. The key to our methodology is
ensuring that local explainers only focus on the most rele-
vant features in the particular region they are designed to
explain. In contrast to previous methods that proposed the
use of regularization to achieve this goal, we propose di-
rectly computing locally significant features using an infor-
mation filter. Computing such filters are generally compu-
tationally expensive and requires the use of numerical in-
tegration; however, we introduce an efficient algorithm for
filtering out less significant features. This methodology al-
lows us to train local explainers that are significantly less
complex than those that use regularization, with better fi-
delity for their specified region. In this section we present an
overview of our methodology and highlight key results. Fur-
ther details on the technical specifics of this methodology
are deferred to the appendix.



Algorithm 1: Local Explainer Training Algorithm

Require: sampling radius r, number of sample points N,
black box model f, data point to be explained Z, and
loss function L for the explainer model (Z, 3)
Initialize T'(z) = 0
for j ={1,...,N} do
Sample x ~ U(B(z,r,d))
T(Z)« T(Z)Ux
end for
Obtain ®(z) = FFFS(T'(z), @, f)

Train g = argmingg{>", e L(f(2) —
return g =0

(x[®]))}

LI

Local Explainer Overview and Training Procedure

Our local explainer training methodology is formally pre-
sented in Algorithm 1. We give a brief overview of its oper-
ations here, and defer full details to Appendix D. The algo-
rithm takes in hyper-parameters including number of points
N to be sampled for training the explainer, a distance met-
ric d, and a radius r around the point Z being explained.
First the algorithm samples N points uniformly from within
a r radius of Z; we call this set of points 7'(Z). Depend-
ing on the distance metric being used this can often be done
quite efficiently, especially if the features are binary valued
or an /P metric is used (Barthe et al. 2005). Then using the
sampled points, the algorithm uses the Fast Forward Feature
Selection (FFFS) algorithm as a subroutine (discussed and
formally presented in Appendix G), which uses a mutual-
information-based information filter to remove unnecessary
features and reduce the complexity of the explainer model.
The FFFS algorithm uses an estimate of the joint empirical
distribution of (T'(Z), f(T(Z)) to select the most important
features for explaining the model’s predictions in the given
neighborhood using tree traversal. We denote this set of fea-
tures ®. Then, using these features and the selected points,
the local explainer model g is trained by minimizing an ap-
propriate loss function that attempts to match its predictions
to those of the black box model. In principle, a regularization
term can be added to the training loss of explainer g. How-
ever, in our empirical experiments (presented in Appendix
E), we found that FFFS typically selected at most five fea-
tures, so even the unregularized models where not overly
complex.

Experimental Results

In this section we compare the performance of our IP
method against five state-of-the-art explainer methods.
We consider two local explainer aggregation methods—
Submodular Pick and Anchor Points (Ribeiro, Singh,
and Guestrin 2016, 2018)—and three global explainer
methodologies—interpretable decision sets (Lakkaraju,
Bach, and Leskovec 2016), active learning decision trees
(Bastani, Bastani, and Kim 2018), and naive decision tree
global explainers (Friedman, Hastie, and Tibshirani 2001).
We compare these methods in both coverage and fidelity
across two different datasets. These datasets are the Parkin-
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son’s Progression Marker Initiative (PPMI) data set, where
we generate explainers for a black box model aimed at pre-
dicting Parkinson’s Disease (PD) progression subtypes, and
a Geriatric activity data set (Torres et al. 2013) where we
generate explainers for a model that classifies the move-
ment activities of geriatric patients based on wearable sen-
sor data. We split each dataset, using 80% for training and
20% as a holdout test set, and we apply 10-fold cross vali-
dation. One important feature of both these datasets is that
they enable multi-class classification. Our experimental re-
sults show that our proposed optimization framework is bet-
ter suited to these multi-class settings than existing state-of-
the-art methods.

