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Abstract

Current researches on spoken language understanding (SLU)
heavily are limited to a simple setting: the plain text-based
SLU that takes the user utterance as input and generates its
corresponding semantic frames (e.g., intent and slots). Un-
fortunately, such a simple setting may fail to work in com-
plex real-world scenarios when an utterance is semantically
ambiguous, which cannot be achieved by the text-based SLU
models. In this paper, we first introduce a new and im-
portant task, Profile-based Spoken Language Understanding
(PROSLU), which requires the model that not only relies
on the plain text but also the supporting profile information
to predict the correct intents and slots. To this end, we fur-
ther introduce a large-scale human-annotated Chinese dataset
with over 5K utterances and their corresponding supporting
profile information (Knowledge Graph (KG), User Profile
(UP), Context Awareness (CA)). In addition, we evaluate sev-
eral state-of-the-art baseline models and explore a multi-level
knowledge adapter to effectively incorporate profile informa-
tion. Experimental results reveal that all existing text-based
SLU models fail to work when the utterances are semantically
ambiguous and our proposed framework can effectively fuse
the supporting information for sentence-level intent detection
and token-level slot filling. Finally, we summarize key chal-
lenges and provide new points for future directions, which
hopes to facilitate the research.

Introduction
Spoken Language Understanding (SLU) (Young et al. 2013;
Qin et al. 2021d) is a core component in task-oriented
dialogue systems, aiming to extract intent and semantic
constituents from the natural language utterances (Tur and
De Mori 2011). It consists of two typical subtasks: intent
detection and slot filling to map the user input utterance into
an overall intent and a slot label sequence.

With the help of pre-trained models, recent work has
achieved remarkable success on the SLU system. Qin et al.
(2021d) surveys that performance improvement on tradi-
tional SLU is relatively already saturated because the neural
joint model has achieved over 96% and 99% on slot filling
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Figure 1: An example in PROSLU. Semantic frame denotes
the intent and slots of the input utterance. The “>” implies
that the probability of the former is greater than the latter.

and intent detection on the ATIS dataset (Hemphill, God-
frey, and Doddington 1990). Though achieving good perfor-
mance, the current researches on SLU mainly focus on a
simple scenario: the plain text-based setting.

More specifically, traditional SLU systems are based on
the assumption that simply relying on plain text can cap-
ture intent and slots correctly. Unfortunately, such an as-
sumption may not be achieved in real-world scenarios when
the user utterance is semantically ambiguous. For example,
as shown in Figure 1(b)&(c), when a user asks the agent
(e.g., Apple Siri) for the query “Play Monkey King”, sim-
ply relying on the text is not enough for extracting correct
semantic frame results, since “Monkey King” could indi-
cate a “rock song” or an “eponymous Chinese TV
cartoon”. Therefore, we argue that the existing text-based
SLU is not enough for the complex setting in real-world sce-
narios when the utterance is semantically ambiguous. In this
paper, we assume that the profile information of the user can
help to solve the issue where the corresponding profile infor-
mation can be used as supplementary knowledge to alleviate
the ambiguity of utterance. As illustrated in Figure 1(a), if
a user is running and prefers music to video, Monkey King
is more likely to be music than video. Unfortunately, none
of the work considers the profile-based SLU in real-world
scenarios. One of the key reasons for hindering the progress
is the lacking of public benchmarks.
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Input
Utterance Play Monkey King
KG Monkey King: {music, video and audiobook}, ...
UP Preference for [music, video, audiobook]: [0.5, 0.3, 0.2], ...
CA Movement State: Running, Geographic Location: Home, ...

Output
Intent PlayMusic
Slot O B-PM.songName I-PM.songName

Table 1: A simplified example from the PROSLU dataset.

In the paper, to bridge the research gap, we propose a
new and important task, Profile-based Spoken Language
Understanding (PROSLU), which requires a model not only
depends on the text but also on the given supporting pro-
file information. We further introduce a Chinese human-
annotated dataset, with over 5K utterances annotated with
intent and slots, and corresponding supporting profile infor-
mation. In total, we provide three types of supporting profile
information: (1) Knowledge Graph (KG) consists of entities
with rich attributes, (2) User Profile (UP) is composed of
user settings and information, (3) Context Awareness (CA)
is user state and environmental information.

