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Abstract

Interactive recommendation with natural-language feedback
can provide richer user feedback and has demonstrated ad-
vantages over traditional recommender systems. However, the
classical online paradigm involves iteratively collecting ex-
perience via interaction with users, which is expensive and
risky. We consider an offline interactive recommendation to
exploit arbitrary experience collected by multiple unknown
policies. A direct application of policy learning with such fixed
experience suffers from the distribution shift. To tackle this
issue, we develop a behavior-agnostic off-policy correction
framework to make offline interactive recommendation possi-
ble. Specifically, we leverage the conservative Q-function to
perform off-policy evaluation, which enables learning effec-
tive policies from fixed datasets without further interactions.
Empirical results on the simulator derived from real-world
datasets demonstrate the effectiveness of our proposed offline
training framework.

Introduction
Interactive recommendation with natural-language feedback
can provide flexible feedback to reflect complex user atti-
tude towards various aspects of an item, compared with sim-
ple user feedback, such as clicking data or updated ratings
(Chapelle and Li 2011; Kveton et al. 2015; Li et al. 2010;
Xiao and Wang 2021). It widely exists in scenarios of per-
sonal assistants, such as Amazon Echo show and Google
home hub, where items are recommended (Guo et al. 2018,
2019). In these scenarios, a user can describe features of
desired items that are lacking in the current recommended
ones. The recommender then incorporates feedback and sub-
sequently recommends more suitable items. This type of in-
teractive recommendation is named as text-based interactive
recommendation.

The classical online paradigm involves iteratively collect-
ing experience via interacting with users, which is not realis-
tic in the real-world. Offline interaction recommendation is a
promising setting in, for example, safety critical or produc-
tion systems, where learned policies should not be applied
on the real system until their performance and safety is veri-
fied. Further, we consider the scenario of personal assistants,
where users usually interact with their personal assistants on

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

devices. These devices can collect interaction data but can
only perform minor adaptation for personalized recommen-
dation. This offline data can be shared by the users if they
agree for service improvement, but some personal informa-
tion should be protected and never shared. Thus, the person-
alized policies on-device are usually unknown when training
a policy in an offline manner on the server side. One can ap-
ply imitation learning on successful interaction data, but the
policy can be sub-optimal because the recommender cannot
exploit failure experience. Directly learning a recommender
policy via off-policy reinforcement learning will suffer from
distribution shift as the experience are usually collected by
multiple unknown policies on devices. Previous offline train-
ing usually considers importance sampling for distribution
correction (Chen et al. 2019), but it assumes all the offline
data is collected by a single known policy. To overcome these
issues, we frame offline interactive recommendation as a
behaviour-agnostic offline reinforcement learning problem,
where a reward corrector is efficiently estimated.

In this paper, we propose an offline interactive recommen-
dation framework driven by the personal assistants scenarios.
Different from traditional interactive recommendation with
simple user feedback, we first extract the intentions from user
natural-language feedback, and then train a recommenda-
tion policy based on the offline interaction logs collected by
multiple on-device personalized policies. Empirical results
on the simulator derived from real-world datasets show that
the proposed framework can accurately estimate the reward
corrector compared with some standard baselines. Further,
the offline training scheme shows superior performance com-
pared with baselines in an offline interactive recommendation
system.

Background
Interactive Recommendation as a Reinforcement
Learning Problem
Reinforcement learning aims to learn an optimal policy for
an agent interacting with an unknown (and often highly com-
plex) environment. In this paper, we consider interactive
recommendation with user feedback in natural language as
finite-horizon environments with the discounted reward cri-
terion and discrete action space. Denote st ∈ S as the state
of the recommendation environment at time t and at ∈ A as
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Figure 1: Comparison between the online (left) and offline (right) interactive recommendation model. In the online feedback-loop
training, recommendation policy is continuously updated using human feedback. In the offline feedback-loop training, the
experience data is first collected by M personalized (i.e., unknown) on-device policies {πiβ}Mi=1. Recommendation policy is then
updated based on the collected experience data.

the recommender-defined items from the candidate items set
A. In the context of a recommendation system, as discussed
further below, the state st corresponds to the state of sequen-
tial recommender, implemented via a state tracker. At time
t, the system recommends item at based on the current state
st at time t. After viewing item at, a user may comment
on the recommendation in natural language (a sequence of
natural-language text) xt, as feedback. The recommender
then receives a reward rt, feedback xt, and perceives the new
state st+1.