In addition to measuring the performance of our local
aggregation methodology on different data sets and clas-
sification tasks, we also compare the performance of our
information-filter-based decision-tree local explainer and
LIME (Ribeiro, Singh, and Guestrin 2016) in the aggre-
gation framework. We also measure performance for each
of the aggregation-based methods under varying budgets of
component local explainers. This budget is an informal mea-
sure of simplicity and interpretability, where aggregating
fewer local explainers leads to a more interpretable aggre-
gate explainer, but may sacrifice fidelity and/or coverage.
Our results show that our methodology outperforms exist-
ing techniques in terms of fidelity and coverage, especially
in the multi-class case.

PD Progression Cluster Classification

For our first set of experiments we used the PPMI data set
to classify the disease progression of different patients into
several subtypes based on screening measures. The PPMI
study was a long run observational clinical study designed
to verify progression markers for PD. To achieve this aim,
the study collected data from multiple sites and includes lab
test data, imaging data, and genetic data, among other po-
tentially relevant features for tracking PD progression. The
study includes measurements of all these features for the
participants across 8 years at regularly scheduled follow up
appointments. The complete data set contains information
on 779 patients, and included 548 patients diagnosed with
PD or some other kind of Parkinsonism and 231 healthy in-
dividuals as a control group. For our analysis we will focus
on the first seven visits of this study which correspond to a
span of approximately 21 study months, since these visits
were conducted relatively close together temporally.

The classification task considered was the disease pro-
gression of the patients, and we performed a cluster anal-
ysis to generate labels, detailed in Appendix C. Our analy-
sis identified four different subtypes of disease progression,
corresponding to different trajectories of the diagnostic mea-
surements’ evolution over time. We also included one addi-
tional subtype corresponding to patients who did not have
PD. Appendix C presents a full description of these subtypes
and their identification in the data.

As our black box model, we trained a random forest
model to predict the progression subtype of a patient based
on measurements taken during the baseline appointment and
follow ups. We considered two different prediction tasks: (1)



a binary prediction task to predict whether or not an individ-
ual has PD; (2) a multi-class prediction task to predict one of
the five identified PD progression subtypes. Further details
on the construction of the black box model and its perfor-
mance on these tasks are given Appendix E.
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Figure 1: 2-class fidelity (bottom) and coverage (top) plots
for various global explainers for a random forest model
trained on the PPMI data set. The x-axis corresponds to the
number of constituent local explainers that are used by the
aggregation methods.

We used each of the explainer methods presented above to
explain the predictions made by these random forest models,
and measured coverage and fidelity of these explainers. Cov-
erage and fidelity for the binary prediction task are shown in
Figure 1, and similar plots for the multi-class prediction task
are shown in Figure 2.

Figures 1 and 2 show that for both prediction tasks, our
optimization-based aggregation algorithm obtains a higher
level of coverage than both Anchor points (Ribeiro, Singh,
and Guestrin 2018) and Submodular Pick methods (Ribeiro,
Singh, and Guestrin 2016) across all possible local explainer
budgets. Note that when comparing coverage, global ex-
plainers are constrained to always achieve 100% coverage.

In terms of fidelity, Figure 1 shows that across fidelity
lower bounds of 0.7 and 0.5, our methodology performs
comparably with the other aggregate explainer methods and
with the explainable decision set method. When increasing
our fidelity lower bound to 0.9, our method significantly out-
performs these methods. This shows that the fidelity lower
bound parameter ¢ in our framework allows for higher fi-
delity explainers given proper tuning.

In the binary case our methodology does not outperform
active learning and naive decision tree in terms of fidelity or
coverage; however, when considering the multi-class setting
of Figure 2, we see that our framework allows for signifi-
cantly higher fidelity explanations. In particular, while ac-
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Figure 2: 5-class fidelity (bottom) and coverage (top) plots
for various global explainers for a random forest model
trained on the PPMI data set. The x-axis corresponds to the
number of constituent local explainers that are used by the
aggregation methods.

tive learning and naive decision trees achieve a fidelity of
approximately 0.7 our optimization based global classifier
with ¢ = 0.9 can achieve a fidelity of 0.9 in this case. While
this is a significant increase, it does come with a cost for
the coverage, as the explainer with this high fidelity only
covers 40-50% of the data, as compared to the global ex-
plainer methods of active learning and naive decision tree
which cover 100% of the data.

