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Abstract

Neuroimaging studies have identified multiple brain regions
that are associated with semantic and syntactic processing
when comprehending language. However, existing methods
cannot explore the neural correlates of fine-grained word syn-
tactic features, such as part-of-speech and dependency rela-
tions. This paper proposes an alternative framework to study
how different word syntactic features are represented in the
brain. To separate each syntactic feature, we propose a fea-
ture elimination method, called Mean Vector Null space Pro-
jection (MVNP). This method can remove a specific feature
from word representations, resulting in one-feature-removed
representations. Then we respectively associate one-feature-
removed and the original word vectors with brain imaging
data to explore how the brain represents the removed fea-
ture. This paper for the first time studies the cortical repre-
sentations of multiple fine-grained syntactic features simulta-
neously and suggests some possible contributions of several
brain regions to the complex division of syntactic processing.
These findings indicate that the brain foundations of syntac-
tic information processing might be broader than those sug-
gested by classical studies.

Introduction
Word semantics and its syntactic features form the whole
picture of word representations and enable the flexibility of
human language. Therefore, investigating how the brain en-
codes semantic and syntactic features of words is crucial to
studying brain language-comprehension mechanisms.

The mainstream theory of lexical semantics assumes that
words can be represented by sets of features, but it is still an
open question as to what constitutes a primitive word fea-
ture. Brain imaging studies have accumulated evidence sup-
porting that word semantic representations are at least partly
“embodied” in the modal neural systems through which con-
cepts are experienced. For example, the word “cat” is com-
posed of primitive features such as furry (vision), fast (mo-
tion), mew (sound), and so on (Binder et al. 2016). They
have found that several semantic features are associated with
activation in corresponding sensory-motor regions and con-
vergence regions that integrate multi-modal features (Fer-
nandino et al. 2016).
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Due to the complexity of extracting and representing syn-
tactic features, there are still hot debates on whether and
how syntax is represented in the brain (Pylkkänen 2019).
Previous work mainly studied the overall syntactic process-
ing demands of sentences (Hagoort and Indefrey 2014) and
the specific syntactic structures of sentences, such as rela-
tive clauses (Chen et al. 2006). These studies showed that
the processing of syntactic features is associated with brain
regions located within the inferior frontal cortex, the lateral
temporal cortex, and the inferior parietal cortex. However, it
remains unclear how fine-grained syntactic features are rep-
resented and whether the neural correlates of different syn-
tactic features overlap or dissociate from each other.

The main difficulty of studying the above problem is to
separate a specific syntactic feature from the others. Differ-
ent from the mainstream neuroimaging studies that employ
manually designed disassociate-stimuli, this paper proposes
an alternative framework to study the brain representations
of word syntactic features. Specifically, we propose a fea-
ture elimination method, called Mean Vector Null space Pro-
jection (MVNP), to separate different features. This method
can remove a target feature from word embeddings by pro-
jecting them into a subspace in which contains minimum
information of the target feature. Based on the original and
one-feature-removed word embeddings, we explore how the
brain encodes syntactic features by associating these vectors
with brain imaging data. The motivation of removing one
feature from representations is that if a specific feature is
removed from the original word embeddings and if this fea-
ture is represented in the brain, the predictability of the brain
areas associated with this feature will be severely damaged.

Our results show that word syntactic features are distribu-
tively represented across the temporal, frontal, and parietal
lobe and their brain networks are largely overlapped with the
classic semantic networks. Furthermore, for the first time,
this paper studies the relations of various syntactic features
represented in the brain, suggests a hierarchical organization
of brain areas in syntactic processing, and illustrates a more
detailed division in the classic syntactic network.

To summarize, our main contributions include:

• We propose a new framework that employs the latest
computational models to study word syntactical repre-
sentations in the brain.
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• We propose a feature elimination method that can remove
a specific feature from word embeddings while retaining
other features.

• Our results provide new evidence for the brain repre-
sentations of several word syntactical features, hopefully
helping promote related neuroscience studies.

