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Abstract

Speech enhancement aims at recovering a clean speech from
a noisy input, which can be classified into single speech en-
hancement and personalized speech enhancement. Personal-
ized speech enhancement usually utilizes the speaker iden-
tity extracted from the noisy speech itself (or a clean refer-
ence speech) as a global embedding to guide the enhancement
process. Different from them, we observe that the speeches
of the same speaker are correlated in terms of frame-level
short-time Fourier Transform (STFT) spectrogram. There-
fore, we propose reference-based speech enhancement via
a feature alignment and fusion network (FAF-Net). Given a
noisy speech and a clean reference speech spoken by the same
speaker, we first propose a feature-level alignment strategy
to warp the clean reference with the noisy speech in frame
level. Then, we fuse the reference feature with the noisy fea-
ture via a similarity-based fusion strategy. Finally, the fused
features are skipped connected to the decoder, which gener-
ates the enhanced results. Experimental results demonstrate
that the performance of the proposed FAF-Net is close to the
state-of-the-art speech enhancement methods on both DNS
and Voice Bank+DEMAND datasets. Our code is available at
https://github.com/HieDean/FAF-Net.

Introduction
Collected speeches in the wild usually contain much back-
ground noise, which severely degrades the perceptual qual-
ity and intelligibility of speech. Therefore, speech enhance-
ment, which aims to recover clean speech from a noise-
corrupted speech, has attracted much attention and achieved
promising results with the widely used deep-learning (DL)
strategy. In this work, we focus on single-channel speech en-
hancement. Without specification, all the speech mentioned
in this work is single-channel speech.

The DL based speech enhancement can be classified into
time domain and time-frequency (T-F) domain based meth-
ods. Time domain based methods usually utilize a neural
network to learn the mapping relationship between the one-
dimensional (1D) waveform of noisy and clean speeches
(Pascual, Bonafonte, and Serra 2017; Rethage, Pons, and
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(a) Reference Speech
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Figure 1: STFTs Visualization of reference speech (a), noisy
speech (b), clean speech (c), and aligned speech (d) using
the log-spectra. The aligned speech is reconstructed by ag-
gregating the matched frames from (a) using the matching
index obtained by MFCC patch matching. However, there is
obvious time discontinuity of the aligned speech, which is
highlighted by a green circle.

Serra 2018; Koyama et al. 2020). Due to the lack of ap-
parent geometric structure for the 1D signal, the time do-
main based methods are inferior to the T-F domain based
methods, which operate in the 2D T-F spectrogram. The T-F
domain based methods usually predict a mask to filter the
noisy T-F spectrogram, generating a clean T-F spectrogram
(Hu and Wang 2001; Srinivasan, Roman, and Wang 2006;
Williamson, Wang, and Wang 2015). Although these meth-
ods have greatly improved the speech quality, the recovered
speech still suffers from information lost.

To further improve the enhancement results, some meth-
ods introduce semantic information to assist speech en-
hancement (Ephrat et al. 2018; Hou et al. 2018). For exam-
ple, the speaker identity (ID) is used in speech enhancement
(Chuang et al. 2019; Giri et al. 2021; Shon, Tang, and Glass
2019) and separation tasks (Wang et al. 2018; Mun et al.
2020; Giri et al. 2021), proving that speaker prior derived
from the noisy speech or another clean speech spoken by
the same ID (i.e., reference speech) is beneficial for the per-
sonalized speech enhancement and separation. However, the
speaker ID is generally embedded into a global vector, and
inserted into the reconstruction network for the enhancement
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process. We observe that the frame-level phoneme sets of the
reference speech and the target speech are shared, indicat-
ing that the reference and target speeches are correlated in
frame-level. Meanwhile, the counterpart methods in image
restoration (such as image denoising and super-resolution),
usually utilize correlated information from the reference im-
age in pixel (patch) level other than global feature embed-
ding (Yue et al. 2013; Zhang et al. 2019; Yang et al. 2020;
Yue et al. 2019), and have achieved significant gains com-
pared with single image based restoration.