To establish baselines on PROSLU, we evaluate several
state-of-the-art models. The experimental results reveal that
all models fail to work (lower than 50% in overall accuracy
metric) on PROSLU. In addition, we propose a multi-level
knowledge adapter to equip the existing SLU models with
the ability to incorporate profile information, which has the
following advantages: (1) it achieves a fine-grained knowl-
edge injection for both sentence-level intent detection and
token-level slot filling; (2) it can be used as a plugin and
easily be compatible with the existing state-of-the-art SLU
models.

Contributions of this work are concluded as:

• We systematically analyze the state-of-the-art SLU mod-
els and observe that existing models fail to work in real-
world scenarios, which shed a light for future research.

• We propose a new and important task named PROSLU.
In addition, we introduce a Chinese human-annotated
dataset, hoping it would push forward further research.
To our knowledge, we are the first to explore PROSLU.

• We establish various baselines and conduct qualitative
analysis for PROSLU. Besides, we explore a multi-level
adapter to effectively inject the profile information.

We hope the task and datasets will invite more research
on PROSLU. All datasets and codes used in this paper are
publicly available at https://github.com/LooperXX/ProSLU.

Problem Definition
In this section, we define the supporting profile information,
profile-based intent detection and slot filling. A simplified
example is given in Table 1 and the complete example can
be found in the Appendix .

Supporting Profile Information
We introduce three types of supporting profile informa-
tion including Knowledge Graph, User Profile and Context
Awareness, which are used to help the model to alleviate the
ambiguity in the utterances.

Knowledge Graph The first type of profile informa-
tion is the Knowledge Graph (KG), which contains large
amounts of interlinked entities and their corresponding rich
attributes.1 Depending on the context, an ambiguous men-
tion refers to some different entities of the same (or simi-
lar) name but different entity types, as the ambiguous men-
tion (or their shared name) tends to be polysemous (i.e.,
have multiple meanings). Take Table 1 for example, KG
information provides background knowledge for the am-
biguous mention Monkey King (e.g., it can be an entity of
music, video or audiobook). Following Chen et al. (2020),
we represent each entity and its attributes in KG as a long
text sequence, which is composed of key-value pairs (e.g.,
“subject: Monkey King, type: CreativeWork”).

User Profile The second type of profile information is the
User Profile (UP), which is a collection of settings and in-
formation (items) associated with the user. Each item in UP
consists of a non-negative float array that sums to 1. As
shown in Table 1, the user “Preferences for [music, video,
and audiobook]: [0.5, 0.3, 0.2]” is an item in UP informa-
tion, which can help the model to judge that the user prefers
listening to music rather than watching videos. We concat
all the items in UP and directly flatten them to a single
feature vector xUP ∈ Ru (u is the UP feature dimension).
For example, the user preferences for music, video, and au-
diobook are [0.5, 0.3, 0.2] and the user transportation pref-
erences for subway, bus and driving are [0.4, 0.1, 0.5], we
could get [0.5, 0.3, 0.2, 0.4, 0.1, 0.5].

Context Awareness The third type of information is the
Context Awareness (CA) that denotes the user state and
environmental information, including the user’s movement
state, posture, geographic location, etc. As shown in Ta-
ble 1, a user who is running is more likely to play music
than video. The form of each item in CA is similar to UP,
e.g., the movement state can be walking, running, or station-
ary, and [0,1,0] indicates that the movement state is running
Similarly, we get the flatten feature vector xCA ∈ Rc (c is
the CA feature dimension).

Profile-Based Intent Detection and Slot Filling
Unlike the traditional SLU task, PROSLU requires the
model to predict results not only rely on the input utterance,
but also the corresponding supporting profile information.

Specifically, given an input word sequence x =
(x1, . . . , xT ) (T is the number of words) and its corre-
sponding supporting profile information, profile-based in-
tent detection can be seen as a sentence classification prob-
lem to decide the intent label oI while profile-based slot fill-
ing is a sequence labeling task to generate a slot sequence

1We use open-source encyclopedia knowledge graphs like CN-
DBpedia, OwnThink, etc.
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Figure 2: The overall workflow of our data collection, data construction and human annotation.

oS = (oS1 , . . . , o
S
T ). Formally, the PROSLU task can be de-

fined as:
(oI,oS) = f(x,KG,UP,CA), (1)

where f denotes the trained model.

Dataset
In this section, we describe the collection and annotation
process of the PROSLU dataset. In PROSLU, each utter-
ance is semantically ambiguous, which requires the model
to leverage the supporting profile information.

Ambiguity Definition
By manually collecting semantically ambiguous samples
from the error cases in real-world systems, we found that
there are two main sources of ambiguity in user utterances
in real-world scenarios, including ambiguous mentions and
ambiguous descriptions.

