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Abstract

Goal-oriented dialog policy learning algorithms aim to learn a
dialog policy for selecting language actions based on the cur-
rent dialog state. Deep reinforcement learning methods have
been used for dialog policy learning. This work is motivated
by the observation that, although dialog is a domain with rich
contextual knowledge, reinforcement learning methods are
ill-equipped to incorporate such knowledge into the dialog
policy learning process. In this paper, we develop a deep re-
inforcement learning framework for goal-oriented dialog pol-
icy learning that learns user preferences from user goal data,
while leveraging commonsense knowledge from people. The
developed framework has been evaluated using a realistic di-
alog simulation platform. Compared with baselines from the
literature and the ablations of our approach, we see signifi-
cant improvements in learning efficiency and the quality of
the computed action policies.

Introduction
Artificial intelligence (AI) research in its early years was
largely driven by the representation of and reasoning with
human knowledge. Those algorithms and systems can use
existing human knowledge to generate “new knowledge”,
or draw conclusions for different reasoning purposes, such
as inference, diagnosis, and planning (Davis and Marcus
2015). Learning methods have shown great promises, thanks
to the large-scale datasets and the massive computational
power (LeCun, Bengio, and Hinton 2015). Given all the suc-
cesses from (knowledge-based) reasoning and (data-driven)
learning methods, there is the recent trend of research, in-
cluding this work, that integrates the complementary advan-
tages of knowledge-based and data-driven methods.

A typical dialog system includes at least the components
for dialog state tracking, dialog management, and language
synthesis (Young et al. 2013), while there are end-to-end di-
alog systems that integrate the components using deep neu-
ral networks (Bordes, Boureau, and Weston 2017; Serban
et al. 2016). Dialog management focuses on selecting dialog
actions based on the current dialog state toward achieving
long-term dialog goals, e.g., reserving hotel rooms, and pur-
chasing flight tickets. The dialog actions can be realized us-
ing language synthesis methods, and the current dialog state
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can be estimated using dialog state tracking methods. We
focus on dialog management in this research.

Reinforcement learning (RL) algorithms enable agents
to learn from trial-and-error experience (Sutton and Barto
2018), and have been applied to learning policies for dialog
management (Singh et al. 2002; Schatzmann et al. 2006).
On the one hand, existing RL-based dialog policy learning
methods highly rely on the “rewards” from dialogs, which
tend to be very sparse, unreliable, and potentially expensive.
On the other hand, it frequently happens that there is widely
available commonsense knowledge in dialog domains. For
instance, “rooms of 5-star hotels are usually expensive,”
and “many Chinese restaurants are located in Chinatowns.”
However, it is very difficult to incorporate such knowledge
into dialog policy learning, due to their fundamentally dif-
ferent paradigms of computation. The wide availability of
contextual knowledge and highly sparse feedback in dialog
domains together serve as the main motivation of this re-
search.

In this paper, we develop a dialog agent that, for the first
time, incorporates declarative human knowledge into deep
RL-based dialog policy learning. In particular, the knowl-
edge from people is used for reasoning about both internal
and external dialog state factors. Internal factors are those
for forming the dialog state space, e.g., star and price in
hotel booking. External factors are those that are not mod-
eled in dialog states but can be potentially useful. For in-
stance, people prefer local hotels in bad weather, where
weather is external. We use first-order logic for the repre-
sentation of the dependencies between internal factors, and
use Markov logic network (MLN) (Richardson and Domin-
gos 2006) algorithms to learn the rules’ weights for infer-
ence purposes. We use Answer set programming (Brewka,
Eiter, and Truszczyński 2011) for the representation of and
reasoning with human knowledge about external factors.

We have extensively conducted experiments using a real-
istic dialog platform PyDial (Ultes et al. 2017). Compared
with baselines from the literature and ablations of our own
approach, we observe significant improvements in dialog
learning efficiency and policy quality.

Background
In this section, we briefly introduce the three building blocks
of this work, namely dialog management with Deep rein-
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forcement learning (DRL), Markov logic network (MLN),
and Answer set programming (ASP).