Based on the above observations, we propose a reference
based speech enhancement (RefSE) method by exploring
the local correlations between the noisy speech and refer-
ence speech. We would like to point out that this task is
more challenging than that in reference based image restora-
tion. For example, in reference based image super-resolution
(RefSR), the reference can be directly aligned with the input
image by pixel (patch) level matching. Directly matching the
reference speech and noisy speech either on time domain or
time-frequency domain, and aggregating the matched sig-
nals from the reference does not work well since this will de-
stroy the inherent continuity of speech in time, as shown in
Fig. 1 (d). Therefore, we propose a feature-level alignment
strategy. Specifically, we first match the Mel Frequency Cep-
strum Coefficient (MFCC) of the noisy speech and clean ref-
erence speech using several consecutive frames (termed as
MFCC Patch, illustrated by the red box in Fig. 2 (a)). Then,
we warp the convolutional neural network (CNN) features
of reference speech with that of the noisy speech accord-
ing to the matching index obtained in the MFCC matching.
The warped reference feature and noisy feature are fused to-
gether via soft attention and channel attention based fusion
strategy. Finally, the fused features are sent to the decoder
to generate the enhanced speech. Our main contributions are
summarized as follows.

• To our knowledge, we propose the first reference based
speech enhancement (RefSE) method by exploring local
correlations between noisy and clean reference speeches.
To keep the time continuity of speech signals, we propose
to first perform noisy-reference matching with MFCC
patches and then warp the CNN feature of reference ac-
cording to the matching index. This greatly improves the
effect of reference speech.

• Since the reference features have different similarities
with the input noisy feature and they contribute differ-
ently to the final enhancement result, we propose a soft
attention and channel attention mechanism to fuse the
features of reference and noisy speech together.

• Experimental results on two public datasets, i.e. Voice
Bank + DEMAND and DNS, demonstrate the superiority
of the proposed scheme. In addition, the proposed feature
alignment and fusion strategy for reference outperforms
global embedding by 0.22 in terms of PESQ.

Related Work
In this section, we briefly review related works in DL
based single speech enhancement (“single” means the noisy

speech is the only input), semantics guided speech process-
ing, and reference based image restoration.

DL-Based Single Speech Enhancement
According to the processed signal domain, DL-based single
speech enhancement methods can be classified into time do-
main based and T-F domain based.

Time domain. The time domain based methods usually
directly map the noisy 1D waveform to a clean 1D waveform
(Pascual, Bonafonte, and Serra 2017; Defossez, Synnaeve,
and Adi 2020). A popular strategy is utilizing the encoder-
decoder or UNet structure (Defossez, Synnaeve, and Adi
2020). The encoder encodes the noisy speech into feature
domain, and the decoder decodes the enhanced features to
time domain. The enhancement module is inserted between
the encoder and decoder. Long-short term memory (LSTM)
and temporal convolutional networks, which can explore the
temporal correlations, are typical enhancement modules. Al-
though these methods are effective for speech enhancement,
the T-F domain based methods demonstrate that the noise
patterns are more distinguishable in T-F domain than in time
domain.

T-F domain. The T-F domain based methods usually
predict a mask, to model the relationship between the tar-
geted speech and noisy speech. The ideal binary mask (Hu
and Wang 2001) and ideal ratio mask (Srinivasan, Roman,
and Wang 2006) can only model the magnitude relation-
ship between noisy and estimated speeches. Ignoring the
phase information limits the enhancement upper bound of
these methods. Hereafter, complex ideal ratio mask (cIRM)
(Williamson, Wang, and Wang 2015), is proposed to model
both the magnitude and phase relationships. Similarly, to
take phase into account, (Yin et al. 2020) proposed a two-
stream structure with mutual communication to extract fea-
tures from both amplitude and phase spectrum. The work
in (Choi et al. 2018) makes the network structure be aware
of the phase information by extending the real-valued con-
volution to complex-valued convolution. Hereafter, based
on (Choi et al. 2018), Hu et al. (Hu et al. 2020) designed
a complex-valued LSTM to explore temporal correlations
for phase aware speech enhancement. In this work, we also
adopt a phase aware complex-valued encoder-decoder struc-
ture and learn a phase aware complexed ratio mask (Hu et al.
2020) for STFT reconstruction.