Related Work
Word representations and interpretation methods
Contextual word representations such as ELMo (Peters
et al. 2018) and BERT (Devlin et al. 2018) have achieved
impressive results on downstream tasks. Previous work
investigated the contents encoded in these word representa-
tions and found that various types of syntactic information
can be effectively decoded from them (Linzen, Dupoux,
and Goldberg 2016; Conneau and Kiela 2018; Hewitt and
Manning 2019; Tenney et al. 2019). Another line of work,
which can be categorized into two groups: adversarial and
projection methods, studies how to control or separate
different kinds of information.

Adversarial methods mainly rely on adding adversarial
components to the main task objective (Mathieu et al. 2016;
Xie et al. 2017; Zhang, Lemoine, and Mitchell 2018; Bao
et al. 2019). For instance, to learn separated syntactic and
semantic representations, Bao et al. (2019) used adversarial
components to minimize the syntactic information encoded
in semantic vectors and vice versa. Although widely used
in various tasks, adversarial methods have two main draw-
backs: they get unstable results and rely on an additional
loss, making them less suitable for a feature elimination task.

Projection methods aim to project representations onto a
space in which only the target feature is retained or is re-
moved (Bolukbasi et al. 2016; Xu et al. 2017; Ravfogel et al.
2020). The most similar work to our method is the Iterative
Null space Projection (INLP) proposed by Ravfogel et al.
(2020), which repeatedly trains linear classifiers on the un-
wanted feature and then projects the representations onto the
null space of these classifiers. However, this method aims
to remove all separable information for the target feature,
which might remove excessive information and severely af-
fect the word representation space, especially when the tar-
get feature is complex.

Word representations in the brain Mainstream neu-
roimaging studies employ the hypothesis-based method to
study the neural correlates of syntactic features, including
brain representations of grammatical categories (Yu et al.
2011), argument structures (Thompson et al. 2007), relative
clauses (Chen et al. 2006), and the overall syntactic pro-
cessing demands of sentences (Hagoort and Indefrey 2014).
These studies usually design artificial stimuli with different
conditions that differ in one syntactic feature and identify
brain regions correlated with a specific feature by contrast-
ing the brain activation between these different conditions.

The main problem with this method is that the syntactic
changes of a language expression usually alter its seman-
tics, making it difficult to distinguish whether the change
of brain activity is caused by syntactic or semantic change
(Pylkkänen 2019). Moreover, this method that relies on

manually designed stimuli can only explore one specific fea-
ture in one experiment, thus it cannot study the relations be-
tween different word syntactical features.

With the surge of language computational approaches,
neuroimaging studies begin to explore brain representations
in a data-driven way. Mitchell et al. (2008) firstly used ex-
plainable word representations to predict brain activations
elicited by words. A series of the following work used differ-
ent types of representations to explore the language process-
ing mechanism in the brain (Huth et al. 2016; Gauthier and
Levy 2019; Sun et al. 2019; Toneva and Wehbe 2019; Jain
et al. 2020). To probe the sentence-level semantic and syn-
tactic brain activation patterns, Wang et al. (2020) proposed
a two-channel variational autoencoder model to dissociate
sentences into semantic and syntactic representations and
separately associate them with brain imaging data to find
feature-correlated brain regions. Wehbe et al. (2014) pre-
sented an integrated computational model that incorporates
multiple reading sub-processes to predict the detailed neural
representation of diverse story features. Reddy and Wehbe
(2021) extended this work to syntactic structure features and
showed their effectiveness in predicting brain activity.

Different from these previous works, this paper focuses on
exploring detailed cortical representation and the relation-
ships between multiple fine-grained word syntactic features.

The Framework of Probing Brain
Representations

As shown in Figure 1, the framework contains three mod-
ules: 1) the feature removal module, which removes a spe-
cific feature from the original word representations, result-
ing in one-feature-removed word representations. 2) the
brain encoding module that predicts brain activation from
the original and one-feature-removed word representations.
3) the significance test module, which verifies whether one-
feature-removed representations (compared with the origi-
nal word representations) cause a significant prediction ac-
curacy drop for every brain voxel.