Accordingly, we can model the recommendation-feedback
loop as a Markov decision processM = 〈S,A, T, R, µ0〉,
where T : S ×A× S 7→ R is the environment dynamic of
recommendation, µ0 is the initial distribution and R : S ×
A 7→ R is the reward function used to evaluate recommended
items. The recommender seeks to learn a policy, π(a|s),
that corresponds to the distribution of items conditioned on
the current state of the recommender. The recommender is
represented as an optimal policy that maximizes the expected
reward defined as (Sutton and Barto 2018):

J(π) = Eτ∼pπ [r(st,at)] ,where (1)

pπ(s,a) =

{
1

H+1

∑H
t=0 d

π
t (st,at), if γ = 1,

(1− γ)∑H
t=0 γd

π
t (st,at), if γ < 1.

,

and τ = (s0,a0, . . . , sH ,aH) is a sequence of states
and actions (i.e., the trajectory), and the trajectory
distribution induced by π is defined as dπt (s,a) :=
P {st,at|s0 ∼ µ0, ∀i < t,ai ∼ π(·|si), si+1 ∼ T (·|si,ai)},
H is the horizon length.

Given a dataset of trajectoriesD collected under a behavior
policy πβ , standard Q-learning maintains a parametric Q-
function Q(s,a). Q-learning methods with greedy action
selection train the Q-function by iteratively applying the
Bellman operator:
T ∗Q(s,a) = r(s,a) + γEs′∼T (·|s,a)[max

a′
Q(s′,a′)] . (2)

Actor-critic methods use a learned policy, π(a|s) instead of
the greedy one in standard Q-learning. Accordingly, the Q-
value is estimated uses an empirical Bellman operator based

on a single action given by π(a|s):
Q̂k+1 ← argmin

Q
Es,a,s′∼p{[(r(s,a)

+ γEa′∼π(a′|s′)[Q̂
k(s′,a′)])−Q(s,a)]2} , (3)

where p is empirical distribution of the off-policy trajectory
distribution. The goal of an agent is to learn an optimal policy
that maximizes J(π), i.e., maximize the expected Q-value.

Offline Reinforcement Learning
The offline reinforcement learning considers optimizing
Equation (1) from a fixed dataset D (similar to the train-
ing set in supervised learning). In more detail, the agent
cannot interact with the environment and collect more experi-
ence, and need to understand the underlying MDPM from a
fixed dataset and learn a policy that can attain higher rewards
when interacting with the MDP (when testing). We denote
the behaviour policy as πβ and the fixed dataset is collected
by it. Importance sampling (Precup, Sutton, and Dasgupta
2001) has been widely investigated in offline recommen-
dation (Chen et al. 2019). However, importance sampling
requires the knowledge of the behaviour policy and the of-
fline data should be collected by a single policy. In many
realistic settings, only a fixed dataset, which is collected by
multiple unknown policies, is given. Even if one can assume
the behaviour policy can be estimated from data, it is known
that straightforward importance sampling estimators suffer a
exponential variance (Chen et al. 2019), known as the “curse
of horizon” (Liu et al. 2018). Learning from arbitrary expe-
rience of multiple policies is an interesting but challenging
problem.