Semantics Guided Speech Processing
To further improve the performance of deep learning-based
single speech enhancement, some methods propose to incor-
porate semantic information to assist the enhancement pro-
cess. The work in (Hou et al. 2018) introduces mouth re-
gion visual features to assist speech enhancement and veri-
fies that there exists strong correlations between speech con-
tent and lip shapes. However, the visual features contain too
much redundant information. Therefore, some work utilizes
speaker identity information to help speech enhancement.
Chuang et al. (Chuang et al. 2019) proposed to first train
a speaker embedder network to generate embedding vector
for a given speaker, and then utilize the embedding to en-
hance the target speaker. Liu et al. (Liu et al. 2021) pro-
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(a) (b)
Figure 2: Framework of the proposed feature alignment and fusion network (FAF-Net) for RefSE. For brevity, we omit the
feature map visualization for the imaginary part.

posed to utilize phoneme identities to help speech enhance-
ment. Specifically, they first learn distribution modulation
parameters from the phoneme classification vector of the
noisy input, and then the distribution parameters are used
to modulate the speech enhancement features. The work
in (Shon, Tang, and Glass 2019) proposed new loss func-
tions by using verification features for audio speaker verifi-
cation. However, all the identity features are extracted from
the noisy input itself without introducing additional refer-
ence speeches. Meanwhile, for speech separation, i.e., sepa-
rating the voice of a target speaker from multi-speaker sig-
nals, some works (Wang et al. 2018; Mun et al. 2020) intro-
duce reference speeches (spoken by the same speaker as that
of the target speech) in the form of global embeddings since
the global embeddings of target speech and reference speech
are correlated. Recently, Giri et al. (Giri et al. 2021) pro-
posed to utilize the speaker identity embeddings extracted
from a clean reference for both speech separation and en-
hancement. However, there is still no work introducing ref-
erence speeches for speech enhancement by exploring local
correlations. We observe that the frame-level phoneme sets
of target speech and reference speech are shared, which in-
spires us to explore reference based speech enhancement by
exploring frame-level correlations.

Reference-Based Image Restoration
Instead of using references in global level as in speech sep-
aration (enhancement), we observe that the reference-based
image restoration (which utilizes high quality reference im-
age to assist the restoration of degraded image) usually uti-
lizes the reference image in patch-level, and have achieved
outstanding results in RefSR (Yue et al. 2013; Zhang et al.
2019; Yang et al. 2020) and Ref-denoising (Yue et al. 2015,
2019). For example, the works in (Yue et al. 2013, 2015)
search similar patches in pixel domain from the high qual-

ity reference image, and utilize the similar reference patch
to help restoration of the degraded query patch. With the
development of deep learning, the works in (Zhang et al.
2019; Yang et al. 2020; Yan et al. 2020) search for similar
patches in CNN feature domain and the feature extraction
network can be set to a fixed benchmark classification net-
work, such as VGG or ResNet. Inspired by these works, we
propose to explore the correlations between noisy and refer-
ence speeches in MFCC patch level. Specifically, we search
similar MFCC patches from the reference with the noisy
MFCC patch as query, and then warp the deep features of
the reference STFT spectrogram according to the matching
index.

Approach
Overview
Suppose X ∈ RT1×F×2, R ∈ RT2×F×2 are the complex-
valued STFT spectrograms of the noisy speech and its corre-
sponding clean reference speech, we aim to learn a mapping
function g to estimate Ŷ from its noisy version X with the
help of R, i.e.,

Ŷ = g(X,R). (1)

T1 (T2) is the number of frames and F is the number of fre-
quency bins. As shown in Fig. 2, there are three modules
in our framework. First, given a noisy speech, we search its
matched reference speech using MFCC patch, and then align
the reference feature with the noisy feature according to the
matching index. Then, we utilize a fusion block to fuse the
reference and noisy features together. Finally, these fused
features are sent to the decoder for the reconstruction of tar-
get STFT spectrogram. In the following, we give details for
the three modules.

11650



Reference Matching and Feature Alignment
In this work, the reference speeches are clean utterances spo-
ken by the same person as that of the noisy input but having
different contents. For each noisy speech clip, we randomly
select several clean speech clips spoken by the same speaker
and concatenate them along the time axis to construct a long
reference clip of n seconds (in our experiments, n is set to
15). The reference clip usually does not contain the same
words as that in the noisy clip but their frame-level phoneme
sets are shared. This inspires us to utilize frame-level corre-
lations between the reference and noisy speech to assist the
enhancement process. The key problem in this task is how
to align the reference frame with the noisy query frame, and
this includes two steps: matching and warping.