Our methodology allows for greater flexibility in terms
of trading off explainer coverage and fidelity, especially in
this multi-class case. In contrast, the pure global explainer
methods do not allow for this trade-off by ensuring a hard
constraint of 100% coverage, which results in low fidelity
explainers. Since our methodology outperforms existing ag-
gregation methods, this indicates that using IP allows us to
navigate the fidelity and coverage tradeoff more efficiently.

Empirical evaluation of our local explainer’s performance
compared with other local explainer methods, when used in
the aggregate explainer are given in Appendix F. We find
that our local explainer methodology outperforms LIME in
both fidelity and coverage.

Figure 3 shows the Pareto frontier of the tradeoff between
coverage and fidelity for the binary class prediction task.
One advantage of our approach is that we allow a tunable
tradeoff between the coverage and fidelity—corresponding
to the three curves in the figure—while the other methods
do not provide this option—corresponding to only a single
point for the other methods. We see that our approach yields
higher fidelity and higher coverage than most of the other
local explainers, although there is less of a clear advantage
of our proposed method compared to the global explainers.



Figure 3 shows the tradeoff between the coverage and fi-
delity for the multi-class setting. In this setting we again see
that our proposed local explainer provides better coverage
and higher fidelity than other local explainers. In addition,
our method also provides significantly higher fidelity than
the global explainers at the expense of coverage.
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Figure 3: Pareto frontier for the tradeoff between fidelity and
coverage on PPMI for binary (top) and multiclass (bottom, 5
class) classification task. The x-axis corresponds to fidelity
and the y-axis corresponds to coverage.

Geriatric Activity Classification

For the second set of experiments we used a data set of Geri-
atric Activity based on the study conducted by (Torres et al.
2013). The main goal of this study was to provide ways
of potentially reducing the likelihood of falls for geriatric
individuals by classifying their activities when transferring
beds. Generally, the highest risk for geriatric patients to fall
is when getting out of bed so various sensors were deployed
to detect whether an individual was attempting to leave their
bed and detect other potentially risky activity. For this par-
ticular study, the authors used a novel wearable and environ-
mental sensor which they validated with 14 individuals aged
66-86. The goal was to use this sensor data to classify be-
tween three different activities, namely laying in bed, sitting
in the bed, and getting out of the bed. To generate the data
set, each of the participants was asked to perform a random
set of five activities which ranged between the three poten-
tial activity classes.

Much like in the case of the PPMI data set, we trained a
random forest model to classify between the various activity
classes that we used to extract global explainers. However,
unlike the PPMI experiments, since there was no straight
forward way to convert the multiclass classification task of
detecting the different activities into a binary classification
task we only performed the experiments for the multiclass

case. The results for all explainer methods can be seen in
Figure 4. Much like in the case for the PPMI data set, we
note our methodology outperforms other aggregation based
global explainers with respect to coverage across all budgets
and fidelity lower bounds; however, it is still not obtaining
100% coverage like the pure global explainer methodolo-
gies. In terms of fidelity, much like in the multiclass case
of the PPMI data, our methodology outperforms all other
global explainers, with active learning being close to on par
with our performance. This further suggests that using this
form of optimization based local explainer aggregation is
well suited to explaining multiclass predictions regardless
of the underlying data set. Figure 5 shows the Pareto frontier
of the tradeoff between coverage and fidelity across differ-
ent explainers. Our methodology outperforms all local ex-
plainers in both metrics and all global explainers in terms of
fidelity at the cost of decreased coverage.
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Figure 4: 5-class fidelity (bottom) and coverage (top) plots
for various global explainers for a random forest model
trained on the Geriatric Activity Dataset.The x-axis corre-
sponds to the number of constituent local explainers that are
used by the aggregation methods.
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