The Proposed Framework
Driven by the personal assistants scenarios, we consider of-
fline interactive recommendation of visual items (Guo et al.
2018, 2019) with natural language feedback. In this scenario,
a user views a recommended item and gives feedback in nat-
ural language, describing the desired aspects that the current
recommended item lacks. The system then incorporates the
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user feedback and recommends (ideally) more suitable items,
until a desired item is found. As shown in Figure 1, offline in-
teractive recommendation model cannot directly interact with
users but learn from experience data collected by multiple un-
known policies; while classical interactive recommendation
iteratively improves via interacting with users. Specifically,
we assume there are many personalized devices (e.g., Ama-
zon Echo show and Google Home hub) collecting experience
while interacting with users. The experience data on these
multiple devices are uploaded to train an interactive recom-
mendation policy in an offline manner. It is allowed to upload
some experience for service improvement but some local per-
sonalized information cannot be shared (usually caused by
privacy issue), thus the behaviour policies on these multiple
devices are usually unknown and different.

Policy Learning from Arbitrary Experience
It is difficult to learn from a fixed experience dataset col-
lected by multiple unknown policies {πiβ}Mi=1. The usually
adopted importance-sampling based methods have unrealistic
assumptions on the fixed data as discussed before. Directly
performing off-policy learning on this fixed dataset D will
suffer from distribution shift, rendering sub-optimal policies.
To alleviate this issue, we consider the offline policy learning
via a behavior regularization (Kumar et al. 2019; Wu, Tucker,
and Nachum 2019; Nachum et al. 2019b):

J(π) = Eτ∼pπ [r(s,a)]− αDφ (pπ‖pd) (4)
= Eτ∼pd [w(s,a) · r(s,a)− αφ(w(s,a))] , (5)

where τ = (s0,a0, . . . , sH ,aH) is a trajectory, H is the
horizon length, α > 0 is the trade-off factor, Dφ denot-
ing the f -divergence (Nowozin, Cseke, and Tomioka 2016):
Dφ(pπ‖pd) := Eτ∼pd [φ (w(s,a))], w(s,a) := pπ(s,a)

pd(s,a)
,

pd is the empirical distribution of fixed dataset D and pπ
is the state visitation distribution induced by the target pol-
icy π. Note the original objective in Equation (4) not only
requires on-policy samples from pπ, but also involves the
f -divergence term, which is difficult to compute. To bypass
these difficulties (Nachum et al. 2019b), we can eliminate
the on-policy sample requirement as reformulated in Equa-
tion (7). The regularization Dφ(pπ‖pd) encourages conser-
vative behaviour, compelling the state-action occupancy of
π to remain close to the off-policy distribution. Different
divergences can be obtained by choosing appropriate convex
function φ (Nowozin, Cseke, and Tomioka 2016).

In this framework, we consider the realistic personal assis-
tant scenarios, where the offline data are collected by mul-
tiple personalized devices, i.e., multiple unknown policies.
Equation (7) is very similar to standard offline policy learn-
ing, except that {πiβ}Mi=1 are unknown in our realistic set-
tings. The ratio w(s,a) can be estimated via importance
sampling (IS) if offline data are collected by a single known
policy. However, we do not make this assumption. Previ-
ous works (Nachum et al. 2019a; Liu et al. 2018; Nachum
et al. 2019b; Zhang et al. 2020a) uses marginalized impor-
tance sampling to estimate the state(-action)-distribution im-
portance ratios, enabling learning from arbitrary experience.
However, distribution correction estimation (DICE) (Zhang

et al. 2020a) is still challenging: there are constraints on
the output of the neural correction estimator, rendering its
difficulty of model optimization. In text-based interactive
recommendation, the state s is composed of image and text
embeddings, which is more complex than those of classical
RL benchmarks (Todorov, Erez, and Tassa 2012; Bellemare
et al. 2013). Besides, the action space is discrete and much
larger. These two factors make the explicit DICE more chal-
lenging and unstable. Thus, we choose value-based instead
of policy-based methods (Sutton and Barto 2018). Thus, we
can first perform offline conservative policy evaluation (i.e.,
value function learning) (Kumar et al. 2020):

Q̂k+1 ← argmin
Q

α[Es∼pd,a∼π(·|s) Q(s,a)

− Es,a∼pd Q(s,a)]

+
1

2
Es,a,s′∼pd

[(
T̂ πQ̂k(s,a)−Q(s,a)

)2]
, (6)

where α is the trade-off factor, π is the target policy we aim to
evaluate, T̂ π is the empirical Bellman operator which backs
up a single sample, and Q̂k is the estimated Q-value function.
The second term is the standard Bellman update as defined
in Equation (3). The first term is the behavior regularization,
which restricts the target policy π to match the state-marginal
in the dataset D. It makes sure that the policy distribution
pπ is close to the data distribution p to avoid the potential
penalty in the conservative Q-function learning.