Dialog Management with DRL
Dialog management can be modeled as a Markov decision
process (MDP) (Young et al. 2013), with a continuous belief
state space S , a finite set of action A and a reward function
R. A state s in S indicates the dialog status, including the
distributions of slots, previous actions of the agent and the
user and other necessary information. An action a in A is
decided by a dialog policy π : S → A, and then executed by
the agent. After the execution of some decided action a, the
agent is rewarded or penalized according to the reward func-
tion R : S ×A → R. The objective of dialog management
is to find an optimal policy π∗ that maximizes the cumulative
reward in dialogs, Rt =

∑∞
i=t γ

i−tri, where γ is a discount
factor.

The cumulative reward can be approximated by a
DQN (Mnih et al. 2015), which is a model-free reinforce-
ment learning method. A neural network with parameters θ
is used to approximate the Q-function (expected cumulative
reward), Q∗(s, a) = Q(s, a; θ). The action is decided in a
greedy way, either πQ(a) = argmaxa∈AQ(s, a; θ), or be-
ing a random exploration in probability ε.

In this work, we use deep reinforcement learning such as
DQN as the infrastructure of dialog policy learning. Learn-
ing dialog policies interactively via DRL has emerged as a
popular approach (Lipton et al. 2016; Dhingra et al. 2017;
Zhao and Eskenazi 2016; Wu et al. 2019; Lu, Zhang, and
Chen 2019). Compared to rule-based methods, DQN and
other DRL algorithms do not require lots of domain-specific
handcrafting.

Markov Logic Network
A Markov logic network (MLN) (Richardson and Domingos
2006) is a probabilistic logic which applies the ideas of a
Markov network to first-order logic. MLN supports learning
and inference under uncertainty to find the most likely dis-
tribution of the system. Given a set of first-order logic (FOL)
formulas as a knowledge base, MLN gives the distributions
of the groundings of each predicates. The distributions are
calculated according to the weights of the FOL formulas,

Pr(X = x) =
1

Z
exp(

∑
i

wifi(x)) (1)

where Z is known the partition function, thewi is the weight
of formula i, and fi is the binary feature function. The
weights and features can be learned from a given relational
database by iteratively optimizing a pseudo-likelihood mea-
sure.

We use MLN for the specification of weighted rules about
the factors in dialog states. The rule weights as prior knowl-
edge are learned from historical data, and then used during
the dialog policy learning. Some recent work (Zhang et al.
2020) combines MLN with graph neural networks (GNN),
to improve MLN’s inference efficiency. But as prior knowl-
edge in dialog policy learning, MLN should not contain a

large amount of rules and entities. So we just use MLN in-
ference directly instead of deploying GNN as the inference
network.

Answer Set Programming
Answer set programming (ASP) is a form of declarative pro-
gramming (Brewka, Eiter, and Truszczyński 2011) based on
stable model (answer set) semantics for logic programming
(Gelfond and Lifschitz 1988), a nonmonotonic reasoning
paradigm in knowledge representation. In ASP, search prob-
lems are reduced to computing stable models by answer set
solvers, e.g., Clingo (Gebser et al. 2014). Syntactically, an
ASP program consists of a set of rules of following form,

h1 or . . . or hk ← b1, . . . , bm, not bm+1, . . . , not bn. (2)

where hi, bi are literals, and not is negation as failure (de-
fault negation), which represents that there is no evidence
that some literal is true. A stable model or an answer set of
a logic program is defined as a fix point, namely, a set of
literals X is an answer set of a logic program Π if X is a
minimal model of the reduction program ΠX of Π w.r.t. X .

Traditionally, ASP reasons about discrete-valued symbols
and does not quantify uncertainty explicitly. But in some
works such as P-log (Baral, Gelfond, and Rushton 2009),
RIL (Zhang et al. 2019), NeurASP (Yang, Ishay, and Lee
2020) and DILOG (Zhou et al. 2020), the paradigm is ex-
tended to allow probability atoms, and integrated with sub-
symbolic approaches. In this paper, we just use ASP without
probabilities, to characterize and reason about some contex-
tual factors that are not modeled in dialog states. In gen-
eral, checking the existence of stable models is NP-hard, but
some heuristic algorithms and available solvers are capable
of solving large-scale problem instances in ASP efficiently.

Methodology
In this section, we propose a framework for dialog pol-
icy learning by reasoning with contextual knowledge. The
framework integrates knowledge representation and reason-
ing (KRR) and model-free RL, and is illustrated in Fig-
ure 1. The KRR part includes logical-probabilistic reason-
ing (MLN) and nonmonotonic reasoning (ASP). These two
components cooperate with deep reinforcement learning
(DRL) in dialogs.