Ambiguous Mentions It indicates that the presence of
ambiguous mentions in the user utterance introduces lexi-
cal ambiguity and ultimately leads to semantic ambiguity in
the utterance. For example, the ambiguous mention Mon-
key King can represent different entities such as a rock song
(sung by the Mayday band), a biographical novel, or an
eponymous Chinese TV cartoon.

Ambiguous Descriptions It indicates that the ambiguity
is caused by the ambiguous semantic understanding of ut-
terance rather than the ambiguous mentions. Take the user
utterance “I want to buy a ticket to Shanghai” as an exam-
ple, it’s hard to capture the correct intent simply depending
on the utterance, because the intent of utterance could be to
book a train ticket, a plane ticket, or a coach ticket.

Data Design
Intent and Slot Design We design multiple ambiguous in-
tent groups based on real-world scenarios and open-source
SLU datasets. For example, {PlayMusic, PlayVideo,
PlayAudioBook} is an ambiguous intent group where
each intent is ambiguous with each other (“Play Monkey
King” can be any intent in this ambiguous intent group).
Slot labels are collected directly from the slot label sets cor-
responding to the intents.

Supporting Profile Information Design For KG infor-
mation, we collect it directly from the open-source knowl-
edge graphs. For UP and CA information, based on the UP
and CA schemas in real scenarios, we carefully pick out the
items that can help disambiguate the above intents and slot
labels, and integrate them to form the final UP and CA items.

Data Collection
We first collect values for different slots based on the
crawled public web data. Then we collect ambiguous men-
tions from the knowledge graph. The entities could share the
same mentions but have different entity types in the knowl-
edge graph. For example, the song entity Monkey King and
the Chinese TV cartoon entity Monkey King has the same
mention (name) but different entity types. Therefore, we are
able to collect numerous ambiguous mentions.

Data Construction
Based on the first two steps, we design the data generation
process separately for the two ambiguity cases.

Ambiguous Description Case For each sample, we first
randomly select an intent and some slots in its correspond-
ing slot label sets. Next, we fill these slots by randomly se-
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#Utterances 5,249
#Utterances in Train Set 4,196
#Utterances in Valid Set 522
#Utterances in Test Set 531
#Avg. Words per Utterance 23.64
#Intents 14
#Slots 99
#UP 4
#CA 4
#KG entities 7,466
#Avg. KG Entity 2.77
#Avg. Words per Entity 272.63

Table 2: Data statistics of PROSLU dataset. #Avg. KG En-
tity denotes the average number of entity per data sample.

lecting slot values from the collected slot values. In addition,
when some slot values are entities in the knowledge graph,
we extract KG information for them. Finally, we design the
heuristic rules to generate valid UP and CA information for
the corresponding intent. For example, when the selected in-
tent is SearchDriveRoute (search for driving routes be-
tween two places), the “Has Car” item in UP information
is more likely to be “true” and the “Movement State” in
CA information may be less likely to be “on the aircraft”.2

Ambiguous Mention Case To bring lexical ambiguity
into the utterance, there should exist ambiguous mentions in
the slot values of the utterance. Thus, slightly different from
the former case, after randomly selecting the intent and slots,
the ambiguous mention should be randomly selected but sat-
isfies the selected intent.3 Then we generate slot-value pairs
and obtain the KG information of different entities corre-
sponding to the selected mention from the knowledge graph
data. Based on the selected intent and the entities in the
KG information, we design the hard-coded heuristics to ran-
domly generate valid UP and CA information. For example,
for the PlayVideo intent, the movement state in CA infor-
mation is less likely to be “running”, and if the entity types
of entities in the KG information are {music, video and au-
diobook}, the user preferences for video tend to greater than
music and audiobook.

Human Annotation
After data collection and construction, the annotators only
need to manually write the ambiguous utterances in conjunc-
tion with the given intent and slot-value pairs.

We hire an annotation team to check the generated data
in each given sample and to annotate the utterances. More
importantly, the utterances annotated by the annotators must
be reasonable and logical but semantically ambiguous. The
sample with unreasonable generated data will be removed.
Figure 2 gives an illustration of the overall workflow.

2Users who do have a car are usually more likely to ask for
driving routes, and users who do not have an Internet connection
on the aircraft are usually less likely to try to search.

3For example, the selected mention must have a music entity to
satisfy the PlayMusic intent.
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Figure 3: The illustration of Profile-based SLU model (a),
which consists of a general SLU model and a knowledge
adapter (b).