Feature Elimination
Inspired by the INLP (Ravfogel et al. 2020), our feature
elimination method MVNP projects word embeddings onto
a subspace in which only contains minimum information
about the target feature. By doing so, the target feature is
removed from the representations. The core concept used in
both INLP and our MVNP is called null space projection.

Null Space Projection Given a set of vectors xi ∈ Rd,
and corresponding discrete attributes Z, zi ∈ {1, 2, ..., k}
(e.g. Z can be part-of-speech), we aim to learn a transfor-
mation g : Rd → Rd, such that zi cannot be predicted
from g(xi), and meanwhile g should have a low impact to
the vector space. A feature is linearly eliminated if no lin-
ear classifier c(·) can predict zi from g(xi) with an accuracy
greater than the proportion of the majority class in Z.

Let c be a trained linear classifier and W ∈ Rk×d be
its weight matrix. Null space projection is the operation
of projecting word embeddings onto the null space of W .
Since the null space of a matrix W is defined as the space
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Figure 1: The framework of probing syntactic word representations in the brain, including (1) feature elimination module, (2)
brain encoding module, (3) significance test module.

N(W ) = {x|Wx = 0}, projecting word embedding xi onto
N(W ) makes W useless for predicting zi from xi. Thus the
transformation g(xi) can be defined as g(xi) = Pxi, P is
the orthogonal projection matrix onto N(W ).

Since word embeddings are high-dimensional vectors that
result in multiple linear directions on which feature Z is sep-
arable, a single classifier may not learn all these directions
or capture the most effective directions. Therefore, the INLP
method conducts iterative projection. That is, after obtaining
the first classifier’s weight matrix W0 and the corresponding
projection matrix PN(W0), the INLP trains classifier W1 on
PN(W0)X , obtains a projection matrix PN(W1), trains W1

on PN(W1)PN(W0)X and so on, until no classifier Wm+1

can be trained. However, for the effect to X in each iteration
is accumulated, INLP can severely affect the feature space
of representations as iteration time increases.

To alleviate the effect to feature space caused by projec-
tion, we aim to find the most effective weight matrix W
which makes one projection enough to remove the target
feature.

Mean Vector Null Space Projection Let WT =
[wT

1 , w
T
2 , ..., w

T
k ] be a linear classifier’s weight matrix. The

geometric interpretation of Wx is that: x is projected onto
the subspace spanned by W ’s rows, and is classified accord-
ing to the dot product between x and W ’s rows. Ideally, W ’s
rows should have such a property: among all rows of W , wi

should have the largest dot product with x which belongs to
class zi: wix > wjx, j ̸= i. Therefore, the process to learn
wi is to solve to the following optimization problem:

max
∑
x∈zi

∑
j ̸=i

wix− wjx

s.t. ∥wl∥ = 1, l = 1, 2, ..., k

which can be reorganized as:

max (
∑
x∈zi

x)(
∑
j ̸=i

(wi − wj))

s.t. ∥wl∥ = 1, l = 1, 2, ..., k

The analytic solution for this problem would be very diffi-
cult to compute. So we seek to find a approximate solution.
The inner product of two vectors is decided by the length
and direction of both vectors. To simplify the above prob-
lem, we assume that the length and direction of (

∑
x∈zi

x)
and (

∑
j ̸=i(wi −wj)) are independent. Then, the optimiza-

tion problem reaches its optimal solution when (
∑

x∈zi
x)

and (
∑

j ̸=i(wi − wj)) have the same direction. There-
fore (

∑
x∈zi

x) can be written as the linear combination of
{w1, ..., wk}.

Let X̄i be the mean vector of all word vectors that be-
long to the ith class, X̄i has the same direction as

∑
x∈zi

x.
Then, the subspace spanned by W ’s rows is equal to or is a
subspace of the space spanned by the class mean vectors:

L(w1, w2, ..., wk) ⊆ L(X̄1, X̄2, ..., X̄k)

Therefore, the null space of the class mean vector matrix
X̄T = [X̄1, X̄2, ..., X̄k] is the same or a subspace of the null
space as the matrix W . Since we only need W ’s null space
projection matrix, we use X̄’s null space projection matrix
as its approximation.