In each dialog turn, DRL decides which system action to
execute. By executing the actions, the agent receives a big
reward in successful dialogs, and has a small cost in each
turn. Meanwhile, MLN and ASP components collect facts
about internal and external factors, and reason with them to
help DRL make better decisions. The use of MLN and ASP
for knowledge representation and reasoning is motivated by
two types of contextual knowledge in a dialog.

Internal and External Knowledge
In this paper, we consider knowledge about both internal
factors and external factors. Internal factors are those for
forming the dialog state space, and external factors are
those that are not modeled in dialog states but can be po-
tentially useful. For instance, the internal factors in a hotel
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Figure 1: Overview of the framework. The framework mainly consists of three components, namely, internal knowledge (MLN-
based), external knowledge (ASP-based) and dialog policy learning (DRL-based). The MLN-based probabilistic reasoner col-
lects facts about internal factors, and provides user preferences to DRL for system action generation. The ASP-based logical
reasoner collects facts about external factors, and reasons for potentially better service when the dialog terminates. Solid lines
indicate the data flow, and dashed lines represent the function calls after a dialog terminates.

booking domain may include price, star of the hotel, etc. The
external factors can be weather, current location of the user,
etc. In the rest of the paper, we refer to the knowledge about
the two kinds of factors as internal knowledge and external
knowledge, respectively.

As the uncertainty of the internal factors is quantified by
deep RL, it is natural to use logical-probabilistic reasoning
to represent the internal knowledge. We use Markov logic
network (MLN) to represent probabilistic knowledge such
as “95% rooms of 5-star hotels are expensive,” or “75%
users who order guest houses also require low prices.” Syn-
tactically, MLN is a collection of weighted first-order logi-
cal formulas. The weights of the formulas are learnable from
historical data.

We use ASP to represent and reason with external knowl-
edge, for instance, “it is a bad experience to travel in dis-
tance in a bad weather.” With that particular knowledge, the
agent should avoid booking a hotel or a restaurant in dis-
tance when the weather is bad, if the user’s original location
is available. Factors like weather and user’s location may
not be modeled in a dialog state, but are potentially useful.
As a nonmonotonic reasoning paradigm, ASP is good at rep-
resenting dynamic domains and characterizing default facts.
For example, the following ASP rule
suggest area(X)← weather(bad), user loc(X),

not insist area(Y ).
(3)

indicates that if the user’s original location is X and the
weather is bad, the agent should suggest some restaurant
in the same area X , unless the user insists to have dinner
in some area Y . The reasoning framework still works even
when the information about insist area is missing. As a so-
lution of the Frame Problem (McCarthy and Hayes 1981),
nonmonotonic reasoning such as ASP does not require mon-
itoring all predicates. However, if the rule is written in clas-
sical logic, to reason about suggest area, the assignment of

predicate insist area has to be known. We now formally in-
troduce the algorithm.

Algorithm Description
The main algorithm requires an internal knowledge base KI

(MLN-based) and an external knowledge base KE (ASP-
based), as illustrated in Algorithm 1, where I and E are in-
ternal and external factor sets, respectively. These two com-
ponents help DRL model, e.g. DQN, make better decisions
in dialog turns. The algorithm consists of the following two
steps.

1. Train the weights of the rules in KI with historical data
(Line 1).

2. Initialize and repeatedly train DQN in dialogs, with
trained KI and KE , until it converges (Lines 2-21).

The training process within one dialog is as follows. In
Lines 4-5, once a new dialog d is initialized, the dialog state
s of d is updated by MLN component KI . KI has already
learned the statistical user preferences from historical data,
and the knowledge is useful for characterizing the dialog
state. Notice that here (Line 5) Algorithm 2 is called with an
empty set of facts (F I = ∅), where F I will be augmented in
later steps during the dialog.

In Lines 7-11, in each turn of the dialog d, DQN selects
an action a for each dialog turn in ε-greedy way, and then
executes it. After the execution, the agent collects the user’s
feedback and the reward r, tracks the next state s′, stores
the tuple (s, a, s′, r) in experience replay, and updates dialog
state s ← s′. This process is the same as standard DQN-
based dialog systems.