With the estimated Q̂(s,a), i.e., target policy π can
be evaluated based on a fixed dataset D, one can
perform policy improvement then, which is very simi-
lar to standard policy learning. Following Kumar et al.
(2020), we add an entropy regularization H(π) =
−∑a∈A π(a|s) log π(a|s) in policy improvement, and the
optimal policy is π(a|s) ∝ exp(Q̂(s,a)), which leads to
soft actor-critic (SAC) (Haarnoja et al. 2018) updates:

min
Q

max
π

α[Es∼pd,a∼π(·|s) Q(s,a)− Es,a∼pd Q(s,a)]

+H(π)+1

2
Es,a,s′∼pd

[(
T̂ πQ̂k(s,a)−Q(s,a)

)2
]
. (7)

Note the proposed framework is general and can adopt dif-
ferent offline reinforcement learning algorithms such as Con-
servative Q-Learning (CQL) (Kumar et al. 2020), batch
constraint Q-learning (BCQ) (Fujimoto, Meger, and Precup
2019), Model-based Policy Optimization (MOPO) (Yu et al.
2020) and AlgaeDICE (Nachum et al. 2019b).

Model Details
We next discuss details on the model details in an offline text-
based recommender system. In online interactive recommen-
dation, the recommender improves itself immediately via in-
teracting with users. Different from the online settings, offline
interactive recommendation can only access to a fixed expe-
rience dataset D collected by unkown behavior polices, and
learn from it. As illustrated in Figure 2, the feature extractor
takes natural language feedback xt−1 and its corresponding
item at−1 to update the state tracker. Then the recommender
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Figure 2: Offline training scheme for interactive recommen-
dation. The correction model corresponds to the conserva-
tive Q-function, provideing the training signal for the policy
(policy evaluation). Experience data is the interaction logs
collected by personalized (unknown) policies from multiple
devices.

observes recommended item at and its corrected reward Q̂t
in D to perform offline training. Behavior-agnostic offline
reinforcement learning for complex models is still a chal-
lenging problem (Levine et al. 2020). Our work is an early
attempt to solve behavior-agnostic offline RL for interactive
recommendations with complex real-world data.

Multimodal Encoder Before the system making recom-
mendations, the multimodal encoder understands the current
context, based on the textual and visual embedding encoded
from the raw data of the user query and candidate image in the
experience data. To understand the user query xt, a textual
encoder is applied to extract the textual embedding ctxtt by
word embedding, a LSTM, and a linear layer. To understand
the visual content of a candidate image at, the visual encoder
encodes the image by a residual neural network ResNet(at)
and then an attribute network AttrNet(at). The residual
neural network is pretrained (i.e., ResNet50) (He et al. 2016)
and we pretrain the attribute network on the training data. The
encoded user query and image are concatenated as the input
to an MLP, and then the state tracker of the recommender.

Recommender To incorporate the temporal information
in a user session, the recommender extracts the state by a
state tracker. The state tracker maintains the embedding of
multiple slots, which implicitly describes the user preferences.
In each round, the embedding encoding the user preference
is updated over time. We follow previous recommendation
settings (Christakopoulou, Radlinski, and Hofmann 2016;
Sun and Zhang 2018; Zhang et al. 2020b; Lei et al. 2020a,b),
where the items are associated with a number of attributes. In
each session, the user is to assumed to find items with specific
attribute values. Accordingly, the learning agent with policy π
is designed to take action in a multi-discrete space (Dhariwal
et al. 2017). Each action value corresponds to an attribute
value sampled from a categorical distribution over the space.
With the state as the input, we approximate the probability of
taking an action by a fully connected neural network with a
softmax activation function. At each time t, by observing st,
the learning agent takes actions and accordingly the system
recommend the items with the corresponding attribute values.