Quality Control
To ensure quality, each sample is annotated by three ex-
perts and the annotation process lasts for nearly two months.
In practice, we randomly divide all the completed anno-
tated samples into 10 groups and select 50 sentences from
each group for testing, and if more than 5 sentences are re-
garded as incorrectly annotated, the whole group would be
re-annotated. Finally, we obtain 5,249 samples, where the
ratio of description ambiguity vs. mention ambiguity case
in the dataset is nearly 1:2. Table 2 summarizes the detailed
statistics of the PROSLU dataset.

Approach
In this section, we first introduce the general SLU model and
then describe the proposed multi-level knowledge adapter,
which can be used for sentence-level intent detection and
word-level slot filling, respectively.4

General SLU Model
The general SLU model consists of a shared encoder, an in-
tent detection decoder, and a slot filling decoder.

Shared Encoder The shared encoder reads the input ut-
terance x = {x1, x2, .., xT } (T is the number of tokens in
the input utterance) to generate the shared encoding repre-
sentation E = {e1, e2, . . . , eT }=Encoder (x1, x2, .., xT ) .

Intent Detection Decoder Based on the shared encoding
representation E, a sentence representation g can be gen-
erated (e.g., the sentence self-attention mechanism (Zhong,
Xiong, and Socher 2018)) for intent detection:

yI = softmax (WI g) , (2)

oI = argmax(yI), (3)

where WI are trainable parameters.

4The detailed description and training objectives of the general
SLU model can be found in the Appendix .
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Slot Filling Decoder The unidirectional LSTM is used as
the slot filling decoder. At each decoding step t, we adopt the
intent-guided mechanism (Qin et al. 2019) and the decoder
state hS

t is a function of the previous decoder state hS
t−1, the

aligned encoder hidden state et, the embedding of predicted
intent and previously emitted slot.

Finally, hS
t is used for slot filling:

yS
t = softmax

(
WS h

S
t

)
, (4)

oSt = argmax(yS
t ), (5)

where oSt is the slot label of the t-th word in the utterance
and WS are trainable parameters.

Supporting Information Representations
KG Representation KG information of each entity is a
concatenated sequence of key-value pairs. For KG informa-
tion with only one entity, e.g., xKG = {xKG

1 , xKG
2 , . . . , xKG

L }
(L is the number of words in the KG sequence), we
use BiLSTM to obtain the KG encoding representations
HKG = {hKG

1 ,hKG
2 , . . . ,hKG

L } ∈ RL×di by applying hKG
t =

BiLSTM
(
φKG

(
xKG
t

)
,hKG

t−1
)
, where di is the information

embedding dimension. We directly use the last hidden state
hKG
L as the KG representation hKG. For KG information con-

sisting of sequences of multiple entities, we perform average
pooling for the last hidden state of each sequence as the over-
all aggregated KG representation hKG.

UP and CA Representation UP and CA representa-
tions can be obtained by using linear projection, using
hUP = W>

UP xUP and hCA = W>
CA xCA, respectively, where

WUP ∈ Ru×di and WCA ∈ Rc×di are trainable parameters.

Multi-Level Knowledge Adapter
Knowledge Adapter The core challenge of PROSLU
is how to effectively incorporate the supporting informa-
tion. We explore a knowledge adapter to address this chal-
lenge, which can be used as a plugin without changing
the original SLU structure. Inspired by Srinivasan et al.
(2020), we adopt the hierarchical attention fusion mech-
anism (Luong, Pham, and Manning 2015; Libovický and
Helcl 2017) as the knowledge adapter, which has the advan-
tage of dynamically considering relevant supporting infor-
mation for different words. Specifically, given the query vec-
tor q and the corresponding supporting information HInfo =
[hKG;hUP;hCA] ∈ R3×di , we obtain the updated represen-
tation q′ = Knowledge-Adapter(q,Hinfo) by weighted sum-
ming the representation from all the supporting information:

αinfo
i =

exp
(
qWhinfo

i

)∑3
k=1 exp

(
qWhinfo

k

) , (6)

q′ =
3∑

i=1

αinfo
i hinfo

i , (7)

where W are trainable parameters and {hInfo
1 ,hInfo

2 ,hInfo
3 }

denotes {hKG,hUP,hCA} respectively.

Sentence-level Knowledge Adapter for Intent Detec-
tion We perform a sentence-level knowledge adapter for
sentence-level intent detection, where we use sentence rep-
resentation g as query to obtain the hierarchical fused infor-
mation sinfo, using sinfo = Knowledge-Adapter(g,Hinfo),
which is used for augmenting intent detection:

yI = softmax
(
WI

(
g ⊕ sinfo)) . (8)

Word-level Knowledge Adapter for Slot Filling Since
slot filling is a word-level sequence labeling task, we apply
a word-level knowledge adapter to inject different relevant
knowledge for each word.