In Lines 12-18, for each non-terminal dialog turn, the
agent collects facts about the internal and external factors,
FI and FE , respectively. The former is immediately used to
update dialog state s by MLN (Algorithm 2), and the lat-
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Algorithm 1: Dialog policy learning by reasoning with con-
textual knowledge

Require: Internal knowledge KI (MLN) , external knowl-
edge KE (ASP)

1: Train the rule weights of KI with historical data
2: Initialize DRL model with random weights and empty

replay
3: repeat
4: Initialize a new dialog d
5: Update dialog state s of d with KI . call

Algorithm 2
6: for each dialog turn in d do
7: Select an action a with DRL model
8: Execute a, and collect reward r
9: Collect user’s feedback, and track next state s′

10: Store tuple (s, a, s′, r) in replay buffer
11: Update dialog state s← s′

12: if s is not a terminal state then
13: Collect facts FE about E, and add into KE

14: Collect facts FI about I
15: Update s with KI and FI . call Algorithm 2
16: else
17: Reason with KE . call Algorithm 3
18: end if
19: end for
20: Update DRL model with samples from replay buffer
21: until Convergence

Algorithm 2: State update by MLN

Require: State s to update, internal knowledge KI , facts
FI about I

1: Let Iev = {i | i ∈ I, i occurs in FI} . set of evidence
factors

2: for i ∈ I\Iev do
3: update the state s by Ps

∼i ← δ(i,KI , FI)
4: end for
5: return s

ter is continually added into the ASP program for reasoning
purposes until the dialog terminates (Algorithm 3).

In the following, we introduce in detail the MLN and ASP
components.

State Update by MLN (Algorithm 2) The MLN compo-
nent consists of variable relations in form of first-order log-
ical (FOL) rules and the rule weights associated with them.
The rules in FOL characterize the dependencies of internal
factors. For instance, the postcode is decided by the address

address = x ⊃ postcode = y,

and the price of a hotel is related with its star and location,

star = x ∧ area = y ⊃ price = z.

The weight associated with each FOL rule indicates the
importance of the rule, and is learnable from historical data.
After pretraining, the weighted rules of MLN are used for in-
ternal knowledge inference. In each turn, MLN component

Algorithm 3: Reasoning by ASP

Require: External knowledge KE , database db
1: Compute the set AS of all answer sets of KE

2: Query whether answer sets in AS are satisfiable in db
3: Let ASst be the query result: ASst = {x |x ∈ AS,
∃entity ∈ db : entity |= x} . set of satisfiable answer
sets

4: if ASst is not empty then
5: Override agent’s service with ASst

6: end if

collects facts about internal factors from the state tracker,
and then infers with them to find out the user’s preferences.
The information about user preferences helps precisely char-
acterize the dialog state and generate better system actions.

The state update by pretrained internal knowledge is il-
lustrated in Algorithm 2. The MLN component uses KI and
collected facts FI about I to update the dialog state. The
facts in FI are also called evidence atoms for MLN. We call
those factors that are mentioned in FI evidence factors. The
set of all evidence factors is denoted by Iev ,

Iev = {i | i ∈ I, i occurs in FI}. (4)

With the facts FI , MLN infers about other internal factors
in I and updates dialog state s, with function δ in Line 3 of
Algorithm 2. Specifically, the function updates distribution
of i in s, Ps

∼i, according to FI and the weighted rules inKI .

Definition 1 Given an internal factor i ∈ I , a dialog state
s, pretrained internal knowledge KI , and evidence atoms
FI , the update function δ(i,KI , FI) updates i’s distribution
in s as follows,

Ps
∼i = δ(i,KI , FI) = P′∼i (5)

where for each possible value v for i, P′∼i(i = v) = Pr(i =
v|FI ;KI) and Pr(i = v|FI ;KI) is the conditional proba-
bility inferred by the weighted rules inKI , with the evidence
atoms in FI .

In each non-terminal turn of a dialog d, the MLN com-
ponent uses newly collected evidence atoms to update the
dialog state.

Reasoning by ASP (Algorithm 3) The ASP component
consists of commonsense knowledge and the facts about ex-
ternal factors. The commonsense knowledge is in form of
logic program rules. The facts are collected from user feed-
back in each dialog turn, and are incrementally added into
the logic program. When the dialog is terminated, ASP post-
processes and overrides agent’s service by reasoning with
the commonsense rules and collected facts.