Algorithm 1: Offline Interactive Recommendation

Input: Collected offline dataset D.
Initialize recommender π, approximate Q-value function
Q, or distribution correction: w, and perform pretraining.
repeat

Sample a batch of experience from D
Estimate the distribution correction w or update the
conservative Q-value function. [Policy Evaluation]
Update recommender policy π via soft actor-critic with
(7). [Policy Improvement]

until Model converges
return recommender (policy) parameters.

Related Work
Offline Reinforcement Learning Off-policy policy learn-
ing with importance sampling (IS) has been explored in the
contextual bandits (Strehl et al. 2010), and episodic RL set-
tings (Precup, Sutton, and Dasgupta 2001). In recommenda-
tion, importance sampling is usually used to correct distribu-
tion shift (Chen et al. 2019; Ma et al. 2020). Unfortunately,
IS-based methods suffer from exponential variance in long-
horizon problems, known as the “curse of horizon” (Liu et al.
2018). Recently developed off-policy learning considers be-
haviour regularization (Fujimoto, Meger, and Precup 2019;
Wu, Tucker, and Nachum 2019), i.e., the policy should be
close to the behaviour policy. Conservative Q-Learning (Ku-
mar et al. 2020) augments the Bellman error objective with
a simple Q-value regularization term. By rewriting the ac-
cumulated reward as an expectation w.r.t. a stationary distri-
bution, (Liu et al. 2018; Gelada and Bellemare 2019) recast
OPE as estimating a correction ratio function. However, these
methods still require the off-policy data to be collected by
a single and known behaviour policy, which restricts their
real-world applicability. DualDICE (Nachum et al. 2019a)
and GenDICE (Zhang et al. 2020a; Zhang, Liu, and Whiteson
2020) are respectively developed for discounted and the more
challenging undiscounted reward criterions in the behaviour-
agnostic setting. AlgaeDICE (Nachum et al. 2019a) further
shows the gradient of the off-policy learning is exactly the
on-policy policy gradient, if the distribution correction is
exactly estimated.

Conversational Recommender System With the advance
of natural language understanding and dialog systems, the
conversations between users and systems have been leveraged
to improve the traditional recommender systems (Jannach
et al. 2020). Aliannejadi, et al. (Aliannejadi et al. 2019) pro-
poses a neural question selection model for the task of asking
clarifying questions in open-domain information-seeking con-
versations. In a two stage solution by (Christakopoulou et al.
2018), a RNN-based model is proposed for generating inter-
esting topics to the user, and a state-of-the-art RNN-based
video recommender is extended to incorporate the user’s
selected topic. By integrating and revising several conversa-
tional recommenders, Lei, et al. (Lei et al. 2020a) proposes a
three-stage solution, to better converse with users and achieve
accurate recommendations. The conversational recommen-
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Round User Feedback Round User Feedback
1 I want boots 1 The shoes I want has flat
2 Please provide some shoes for women 2 Show me more shoes with men
3 I am looking for shoes for women 3 Please provide some shoes with lace up
4 Please provide some shoes with round toe 4 I am looking for shoes with flat
5 I prefer shoes for women 5 Do you have sneakers and athletic shoes
6 - 6 Show me more shoes with men
1 I am looking for shoes with men. 1 Do you have shoes with ankle.
2 Do you have shoes with medallion. 2 I want pull-on.
3 Show me more shoes with flat. 3 Do you have shoes with pull-on.
4 I am looking for shoes with flat. 4 I prefer shoes with men.
5 I do not need the shoes without flat. 5 Do you have flat.
6 - 6 Show me more shoes with flat.
1 The shoes I want has Slip-On. 1 Please provide some shoes with Elastic Gore.
2 Do you have shoes with Women. 2 Do you have shoes with Flat.
3 Do you have shoes with Capped Toe. 3 I am looking for shoes with Sandals.
4 I prefer Flats. 4 Show me more shoes with Sandals.
5 - 5 I want 1in - 1 3/4in.