Patch-level Matching. We observe that the MFCC fea-
tures of speeches are simple and perform well in phoneme
classification (Liu et al. 2021), speech recognition and
speaker verification, which demonstrates that MFCC fea-
tures are representative. Therefore, we propose to utilize
MFCC features to search for similar speech frames. We de-
note the MFCC features of the noisy input and the reference
speech as X ∈ RT1×F ′

and R ∈ RT2×F ′
, where T1(T2) is

the number of frames (the same as that in X and R) and F ′

is the number of feature bins. For each frame Xt ∈ R1×F ′
,

we aim to find its most similar frame fromR. Since utilizing
single frame for matching will ignore the temporal continu-
ity of the frame sequence, we propose a patch based match-
ing strategy. Specifically, three consecutive frames construct
a patch, and the target patch in X searches its most similar
patch in R via calculating the cosine similarity in a sliding
manner. This process can be formulated as

dt,i =< ψ(XPt), ψ(RPti
) >, t ∈ [2, T1− 1], i ∈ [2, T2− 1]

(2)
where ψ(·) represents normalization of the vector, < ·, · >
represents the inner product, and XPt

is the concatenation of
Xt−1,Xt and Xt+1 along the feature dimension. After cal-
culating the similarities, for each patch XPt

, we choose its
top k similar patches with the highest similarity in R as the
matched reference patches. The corresponding matching in-
dex is stored as tx → {tr1, tr2, ...trk}. Fig. 2 (a) illustrates the
matching process with k = 2.

Frame-level Warping. A straightforward way for warp-
ing is utilizing the MFCC matching index to rearrange the
reference frames in R. Since we have searched k similar
frames from R for each target frame in X , we can build
k new reference STFT spectrograms R̂1, R̂2, ..., R̂k by ex-
tracting frames from R, where R̂i ∈ RT1×F×2 is the ith
similar reference of X . However, this will severely destroy
the time continuity since neighboring frames in R̂i are se-
lected from different time positions in R, as shown in Fig. 1
(d). To solve this problem, we propose a convolutional fea-
ture alignment strategy. Our speech enhancement network
is a complex encoder-decoder structure. By aligning the en-
coder features of R with those of X and fusing them to-
gether, we can then take advantage of these fused features
for decoder based reconstruction. As shown in Fig. 2 (b),
both the original long reference R and the noisy input X

Figure 3: Detailed network structure for the fusion block.
first go through the same encoder module, which is con-
structed by three Conv blocks. Strided convolution is used,
where the stride along the frequency (time) dimension is
2 (1). In this way, we obtain three level Conv features for
X and R, which are denoted as Fxi ∈ RT1×Fi×Ci×2 and
Fri ∈ RT2×Fi×Ci×2, where i is the level index. Then, we
warp Fri with Fxi according to the MFCC matching in-
dex, generating aligned reference feature maps F̂rji , where
j = {1, 2, ..., k} is the similarity index. Although neigh-
boring frames in F̂rji are still selected from different posi-
tions of Fri , each frame in Fri is generated by convolution
with time-continuous inputs. Therefore, each frame in F̂rji
perceives continuous speech frames. In other words, “fea-
ture extraction + feature alignment” is more reasonable than
“spectrogram alignment + feature extraction” strategy.

Feature Fusion Block
Since the aligned reference features have different similari-
ties to the target speech, we propose to fuse them together
via a soft attention based weighting strategy and a chan-
nel attention mechanism. Fig. 3 illustrates the fusion process
for k = 2. We first calculate the amplitude of the complex
aligned reference feature F̂rji and noisy feature Fxi , gen-
erating F̄rji = |F̂rji | ∈ RT1×Fi×Ci and F̄xi = |Fxi | ∈
RT1×Fi×Ci . Then, we reshape the tth frame in F̄xi into a
vector of size 1×FiCi and the tth frame in F̄rji is reshaped
into a vector of size FiCi×1, which are denoted as F̄x(i,t) and
F̄rj(i,t), respectively. Then, we calculate the cosine similarity
between the two vectors, generating a weighting coefficients
αjt , which can be formulated as