The reasoning by ASP is illustrated in Algorithm 3. With
external knowledgeKE , in which the facts FE have been in-
tegrated, ASP computes all answer sets of the logic program
when dialog terminates. Then the ASP component queries to
the database to check whether there is any satisfiable answer
set. Let ASst be the set of all satisfiable answer sets,

ASst = {x |x ∈ AS, ∃entity ∈ db : entity |= x} (6)
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If ASst is empty, the agent’s service can not be improved
anymore. In this case, the ASP component does nothing after
reasoning. If ASst is not empty, ASP overrides the agent’s
origin service with these satisfiable answer sets. It is worth
mentioning that, to avoid conflicts with internal knowledge,
those internal factors mentioned by FOL rules in KI do not
appear in the heads of ASP rules in KE .

To sum up, Algorithm 1 learns the dialog policy interac-
tively, uses the internal knowledge learned by Algorithm 2
to update states, and uses the external knowledge reasoned
by Algorithm 3 to make better decisions.

Algorithm Instantiation (Hotel Booking)
In this subsection, we use a hotel booking domain to demon-
strate how the reasoning and learning system works. Con-
sider the following example.
• Internal factors:

I = {star, price, kind, area, parking}

• External factors: E = {weather, user loc}
• KI contains first-order logical rules

star = 3 ∧ kind = hotel ⊃ price = expensive : p1
star = 4 ∧ kind = hotel ⊃ price = expensive : p2

(7)
where p1 and p2 are the pretrained weights of the two
rules, respectively.
• KE contains following rules,
suggest area(X)← weather(bad), user loc(X).

suggest parking(true)← weather(bad).
(8)

The agent is supposed to book a hotel according to the
user goal and the contextual knowledge. The above inter-
nal knowledge (7) indicates that the rooms of 3-star and
4-star hotels are usually expensive. If some facts about in-
ternal factors, such as star and room kind, are collected,
they can be used to infer more facts. Formally, a fact about
a factor i is a grounding truth of form i = w such that
s |= Pr(i = w) = 1, where |= is semantic satisfaction. For
instance, when a user says that he/she wants to book a 4-star
hotel room, the fact of star=4 is given to MLN as an evi-
dence atom. Using the atom and the knowledge (KI ), MLN
then infers that the room is expensive in probability 0.9. So
the distribution of factor price in dialog state is updated.

The external knowledge (8) states that, if the current
weather is bad, the agent better books a hotel with a parking
lot in the the user’s area. Suppose that in non-terminal dia-
log turns, ASP collects the following facts: 1) the weather
is bad, 2) the user is in the north area. When the dialog ter-
minates, the agent originally decides to book a room for the
user in hotel h, which is 4-star hotel in the center area with-
out parking lot. Now, by reasoning with KE and the above
facts, the ASP component gets one answer set

{suggest area(north), suggest parking(true),

weather(bad), user loc(north)} (9)

which concludes that the agent should change the booking
area from center to north, and a parking lot is needed. The

service is then updated to booking a room in some 4-star
hotel in the north area with a parking lot. If such a hotel is
available in the database, say h′, it then overrides previously
suggested hotel h. With the new service of booking a room
of h′, ASP successfully prevents the user from traveling in
distance or walking in bad weather.

The above framework and algorithms learn from histori-
cal user data and leverage commonsense knowledge reason-
ing. Our experiments show that the learned information and
knowledge are helpful for dialog policy learning.

Experiments
External knowledge is introduced in the experiments to ex-
amine how contextual knowledge impacts the dialog system
and revises final recommendation. Hence, our success crite-
ria are different from those used in dialog systems that do
not reason about external factors. In particular, a dialog is
deemed successful, only if all goal constraints are satisfied
in the end of the dialog, and the query is fulfilled in such
a way that the fulfillment complies with all external factors
in the scenario. For instance, when a user is looking for a
3-star guesthouse room, and the weather and the traffic are
bad, then it will be a successful dialog, only if the agent rec-
ommends a 3-star guesthouse room, where the user does not
need to travel a long distance in bad weather or heavy traffic.

Hypotheses
Experiments have been extensively conducted to evaluate
the following three hypotheses:

1. Reasoning with contextual knowledge improves the
learning efficiency and the quality of computed action
policies within the dialog context.