Table 1: Examples of the generated feedback by the user simulator.

dation task is also formulated as a reinforcement learning
problem in various previous works (Sun and Zhang 2018;
Greco et al. 2017; Zhang et al. 2019), by optimizing various
reward functions. We follow the setting in (Christakopoulou,
Radlinski, and Hofmann 2016; Sun and Zhang 2018; Lei et al.
2020a), where the recommended items are associated with a
number of attributes. Different from previous work, we con-
sider learning from interaction logs for conversational recom-
mendation, a realistic setting in production systems (Kreutzer,
Riezler, and Lawrence 2020).

To improve the interactive recommendations, data from
multiple modalities have been leveraged to understand the
user preference more accurately (Thomee and Lew 2012).
Depending on the feedback format, previous works can be
categorized into relevance feedback (Rui et al. 1998; Wu, Lu,
and Ma 2004) and relative attributes feedback (Kovashka,
Parikh, and Grauman 2012; Parikh and Grauman 2011; Yu
and Grauman 2017; Zhu et al. 2019). Specifically, user’s
natural language feedback to visual content of items has been
studied to achieve more efficient user interactions (Guo et al.
2019). Guo, et al. (Guo et al. 2018) proposes an end-to-end
system by reinforcement learning, to enable the multi-turn
multimodal interactive retrieval. To retrieve complex scenes,
the drill-down framework (Tan et al. 2019) is proposed to
capture the fine-grained alignments between local region of
images and multiple text queries.

Experimental Results

We conduct experiments with the proposed framework to
verify whether the offline training can handle the challeng-
ing scenarios than previous methods. Our proposed offline
learning framework is general, and can adopt any behavior-
agnostic offline RL algorithm. All experiments are conducted
on a single Tesla V100 GPU.

Environment and Dataset We compare our method with
various baseline approaches on UT-Zappos50K (Yu and Grau-
man 2014a,b). This dataset includes 50,025 shoes. For each
shoe, there is an image and some meta information (e.g., the
attribute values of the shoes). In the evaluation, we randomly
select 40,020 shoes to form a training set and the rest shoes to
form a test set. In the training set, we assume shoes are well-
labeled with accurate attribute value labels. In the test set, the
shoes are assumed to be newly included to the database and
have no attribute labels. With the test data, we can evaluate
the generalization ability of the models to the newly included
shoes. There are rich attribute information in this dataset, and
our evaluation focus on the attributes of shoes category, shoes
subcategory, heel height, closure, gender and toe style.

In the reinforcement learning phase of the online recom-
mender, the reward can be the visual similarity between
the recommended item at and the target item a∗. This
similarity can be measured by either the visual attribute
similarity or the image embedding similarity between the
items (Guo et al. 2019). By considering both similarities,
in practice we design and maximize the following reward
rt = 1 − (1 − λatt)||ResNet(at) − ResNet(a∗)||2 −
λatt||AttrNet(at) − AttrNet(a∗)||0 , where || · ||2 de-
notes the L2 norm, || · ||0 denotes the L0 norm, and λatt is
set to 0.5, AttrNet(·) is a fully connected network, which
predicts attribute values given an image. We set the maxi-
mum length of a user session as 50: if a user interacts with
the system for more than 50 times and still can not find the
target item, we terminate the system and give an extra penalty
reward −3 to the learning agent.