An intuitive explanation of MVNP is that the mean vec-
tor of one class is the most representative direction for this
class. Thus the subspace spanned by mean vectors encodes
rich information of this feature. And this information can
be removed by projecting word vectors onto its orthogonal
complement.

For clarity, we use PZ to denote the final projection matrix
to remove feature Z from word embeddings, then we have

PZ = PN(X̄)

Brain Encoding
Let S be the stimuli and R be the brain activity elicited by S.
In this paper, S is a sequence of words w1, w2, ..., wn and R
is functional Magnetic Resonance Imaging (fMRI) signals
elicited by S. The brain encoding models learn to map from
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Sentence When somebody wrote a story in the Washington Post on Friday morning ...
POS When [WRB] ... Washington [NNP] Post [NNP] on [IN] Friday [NNP] morning [NN]
NE When [*] ... Washington [ORG] Post [ORG] on [*] Friday [TIME] morning [TIME]
SR (wrote when) [ARGM-TMP] (wrote somebody) [ARG0]... (wrote story) [ARG2] ...

DEP (wrote when) [advmod] (wrote somebody) [nsubj] (story a) [det] (wrote story) [dobj] ...

Table 1: A example sentence and labelled features. In NE, * means this word is not an entity.

stimuli S to the elicited brain response R for every voxel.
Let gZ(S) be the feature elimination function which would
remove the feature Z from S, then we have

R = B × gZ(S) + b

gZ(S) ∈ Rd, R ∈ Rv . B ∈ Rv×d is the regression
weight, and b is the bias of the regression model. v is the
number of voxels in the brain, and d is the dimension of
stimuli feature, which is the same as word embeddings here.

In practice, fMRI measures the blood-oxygen-level-
dependent (BOLD) signal, which is a slow changing process
compared to neural activity. To align with the temporal delay
of the BOLD signal, all feature vectors are convolved with a
canonical hemodynamic response function (HRF)1 and then
downsampled to the sampling rate of fMRI.

R̂ = B × downsample(conv(gZ(S), hrf)) + b

After the training process is finished, we calculate the
Pearson correlation Corr(R̂, R) between the real response
R and estimated signals R̂ to evaluate the model perfor-
mance.

Significance Test
We run a block-wise permutation test (Adolf et al. 2014)
with 10,000 permutations for each brain voxel to compute
one-sided p-value and conduct False Discovery Rate (FDR)
correction to get significant brain voxels (FDR q < 0.05)
corresponding to input stimuli. On these significant voxels,
we compute whether removing a specific feature causes a
significant drop in encoding results.

To achieve that, we run a block-bootstrap test (Reddy
and Wehbe 2021) to compute the significant difference be-
tween the original and one-feature-removed word represen-
tations. Specifically, we divide brain signals and stimuli rep-
resentations into blocks, with approximately 20 seconds for
each block. Then we randomly select ninety percent of the
blocks to train regression models for all kinds of representa-
tions simultaneously and test on the remaining ten percent of
blocks. By repeating this 10,000 times, we get an empirical
distribution of each representation’s prediction results (the
Pearson correlation between real and predicted voxel activi-
ties), from which we can compute the difference between the
results of the original and one-feature-removed representa-
tions. A voxel is correlated to a specific feature if removing
this feature causes its encoding results significantly lower
(FDR q < 0.01) than the original ones.

1The canonical HRF is a mathematical model that describes
what the BOLD signal would theoretically be in response to a neu-
ral impulse.

POS NE SR DEP
Training 173322 173322 140517 203150

Validation 29962 29962 23104 24956
Test 35952 35952 30254 24949

Table 2: Details of the syntactic feature datasets.

Experiments
Syntactic features This paper adopts four syntactic fea-
tures, including two word features, i.e., part-of-speech
(POS) and name entity (NE) and two word-relation features,
i.e., word dependency (DEP) and semantic role (SR)2. See
an example of the four features in Table 1.