αjt =< ψ(F̄x(i,t)), ψ(F̄rj(i,t)) > . (3)

This process is repeated for all the frames, and finally we
obtain k vectors, i.e., α1,α2, ...,αk. Then, we normalize
these coefficients with the same frame number (highlighted
by red box in Fig. 3) via softmax, generating normalized co-
efficients α̂1, α̂2, ..., α̂k. Then, we obtain the weighted ref-
erence feature F̃rj(i,t) for the tth frame via

F̃rj(i,t) = F̂rj(i,t) · α̂
j
t , j = {1, 2, ..., k}. (4)

To reduce the number of channels, the k weighted reference
features are fused together via a convolution layer, followed
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by concatenation with the noisy feature along the channel
dimension, resulting a feature map of size T1×Fi×2Ci×2.
Finally, we utilize a channel attention block (Hu, Shen, and
Sun 2018) to give different weights to different channels,
and then these features are fused into a new feature, denoted
as Fci , which has the same size as that of Fxi .

Decoder Module
The fused features at different levels are all sent to the de-
coder module via skip connection. Note that the features at
the bottom level, i.e., Fc3 , further go thorough four residual
blocks to enhance the fused features. The residual block is
constructed by two convolutional layers with a short con-
nection. The decoder module is symmetrical with the en-
coder module. It contains three deconvolution blocks, which
includes deconvolution+BN+LeakyRelu layers, and the last
layer outputs a complex mask to recover the enhanced STFT
spectrogram directly. Similar to the encoder, the deconvo-
lution layer only performs upsampling along the frequency
dimension and the time dimension is invariant. Note that, to
enlarge the receptive field along the time-dimension, all the
(de)convolution layers in the Conv Block and Deconv Block
are dilated convolution with dilation rate (sF , sT ), which
are setting to (1,1), (1,2), and (1,4) from top to bottom lay-
ers, respectively. The filter size hF ×hT is set to 7×5, 6×5,
and 6× 5, respectively, where hF (hT ) is the size along the
frequency (time) dimension.

We utilize the phone-fortified perceptual loss (PFPL) pro-
posed in (Hsieh et al. 2021), which is beneficial for percep-
tual evaluation, as our loss function. It is formulated as

ŷ = ISTFT(Xrea ·Mrea + jXimg ·Mimg), (5)
L = ||y − ŷ||1 + supq∈QEµ[q(e)]− Ev[q(ê)], (6)

where Mrea and Mimg represent the real and imaginary
parts of the estimated complex mask M , “·” is element-
wise multiplication, and ISTFT represents the inverse STFT.
e = Φwav2vec(y) and ê = Φwav2vec(ŷ) are the features of the
clean speech y and recovered speech ŷ. µ and v are the den-
sities of e and v in the latent space. For more information,
please refer to (Hsieh et al. 2021).

Two-Stage Strategy
Considering that the presence of noise severely degrades the
MFCC matching precision, we further propose a two stage
based matching and fusion scheme, where the second stage
is used to improve the matching results with the first stage
enhanced result as query input, and consequently improve
the final enhancement results. We denote the enhancement
result obtained in the first stage as Ŷ 1. We utilize it as the
query input of the second stage MFCC patch matching, and
realign the reference features in Fri according to the second
stage matching index. For the feature fusion block, the soft
weighting coefficients are calculated between the features
of the new reference and Ŷ 1, and then the fused reference
features are concatenated with the features of the noisy input
and Ŷ 1. After going through the channel attention module,
we obtain the fused features. Finally, these fused features go
through the decoder module, which is the same as that in

the first stage, to reconstruct the second stage enhancement
result Ŷ 2.

Experiments
Datasets
Two benchmark datasets, i.e. DNS Challenge and Voice
Bank+DEMAND, are used in our experiments.