Interaction with Users
In our offline recommender, the model training relies on the
experience data collected from an online recommender. Thus,
we need to train and evaluate the online recommender as the
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Please provide some 
shoes with Ankle I like Lace up Show me more 

Boots
I need the shoes with 

Round Toe
The shoes I want 

has Ankle Good

Please	provide	some	
shoes	for	girls

Please	provide	some	
shoes	with	round	 toe

I	want	prewalker GoodI	prefer	shoes	with	
high	knee

I	am	looking	 for	boots Do	you	have	shoes	
with	zipper

Good

Figure 3: Use cases of offline text-based interactive recommendation. Each text below the image is user’s comment for current
recommendation.

first step. However, traditionally, it is difficult to train and
evaluate an online model: the model is updated online and
it is difficult to access labels (i.e., the user feedback) to all
possible items (Christakopoulou, Radlinski, and Hofmann
2016; Guo et al. 2018; Zhang et al. 2019). Therefore, in
practice, we train the online recommender on a simulator
derived from the UT-Zappos50K dataset.

To derive this simulator, we train an utterance generation
model. In our recommendation setting, the items are associ-
ated with a number of attributes (Christakopoulou, Radlinski,
and Hofmann 2016; Sun and Zhang 2018; Lei et al. 2020a),
and the user goal is to find items with specific attribute values.
Therefore, we assume the granularity of the user utterances
are in the level of visual attributes. That is, the utterance
generation model outputs a sentence describing the visual at-
tribute difference between a candidate item and a target item.
The inputs of the model are the differences on an attribute
value between the two items.

To train the generation model, we collect user utterances,
similarly to (Sun and Zhang 2018). We prepare 10,000 pairs
of candidate items and target items, where each item is asso-
ciated with an image with visual attributes. For each pair, we
collect a real-world sentence about the target visual attributes,
from a fixed set of attributes. To derive extra training data,
the collected data is further augmented by template-based
sentences. Specifically, we derive several sentence templates
from the collected real-world sentences, and generate 20,000
sentences by filling these templates with attribute values.
With the attribute labels in the training data, we also pretrain
the textual encoder under a cross-entropy loss.

The fact that the online model training needs a simulator
also motivates our work of developing an offline reinforce-
ment learning based recommender: instead of relying on a
simulator, in offline reinforcement learning we only need a
fixed data set collected by multiple unknown recommender.
The latter option is more practical in the real-world setting,
and has not been investigated yet. We show some examples
of the generated feedback by the user simulator in Figure 3
and Table 1. To evaluate how the recommended item’s visual
attributes satisfy a user’s previous feedback, our simulator
only generates simple comments on the visual attribute differ-
ence between the candidate image and the desired image: we
can calculate how many attributes violate the users’ previous

feedback based on the visual attribute ground truth available
in UT-Zappos50K.

Implementation Details In the textual encoder, the dimen-
sion of the word embedding layer is 32, the dimension of
the LSTM is 128, and the dimension of the linear mapping
layer is 32. The textual encoder is optimized by the Adam
optimizer, with an initial learning rate of 0.001. The reward
correction model is a two-layer MLP with dimension of 32,
which takes the state and action pair as the input and outputs
the estimated Q-value. In the recommender policy network,
the dimension of the two-layer MLP is 128. The policy net-
work is optimized by the Adam optimizer. In Adam optimizer,
the optimal learning rate found was 5e–4, which is chosen us-
ing a hyperparameter search from {1e–3, 5e–4, 1e–4, 5e–5}.
The discount factor of reinforcement learning is 0.99.

Offline Interactive Recommendation
We further verify the proposed framework in offline inter-
active recommendation training, where the recommender
is evaluated online after offline training. The model perfor-
mance is measured with following evaluation metrics: (i) task
success rate (SR@K), the rate of success after K interac-
tions and (ii) number of interactions before success (NI) and
number of violated attributes (NV). In each user session, we
assume the user aims to find items with a set of desired at-
tributes. Results are averaged over 100 sessions with standard
error.

Setup In this experiment, we start from a random initial-
ized offline recommender and learns on the experience data.
We totally collected 40,000 user sessions with online recom-
menders (as Behaviour in Table 2), and compare offline train-
ing with off-policy (w/o correction) and imitation learning
(i.e., behaviour cloning) (Levine et al. 2020). The Behaviour
is composed with multiple policies and its result is reported
by averaging on all the collected trajectories.