Syntactic feature datasets Since there is no annotation
corpus that includes all the above four features, we use the
Ontonotes 5.0 corpus3 for POS, NE and SR features, and
English Web Treebank of the Universal Dependencies 2.5
release4 for DEP feature5. See Table 2 for more details. For
word-level features (POS and NE), each word with its label
in the corpus is taken as a sample. While for word relation
features (DEP and SR), the concatenated representation of
each word (or a predicate) xi and its syntactic head (or its
argument) xj is taken as one sample, and the label of this
sample is the relation between these two words. We train the
MVNP on these two datasets and apply it on the stimuli text
used in fMRI collection.

Brain activation data The fMRI dataset we use comes
from (Zhang et al. 2020) which is publicly available at
https://osf.io/eq2ba/. The dataset contains fMRI signals col-
lected from 19 human subjects. While being scanned for
fMRI, each subject listened to several audio stories collected
from the Moth Radio Hour6.

Experimental setup We adopt two types of pre-trained
language models—the pre-trained BERT-base (Devlin et al.
2018) model7 and the pre-trained ELMo (Peters et al. 2018)
model8—to learn original word embeddings for two syntac-

2This paper follows the cognitive-linguistics literature and re-
gard SR as a syntactic feature.

3https://catalog.ldc.upenn.edu/
4https://universaldependencies.org/
5To alleviate the class-imbalance existed in these features, sim-

ilar classes are merged into one class and labels with less than 500
samples are discarded, resulting in 22 POS, 19 NE, 20 SR, and 35
DEP tags.

6https://themoth.org/radio-hour
7https://huggingface.co/bert-base-cased
8https://allennlp.org/
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POS NE SR DEP
Random 11.77 19.54 42.43 12.30

ELMo

Word 97.65± 0.05 77.81± 0.99 77.49± 2.18 92.71± 0.15

INLP

Null POS 11.12± 0.61 71.13± 0.49 64.34± 0.11 79.23± 0.14
Null NE 97.19± 0.08 12.09± 0.71 74.91± 0.14 92.35± 0.10
Null SR 83.99± 0.07 71.94± 0.32 17.21± 1.85 81.30± 0.18

Null DEP 62.17± 0.09 57.16± 0.50 52.86± 0.22 17.76± 0.28

MVNP

Null POS 21.70± 3.35 78.98± 1.47 71.09± 0.28 87.93± 0.10
Null NE 94.69± 0.10 13.79± 8.77 76.70± 0.15 92.24± 0.09
Null SR 96.79± 0.05 80.23± 0.60 22.03± 1.52 88.28± 0.17

Null DEP 77.79± 0.10 67.38± 0.67 62.15± 0.20 15.98± 1.64

BERT

Word 97.89± 0.06 78.89± 2.66 78.04± 0.37 93.21± 0.20

INLP

Null POS 16.55± 2.03 48.00± 0.76 66.89± 0.21 84.72± 0.17
Null NE 96.71± 0.07 5.02± 0.89 75.53± 0.33 92.98± 0.14
Null SR 70.93± 0.11 59.30± 1.19 25.20± 0.70 72.13± 0.10

Null DEP 57.22± 0.13 37.45± 1.25 53.86± 0.36 13.39± 0.38

MVNP

Null POS 21.76± 2.68 77.45± 0.64 72.80± 0.35 86.53± 0.15
Null NE 95.23± 0.06 12.30± 6.38 77.23± 0.27 93.12± 0.18
Null SR 96.86± 0.07 79.07± 0.84 23.40± 1.93 88.11± 0.14

Null DEP 76.33± 0.11 63.10± 0.77 62.69± 0.40 13.96± 1.80

Table 3: Classification accuracy and its confidence interval of the INLP and MVNP methods. Rows are different types of
representation models and “Null ∗” means ∗-removed representations. Columns are four syntactic features. We train each
classifier for 10 times to compute the confidence intervals.

tic feature datasets and story stimuli used in fMRI collec-
tion. To evaluate which layer of BERT-base and ELMo best
encodes the four syntactic features, we train a classifier for
each layer of these two models and sum up the classification
accuracy across all four features. Among all the 12 layers
of BERT-base, layer 7 has the highest accuracy sum. And
for ELMo, layer 1 has the highest accuracy sum. Therefore,
we adopt BERT-base layer 7 and ELMo layer 1 activation as
word embeddings.