Voice Bank + DEMAND Although Voice Bank + DE-
MAND dataset (Valentini-Botinhao et al. 2016) is not quite
large, it is widely used in evaluating speech enhancement
methods. The clean speeches in this dataset are from the the
Voice Bank corpus (Veaux, Yamagishi, and King 2013) and
the noise clips are from Diverse Environments Multichannel
Acoustic Noise Database (DEMAND) (Thiemann, Ito, and
Vincent 2013). There are totally 30 speakers in the clean
speech: 28 are included in the training set and the other 2
are in the test set. For training, 40 different noise conditions
are mixed with the clean speech from training set, generating
11572 noisy-clean speech pairs. For testing, 20 noise condi-
tions are mixed with the clean speech from test set, generat-
ing 824 noisy-clean speech pairs. Neither speakers nor noise
conditions in the test set exist in the training set.

DNS Challenge The Interspeech 2020 DNS challenge
dataset (Reddy et al. 2020) is a large speech enhancement
dataset. The clean speech are collected from Librivox and
totally includes 500 hours utterances from 2150 speakers.
The noise clips are from Audioset and Freesound, including
60000 noise clips with 150 classes. Following (Zheng et al.
2020), we synthesize 500 hours noisy clips with SNR lev-
els of -5 dB, 0 dB, 5 dB, 10 dB and 15 dB for training. For
evaluation, we use another 150 noisy clips from the test set
without reverberation. The testing SNR levels are randomly
distributed in the range from 0 dB to 20 dB.

Training Details
The proposed method is implemented in Pytorch. The batch
size is set to 32 and an Adam optimizer is used. The fre-
quency bins Fi (i = 1, 2, 3) is set to 128, 64, and 32, re-
spectively. The channel number Ci (i = 1, 2, 3) is set to
32, 64, and 128, respectively. All audios are resampled to
16kHz. STFT is calculated using Hann window with a win-
dow length of 512 samples, and the hop length is 128 sam-
ples. The FFT size is also set to 512 samples. The MFCC
features are calculated with the same window length and hop
length. In this way, the MFCC features and STFT spectro-
grams are frame-level matched along the time dimension.
For VoiceBank-DEMAND, we train the first stage for 100
epochs and then we train the second stage for another 100
epochs with the first stage model fixed. The learning rate
is initially set to 1e-4, and reduced to 1e-5 after 80 epochs
for both stage training. Considering the training cost for two
stage model, for DNS, we only present its one stage result
which is generated by training for 50 epochs.

During training, we randomly select 1s noisy samples
as the target input and construct a corresponding 15s ref-
erence speech with different contents but from the same
speaker. Fortunately, Voice Bank+DEMAND includes mul-
tiple speakers and each speaker has multiple content-
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Methods PESQ-WB CSIG CBAK COVL
Baseline (w/o ref.) 2.89 4.90 3.22 3.48

Baseline-two stage (w/o ref.) 3.00 3.89 3.20 3.43
w/o Patch-level matching 2.97 4.15 3.28 3.56

w/o k neighbors 3.04 3.94 3.31 3.49
w/o Feature warping 3.06 4.05 3.29 3.56
w/o Soft weighting 3.06 4.20 3.32 3.63

Ours-one stage 3.15 4.13 3.39 3.65
Ours-two stage 3.19 4.13 3.38 3.66

Table 1: Ablation Study on Voice Bank + DEMAND dataset.

different speeches. For Voice Bank+DEMAND, there are
no overlapped contents in each noisy-reference pair. For
DNS dataset, since its clean samples are randomly selected
from Librivox, there may exist overlapped contents for some
noisy-reference pairs in the training set. During test, we
manually remove overlapped contents when constructing the
reference speech. Besides, DNS testset (without reverbera-
tion) does not include the speaker identity information, we
manually label the 150 clean speeches into 19 speakers.

Evaluation Metrics
We use the following metrics to evaluate the proposed
method. For all these metrics, higher values mean better re-
sults.

• PESQ (Rec 2005): Perceptual evaluation of speech qual-
ity, using the wide-band version recommended in ITU-
TP.862.2 (from -0.5 to 4.5).

• CSIG (Hu and Loizou 2007): Mean opinion score (MOS)
prediction of the signal distortion (from 1 to 5).

• CBAK (Hu and Loizou 2007): MOS prediction of the
intrusiveness of background noises (from 1 to 5).

• COVL (Hu and Loizou 2007): MOS prediction of the
overall speech quality (from 1 to 5).

• STOI (Taal et al. 2010): Short-Time Objective Intelligi-
bility.