Results We report the results in Table 2. It can be observed
that by learning from these user sessions, both the offline and
off-policy recommender improve upon initial policy. Since
the off-policy suffers from distribution shifts, the improve-
ment is very marginal. The on-policy recommender is the
one trained via directly interacting with users, which should
be the upper bound of the offline training in our experiments.
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Figure 4: Training curves of iterative offline interactive recommendation. For each iteration, we sample a batch of (offline)
experience tuples from D, which is in the form of (s, a, s′, r).

SR@10 ↑ SR@20 ↑ SR@30 ↑ NI ↓ NV ↓
Behaviour 71% 81% 84% 13.88± 1.58 25.96± 5.32
On-policy 84% 90% 91% 9.91± 1.24 9.35± 1.87
Off-policy 59% 74% 78% 16.69± 1.72 39.92± 6.93
Imitation Learning 69% 82% 85% 12.91± 1.49 19.00± 3.82
Offline Learning 72% 87% 91% 10.71± 1.21 13.08± 2.78
Iterative Offline 78% 87% 91% 10.31± 1.25 10.53± 2.52

Table 2: Comparison of different methods on a simulator derived from UT-Zappos50K.

Figure 5: Examples of the generated feedback by the user
simulator.

It is also reasonable to see imitation learning shows a little
worse results than the behaviour. Some use cases of offline
interactive recommendation are also shown in Figure 3.

Iterative Offline Training
The results in previous sections show that offline learning
can improve the recommender with arbitrary experience col-
lected by multiple unknown policies (recommenders). We
find the quality of experience affects the performance, i.e.
the recommender policy cannot achieve its best performance
when the experience D is collected by policies with poor
performance. Hence, we consider the iterative offline train-
ing: (i) collect offline experience D with multiple behaviour
policies {πβi }Mi=1. (ii) update the offline recommender π with
D. (iii) update the behaviour policies via model deployment

and collect the new offline dataset D′, and let D = D ∪D′.
Model Deployment We consider the specific scenario
where the recommender policy is trained in an offline manner
and then deployed on the devices. The model on the device
is usually smaller due to the limited storage and computation
resources, but the model distillation is complicated and be-
yond the scope of this paper. Since the policies are different
between devices, thus in the iterative training, the policies
used to collect data are injected with Gaussian noise (Kus-
ner, Hernández-Lobato, and Miguel 2016) when choosing
actions.

Results We perform the iterative offline training as de-
scribed above. Figure 4 shows the results on test dataset
and the best performance is reported in Table 2. With the iter-
ative training scheme, the offline interactive recommendation
can achieve similar performance as the classical on-policy
learning.

Conclusions
Motivated by the on-device personal assistants in the real-
world, and inspired by offline policy learning, we propose an
offline interactive recommendation framework, where a neu-
ral network is parameterized and dynamically updated to esti-
mate the Q-value given any state-action pairs. By evaluating
this new framework on a simulator derived from real-world
datasets, we demonstrate the effectiveness of our proposed
model in this challenging and realistic setting. The proposed
framework is general, and can be extended to more complex
real-world scenarios, such as Amazon Echo show and Google
Home hub. Future works include collecting real-world user
feedback for offline model improvement (Jaques et al. 2020).
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Ethical Impact
Text-based interactive recommendation has demonstrated ad-
vantages with the rise of personal assistants, such as Amazon
Echo, Google Home, etc. The classical online paradigm in-
volves iteratively collecting experience via interaction with
users. In the scenario of personal assistants, users usually in-
teract with their personal assistants on devices. These devices
can collect interaction data and can be shared by the users if
they agree for service improvement, but some penalized data
cannot be shared. Thus, the personalized policies on-device
are usually unknown when training a policy in an offline man-
ner on the server. Our proposed framework moves one-step
forward in offline interactive recommendation, i.e. exploit
arbitrary experience collected by multiple unknown policies,
which widely exists in the personal assistant scenarios and is
very challenging.
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