For each syntactic feature, we compute the mean vectors
of each class to get the mean vector matrix and its null space
projection matrix on two syntactic feature datasets. To eval-
uate the elimination results of each projection matrix, we
train linear classifiers for each feature on the word embed-
dings after projection and test the trained classifier on the
test datasets. The results are compared with two baselines.
One is the random results, which are calculated as the pro-
portion of the majority class in a specific feature. Another
baseline is the classification results of the original BERT
word embeddings. Then the projection matrix of each fea-
ture is used to remove the feature in the word embeddings of
story stimuli 9.

Results and Analysis
Feature-Elimination Results
To test models’ feature elimination ability, we show the fea-
ture classification results for both ELMo and BERT em-
beddings by the INLP and MVNP models in Table 3. As
shown, the elimination results on ELMo and BERT embed-
dings are similar. In general, both INLP and MVNP meth-
ods can remove a specific feature from two types of word

9The code used in this paper is available at https://github.com/
xhzhang-1/probing-syntactic-representation

Figure 2: The accuracy drop percentage by the feature-
elimination methods.

embeddings effectively. Specifically, as the bold numbers
in Table 3 shows, the INLP method can achieve a slightly
better (lower) classification accuracy on three features than
our MVNP method. However, compared with our method,
the INLP method has a larger influence on other features af-
ter eliminating one feature, especially when removing POS,
SR and DEP features respectively from the original embed-
dings.

To intuitively compare the results of the two feature-
elimination methods, we compute the accuracy drop per-
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Figure 3: Cortical representations of words and syntactic features. The color-highlighted areas for each feature include voxels
with significant difference (one-sided z-test, FDR q < 0.01) between the original and one-feature-removed embeddings.

centage after eliminating each feature:

Accdrop =
accBERT/ELMo − accNull∗

accBERT/ELMo − accrandom

As shown in Figure 2, compared with the INLP method,
the MVNP has a smaller influence on other features when re-
moving one feature from ELMo and BERT embeddings. But
the original BERT embeddings have slightly higher classifi-
cation accuracy. Hence, we choose BERT embeddings and
the MVNP method in the subsequent brain encoding exper-
iment.

Furthermore, we see that the relationship between the
four features is not symmetric. That is, removing SR or NE
causes a slight effect on other features. But removing POS or
DEP has a more significant influence on other features. This
is reasonable because the four features are correlated to a
certain degree. For example, named entity words are mostly
nouns, but a noun can be any entity category. Therefore, it is
inevitable to cause some disturbance to others when remov-
ing one specific feature. To eliminate this impact to some

BERT Null POS Null NE Null SR Null DEP
0.6993 0.6870 0.6820 0.6775 0.6875

Table 4: The Pearson correlation between representational
cosine-similarity scores and human judgments.

extent, we conduct a significant test analysis in the subse-
quent brain encoding experiments.

To further illustrate that our MVNP method can success-
fully remove a specific feature but retain other information,
including semantics, we use Stanford’s Contextual Word
Similarities (SCWS) (Huang et al. 2012) to quantitatively
evaluate the influence of MVNP on word semantic similar-
ity. As shown in Table 4, our proposed MVNP model can
successfully hold semantic information while eliminating
one specific syntactic feature.

In sum, the purpose of this paper is to investigate how
word syntactic features are represented in the brain, thus
we need only one specific feature removed from the origi-
nal word embeddings at one time and the others remain un-
changed. Experimental results have shown the effectiveness
of the proposed MVNP method.

Cortical Representations of Syntactic Features
Based on the original BERT and one-feature-removed word
embeddings, we use the brain encoding method and signif-
icance test analysis to find brain voxels that are responsible
for the four syntactic features. Figure 3 shows the brain en-
coding results of word embeddings generated by BERT, and
POS, NE, SR, DEP removed representations computed by
MVNP.