2. When more data are provided for training MLN, the
learning efficiency of our dialog agent is further im-
proved.

3. Our approach is robust enough for policy learning to both
incomplete and inaccurate knowledge bases.

Next, we describe our experiment setup, and then present
the experimental results collected from a realistic dialog
simulation platform.

Experiment Setup
In the experiments, we use a revised version of a hotel book-
ing domain in PyDial (Casanueva et al. 2017), where the
main slots, i.e., internal factors, are the same with I in the
previous section.Besides the revised evaluation criteria, we
also modified the database to evaluate the reasoning capa-
bilities of our developed approach. We enlarged the original
database, so that the user goals would not be frequently re-
jected due to the lack of diverse data entities. More details
are available in the supplementary appendix and code1.

In the experiment, we used several popular dialog strat-
egy algorithms as baselines, including A2C (Fatemi et al.
2016), DQN, ACER (Weisz et al. 2018) and BBQN (Lipton
et al. 2018). The environment parameters are selected via a

1https://github.com/ResearchGroupHdZhang/DPL AAAI22
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Figure 2: Performance comparison. The subgraphs (a)-(d) show the results of our approach deployed on different popular
dialog policy algorithms (A2C, DQN, ACER and BBQN). Each subgraph shows our approach (DRL+MLN+ASP), its ablation
(DRL+MLN), and the standard DRL-based dialog agent. The subfigure (e) shows policy learning with different sizes of training
data for MLN. The subfigure (f) compares different levels of external knowledge. The RL algorithm used in (e) and (f) is A2C.

validation set. In each run, we use 40 batches and each of
them contains 100 dialogs. After training with each batch,
the policy is evaluated using 100 dialogs. Each data point is
an average over multiple runs, where we also evaluate the
standard deviation.

For internal knowledge, we utilize Alchemy (Kok et al.
2005) to train a MLN to represent the probabilistic relation-
ships among slots. The trained MLN is then used to update
the marginal distributions of the internal factors, once some
facts about them are collected from dialogs.

For external knowledge, we use Clingo (Gebser et al.
2014) to ground and solve our ASP logic programs. The
computed answer sets are used to finalize the service when
a dialog terminates. We consider three types of external
knowledge in the experiments, 1) Perfect knowledge: com-
plete and precise knowledge about all external factors, 2) In-
complete knowledge: precise knowledge about only a part
of the external factors, 3) Inaccurate knowledge: knowl-
edge about all external factors, but with errors.

Experimental Results
The first experiment demonstrates how MLN and ASP com-
ponents improve the dialog agent’s learning rate and policy
quality, as shown in Figure 2 (a)-(d). Our approach outper-
forms its ablation (DRL+MLN) in learning efficiency and
policy quality. The ASP component is useful for reasoning
about the influence of external factors, which potentially im-
proves the service quality. The ablation of our approach per-

forms better than the standard DRL-based dialog agent. The
MLN component provides contextual knowledge in the form
of conditional distributions given real-time observations that
facilitate our agent to predict user preferences. The experi-
mental result supports the first hypothesis that both internal
and external knowledge are useful for dialog policy learning.

The second experiment tests on three MLNs, trained with
100, 500 and 2000 data samples, respectively. As shown
in Figure 2 (e), the network with larger training data size
performs better. When MLN is trained with more data, the
dialog agent’s learning rate is improved more significantly.
Larger training sets enable the agent to learn the underlying
distributions and dependencies of the slots in a more precise
way, and the learned parameters further better support the
agent to assess dialog states and user preferences. The result
supports our second hypothesis that larger training data for
MLN further improves the dialog policy learning efficiency.

Thirdly, it is worth discussing the robustness to differ-
ent levels of commonsense knowledge. As shown in Figure
2 (f), the incomplete and inaccurate knowledge bases still
improve the dialog agent’s performance in comparison to
the approach without external knowledge (DRL+MLN), al-
though their performances are not as good as perfect knowl-
edge. Incomplete knowledge ignores some of the external
factors, and inaccurate knowledge contains some error in-
formation, for instance, wrong topological information of a
city. Both of them can potentially lead to failures or many
turns in dialog. Overall, our method shows the robustness of
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Abstract Dialog

Turn 0 hello() hello()

Turn 1
request(kind)

inform(kind='guesthouse')

Turn 2
request(star)

inform(star='4')

Turn 3
request(area)

infrom(area='dontcare')

Turn 4

inform(kind='guesthouse',price='mod
erate',name='limehouse',

star='4',area='north')
request(phone)

Turn 5
inform(name='limehouse',

phone='01223300552')
request(addr)

Turn 6
inform(name='limehouse',
addr='78-80 milton road')

bye()

Natural Language Dialog

Turn 0 Hello! Hello!