Ablation Study
In this section, we evaluate the effectiveness of the proposed
matching, warping, and fusion strategies by replacing them
with other straightforward strategies respectively. Without
specific clarification, all the variants are evaluated based on
our one stage module. First, we give the results of our base-
line network, namely an encoder-decoder structure with skip
connections and channel attention module. There is no ref-
erence and fusion block in the baseline network. As shown
in Table 1, the baseline result is much worse than our full
model. Second, to evaluate the effectiveness of the proposed
MFCC patch based matching strategy, we replace it with a
single MFCC frame matching strategy, which will introduce
discontinuity in aligned feature and make precise matching
more difficult. It can be observed that the PESQ value for
this variant is 0.18 less than our one stage result. We also
evaluate the matching scheme by utilizing the first neighbor
as the reference instead of using k neighbors as references.
The result of this variant is also inferior to the one stage
result on three metrics. Third, to evaluate the feature warp-
ing strategy, we give the result of directly warping on the

Methods PESQ-WB CSIG CBAK COVL
Noisy 1.97 3.35 2.44 2.63

SEGAN 2.16 3.48 2.94 2.8
DFL - 3.86 3.33 3.22

MetricGAN 2.86 3.99 3.18 3.42
CTS-Net 2.92 4.25 3.46 3.59
PHASEN 2.99 4.21 3.55 3.62

T-GSA 3.06 4.18 3.59 3.62
DEMUCS 3.07 4.31 3.40 3.63

MetricGAN+ 3.15 4.14 3.16 3.64
PFPL 3.15 4.18 3.60 3.67

FAF-Baseline(w/o Ref.) 2.89 4.09 3.22 3.48
FAF-Net (Ours) 3.19 4.13 3.38 3.66

Table 2: Comparison with state-of-the-arts on Voice Bank +
DEMAND dataset. The best results are highlighted in bold.

Methods PESQ-WB PESQ-NB STOI
Noisy 1.58 2.45 91.52
NSNet 2.15 2.87 94.47
DTLN - 3.04 94.76

Conv-TasNet 2.73 - -
DCCRN-E - 3.27 -
PoCoNet 2.75 - -

FullSubNet 2.78 3.31 96.11
CTS-Net 2.94 3.42 96.66

FAF-Net(Ours) 2.93 3.44 96.37

Table 3: Comparison with state-of-the-arts on DNS dataset.
The best results are highlighted in bold.

STFT spectrograms. The aligned STFT spectrogram is gen-
erated by selecting matched STFT frames according to the
MFCC patch matching index, and averaging the overlapped
STFT frames. However, time discontinuity is introduced for
this variant. Its result is worse than the one-stage result on
all the four metrics. Fourth, to evaluate the proposed fusion
strategy, we give the result without soft weighting. Its re-
sult is still inferior to our full model since different candi-
dates have different contributions. Finally, we give our re-
sults using two-stage enhancement, which is slightly better
than that of the one stage enhancement result because better
matching leads to better enhancement results. Note that, for
two stage scheme, our complete model outperforms the two-
stage baseline result by 0.19 on PESQ-WB, which demon-
strates the effectiveness of the proposed reference based
speech enhancement strategy.

Comparison with State-of-the-arts
Since the competing methods for the two datasets are dif-
ferent, we introduce the compared methods according to the
datasets on which they are evaluated.

DNS Challenge Dataset. For this dataset, we directly
compare our one stage model with seven state-of-the-art
methods. Among them, two are LSTM based methods, i.e.,
FullSubNet (Hao et al. 2021) and DTLN (Westhausen and
Meyer 2020), and two are U-Net based methods, i.e., DC-
CRN (Hu et al. 2020) and PocoNet (Isik et al. 2020). Conv-
TasNet (Koyama et al. 2020) is a time-domain network and
NSNet (Xia et al. 2020) utilizes weighted speech distortion
losses. CTS-Net (Li et al. 2021) is a two-stage complex spec-
tral mapping method. The results of NSNet are quoted from
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(a) (b)
Figure 4: Enhancement results with the inputs setting to dif-
ferent SNR levels. (a) Evaluated on the original VBD test
set, (b) Rebuilding the VBD test set by re-adding noises.