Syntactic brain networks are largely overlapped with
semantic brain networks In general, word representa-
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Figure 4: Overlapped brain regions for words’ syntactic fea-
tures.

tions, including all semantic and syntactic components,
are encoded in the inferior frontal gyrus (IFG), superior
temporal gyrus (STG), posterior superior temporal sulcus
(pSTS), middle temporal gyrus (MTG), inferior temporal
gyrus (IFG), precuneus (Pcun), cingulate gyrus (CG) and
angular gyrus (AG). Most of these brain areas agree with
previous findings on the brain networks of language pro-
cessing (Fedorenko and Kanwisher 2011; Yang et al. 2019),
supporting the validity of our proposed framework that uses
computational representations to study brain language com-
prehension.

Compared with word representations, four word syntac-
tic features (POS, NE, SR, DEP) have much less activated
brain regions. These brain regions (mainly including the lat-
eral temporal cortex and angular gyrus) largely replicate the
results of previous work in brain representations of syntax
(Blank et al. 2016; Hagoort and Indefrey 2014). These brain
networks also overlap with classic semantic brain networks
(Hagoort and Indefrey 2014; Huth et al. 2016) to a great ex-
tent, at least under the spatial resolution of the current fMRI
technique. This finding supports a popular research view that
language networks as a whole are sensitive to both semantic
and syntactic information (Blank et al. 2016), and the brain
networks activated by semantics and syntax are largely over-
lapped (Wang et al. 2020).

In addition, we also find two brain regions activated by
syntactic features that have not been found in previous work,
i.e., the precuneus and the cingulate gyrus. Both of them are
sensitive to several syntactic features, suggesting that they
may play an important role in brain language processing
and the brain foundations of syntactic information process-
ing might be broader than those suggested by classical stud-
ies.

Syntactic features are distributively represented in the
brain As shown in Figure 3, four syntactic features are

distributively represented across the brain cortex, indicat-
ing that word syntactic features highly rely on distributed
brain networks instead of a local brain region. There are two
possible explanations. One is that our brain uses distributed
representation to encode everything even primitive features.
Another reason may be that the four word syntactic features
defined by linguists are not the primitive components used
by our brain.

There are also recent works that found a distributive rep-
resentation network as ours (Yang et al. 2017). Different
from previous work that precisely controls one variable at
a time and investigates one specific feature representation
in the brain, we adopt the data-driven method and analyze
various syntactic features in the same experiment. These are
all cutting-edge research questions and different exploratory
methods have their advantages. Together, using the clas-
sic hypothesis method and the data-driven method, we may
draw a big picture of human language understanding.

Different syntactic features are represented and inte-
grated in a hierarchical brain system To further show
the functional cortical division of different syntactic fea-
tures, we put four encoding results together. As shown in
Figure 4, there are some brain areas (especially the STG,
pSTS, Pcun, and AG) that encode several syntactic features,
while other areas are only sensitive to one feature. And each
feature has slightly different brain networks. For instance,
the rostral area of STG and anterior superior temporal sulcus
(aSTS) is only correlated to NE. In precuneus areas, there
are scattered small regions that only correlate to POS. These
findings suggest a hierarchical organization for the neural
representations of syntactic features.

Conclusions

The classic syntactic-related brain areas mainly include IFG,
MFG, pSTS, and AG. Through a data-driven method, this
paper discovered the contribution of these brain regions to
syntactic representation in the brain and additionally sug-
gested some possible contributions of other brain regions.
This work corroborates and extends previous findings, high-
lighting the value of introducing the latest language process-
ing models in studying brain language comprehension, and
suggests that the brain foundations of syntactic information
may be broader than those suggested by classical studies.

However, our purposed framework has several limita-
tions. First, the MVNP method is limited to categorical
features and cannot be directly used on numerical features
such as word frequency or word surprisal. Second, both the
MVNP method and the voxel-wise brain encoding model are
under linear assumptions. Although the linear assumption
is widely used in fMRI researches, future work can explore
more complex transforms with the increase of data and com-
putational resources. Finally, the voxel-wise encoding mod-
els used in our framework can only study the activation of
single voxels. Future work can combine MVNP with other
methods such as multivariate pattern analysis to explore the
spatial activation patterns of multiple voxels in the brain.
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