Turn 1 What kind of place you want to stay in?

I’m looking for some guest house.

Turn 2 What’s the star rating you are looking for?

I’m looking for 4-star places to stay.

Turn 3 What part of the town do you have in mind?

I don’t have any preference.

Turn 4
“Limehouse” is a moderate-priced guest 

house with a 4-star rating located in North.

What’s the phone number?

Turn 5
Limehouse’s phone number is 

01223300552.
What is the address?

Turn 6
The address of Limehouse is 78-80 milton 

road.
Bye!

MLN 
Inference

Pr(price | kind='guesthouse',     
                star='4')

price='cheap' 0.095

price='moderate' 0.624
price='expensive' 0.214

price='dontcare' 0.067

DQN

UserAgent

Figure 3: A sample dialog. The left part shows a successful dialog in abstract form, and the corresponding dialog in natural
language are in the right part. The middle part illustrates how contextual knowledge is used to help the agent predict user
preferences according to current observation.

our dialog policy learning approach given either incomplete
or inaccurate knowledge. More training dialogs are needed
for learning with imperfect contextual knowledge. Hence,
the result supports our third hypothesis that our approach is
robust to both incomplete and inaccurate knowledge for pol-
icy learning.

Illustrative Trial
Lastly, we demonstrate a sample dialog between the user and
the trained agent by our approach. Figure 3 shows that how
contextual knowledge is useful for the agent to better pre-
dict user preferences with observation. Once some evidence
facts about kind and star are obtained in Turns 1 and 2 re-
spectively, the agent successfully predicts user’s preference
on price in Turn 4 by suggesting a proper hotel that satisfies
user’s requirements without explicitly querying more infor-
mation.

The reasoning by the ASP component follows the dialog
turns in the figure. The ASP component utilizes collected
facts about external factors, such as user loc, traffic and
weather, to reason for potentially better suggestion.

With perfect knowledge, denoted by KI , ASP compo-
nent gives the following possible suggestions according to
the answer sets of the logic program,

update area(south). update area(west). (10)

The ASP component simply samples one of them as the new
suggestion, i.e., updating the area of the hotel to be south
or west. With incomplete knowledge, denoted by K ′I , the
ASP component gives result (10) that is exactly the same as
that of KI , since the missing logic rule is not activated un-
der F . If weather in F is changed to bad, KI will remove
the suggestion update area(south) from (10), while K ′I
will not suggest any area update. With inaccurate knowl-
edge, denoted by K ′′I , the ASP component gives the sugges-

tion update area(west), which is one of the options in (10)
given by KI . See more details in the appendix.

Conclusions and Future Work

In this paper, we integrate two knowledge representation
and reasoning (KRR) paradigms into the deep reinforcement
learning (RL), as applied to dialog policy learning problems.
In particular, we used Answer set programming, a form
of non-monotonic KRR, for default reasoning, and Markov
logic network, a form of logical-probabilistic KRR, for
probabilistic reasoning. Results collected using a realistic
dialog simulation platform showed that the KRR paradigms
can significantly improve the agents’ performance in dialog
policy learning. This is the very first work that bridges the
gap between KRR and RL within the dialog policy learning
context.

The communities of KRR and RL are still largely iso-
lated due to their fundamentally different representations.
We show a novel way of integrating the two, as applied
to dialog systems. There are a number of ways to further
make progress in this line of research. We plan to investi-
gate the possibilities of applying our approach to continuous
domains, such as robot control, where the challenge will be
the discrete-continuous gap between the state spaces of KRR
and RL. Also, the MLN and ASP components of this pa-
per rely on human knowledge (though MLN can learn from
data), and we are interested in exploring ways of acquiring
such knowledge from human-agent interactions, where di-
alog can be one possible way of realizing it. While experi-
menting with real humans are challenging (this is particular
true under the pandemic), we would like to apply our ap-
proach to learning from real conversations.
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