FullSubNet, and others are directly quoted from their papers.
VoiceBank+DEMAND Dataset. For this dataset, we

compare our two-stage model with eight state-of-the-art
methods. There are three GAN based methods, i.e., SEGAN
(Pascual, Bonafonte, and Serra 2017), MetricGAN (Fu et al.
2019), and MetricGAN+ (Fu et al. 2021). PHASEN (Yin
et al. 2020) is a two branch based network. DFL (Germain,
Chen, and Koltun 2018) and PFPL (Hsieh et al. 2021) utilize
perceptual losses. T-GSA (Kim, El-Khamy, and Lee 2020)
is a complex-valued transformer network and CTS-Net (Li
et al. 2021) mentioned above. The results for the eight meth-
ods are quoted from their papers.

For DNS dataset, as shown in Table 3, our method
achieves the best result in terms of PESQ-NB, and is very
close to the best method (CTS-Net) in terms of PESQ-WB.

Table 2 lists the comparison results on Voice Bank + DE-
MAND dataset. The proposed FAF-Net achieves the best
results on this dataset in terms of PESQ-WB, outperform-
ing the second best method PFPL, whose FLOPs are two
times of our model. For CSIG and CBAK, our method is not
the best. The main reason is that the introduced reference is
beneficial for perceptual level reconstruction other than dis-
tortion level reconstruction since the reference is not similar
with the ground truth in terms of SNR values. Note that, our
baseline (w/o reference) is much worse than the compared
methods indicating that the reference plays an important role
in our framework. Fortunately, our feature alignment and
fusion strategy can be plugged in other single speech pro-
cessing baselines and our results can be further improved by
using a better baseline.

Reference Evaluation
In this section, we evaluate the effectiveness of the ref-
erences in three aspects on the Voice Bank + DEMAND
(VBD) dataset.

First, we evaluate the enhancement results at different
SNR values. The results in Fig. 4 (a) are produced on the
original VBD test set. We classify its noise level (SNR rang-
ing from -5 to 20 dB) into five groups and give the average
PESQ result for each group. Since the speeches in different
groups are different, we further generate a new VBD test set
by adding noise with different SNR values to all the clean
speeches in the test set. It can be observed that our scheme

Figure 5: The speech enhancement results (in terms of
PESQ) using references with different time lengths.

(FAF) generates the best results when the SNR values are
larger than 5 dB for the two conditions. In addition, the pro-
posed FAF-Net greatly outperforms FAF-Baseline, which
does not utilize reference speech, for all the SNR ranges.
The results of FAF-Net are worse than other methods for
lower SNR values because our baseline network is much
worse for lower SNR values. Note that, the result of PFPL
in (b) is inferior to that in (a), which demonstrates that PFPL
does not generalize well to new noise conditions.

Second, we evaluate the enhancement results using ref-
erences with different lengths. Generally, longer references
generate better results. Considering the trade off between
computing complexity and performance, we utilize the ref-
erence with 15s in our experiments. If we change the refer-
ences to the speeches spoken by different speakers, the re-
sults will be heavily degraded. This indicates that high cor-
relations between the reference and the noisy speeches are
beneficial for the speech enhancement.

Third, we give results by utilizing the reference in the way
of global embedding, similar to (Giri et al. 2021; Wang et al.
2018). Specifically, we extract the speaker’s identity features
from the reference speech with a pretrained speaker encoder
(Jia et al. 2018), and then embed the global vector into our
encoder features by concatenating along the feature dimen-
sion. The PESQ value of this variant is 2.97, which is worse
than that obtained by feature alignment and fusion strategy.
This demonstrates that utilizing the reference speech via ex-
ploring local correlations is better than exploring global cor-
relations.

Conclusion

In this paper, we have proposed a novel RefSE method by
exploring the frame-level correlations between the reference
and noisy speeches. To solve the time discontinuity problem
of the aligned speeches, we have proposed a MFCC patch
matching and matching index based encoder feature warp-
ing strategy. The aligned reference feature and the noisy fea-
ture are fused together via soft attention and channel atten-
tion based fusion strategy. The ablation study and compar-
ison with state-of-the-arts demonstrate the effectiveness of
the proposed RefSE method. We believe our work will in-
spire more works for other reference based speech process-
ing tasks, such as reference-based speech super-resolution
and echo removal.
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