Specifically, we use the self-attentive encoding et at the
t-th timestep as query vector to fuse supporting informa-
tion using sinfo

t = Knowledge-Adapter(et,H
info). Similarly,

sinfo
t is used to enhance word-level representation in slot fill-

ing decoder:

hS
t = LSTM

(
st ⊕ sinfo

t ,hS
t−1
)

(9)

yS
t = softmax

(
WSh

S
t

)
. (10)

where st is the concatenation of the aligned encoder hidden
state, intent embedding, and the previous slot embedding.

Experiments
Experimental Settings

The self-attentive encoder hidden units are 256 in all
datasets. `2 regularization is 1 × 10−6 and the dropout rate
is 0.4 for reducing overfitting. We use Adam (Kingma and
Ba 2014) to optimize the parameters in our model and adopt
the suggested hyper-parameters for optimization. For all the
experiments, we select the model which works best on the
dev set and then evaluate it on the test set. All experiments
are performed on the GPU Tesla V100.

Baselines

We experiment the existing state-of-the-art non pre-trained
SLU models on the PROSLU dataset: 1) Slot-Gated
Atten. Goo et al. (2018) proposes a slot-gated joint
model to explicitly model the correlation between slot fill-
ing and intent detection. 2) Bi-Model. Wang, Shen, and
Jin (2018) proposes the Bi-model to study the cross-impact
between the intent detection and slot filling. 3) SF-ID
Network. E et al. (2019) proposes an SF-ID network to
construct direct connections for the slot filling and intent de-
tection. 4) Stack-PropagationQin et al. (2019) adopts
a joint model with Stack-Propagation to capture the intent
semantic knowledge. We also explore the existing state-of-
the-art multi-intent models in the Appendix .

To investigate the impact of pre-trained models in our
PROSLU dataset, based on the general SLU model. we
adopt the pre-trained models BERT (Devlin et al. 2019),
XLNet (Yang et al. 2019), RoBERTa (Liu et al. 2019),
ELECTRA (Clark et al. 2020) as the shared encoder to get
the pre-trained-based SLU models.
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Model w/o Profile w/ Profile
Slot (F1) Intent (Acc) Overall (Acc) Slot (F1) Intent (Acc) Overall (Acc)

Non Pre-trained SLU Models
Slot-Gated (Goo et al. 2018) 36.53 41.24 32.02 74.18 83.24 69.11
Bi-Model (Wang, Shen, and Jin 2018) 37.37 44.63 32.58 77.76 82.30 73.45
SF-ID (E et al. 2019) 39.63 42.37 30.89 73.70 83.24 68.36
Stack-Propagation (Qin et al. 2019) 39.29 39.74 36.35 81.08 83.99 78.91
General SLU Model 42.24 43.13 37.85 83.27 85.31 79.10

Pre-trained-based SLU Models
BERT (Devlin et al. 2019) 44.80 45.76 42.18 82.51 84.56 80.98
XLNet (Yang et al. 2019) 46.92 48.59 43.88 83.39 85.88 81.73
RoBERTa (Liu et al. 2019) 45.92 47.83 43.13 82.90 85.31 81.17
ELECTRA (Clark et al. 2020) 46.48 47.46 42.56 84.38 86.63 82.30

Table 3: Slot Filling and Intent Detection results on the PROSLU dataset.

Analysis on Baselines without Profile Information
Following Goo et al. (2018) and Qin et al. (2019), we eval-
uate the performance of slot filling using F1 score, intent
detection using accuracy, the sentence-level semantic frame
parsing using overall accuracy which represents all metrics
are right in an utterance.

Non Pre-Trained SLU Models Performance We con-
duct experiments on PROSLU to observe the performance
of the non pre-trained SLU models without supporting pro-
file information. The results are shown in Table 3. We ob-
serve that all baseline models significantly drop a lot com-
pared with ATIS and SNIPS dataset on all three metrics. For
example, the baseline model Stack-Propagation (Qin et al.
2019) achieved 86.5% and 86.9% on overall accuracy on
ATIS and SNIPS but only obtain 36.35% on the PROSLU
dataset.5 This indicates that the existing models fail to work
when the utterances are semantically ambiguous.

Pre-Trained-based SLU Models Performance In this
section, we further conduct experiments with the pre-
trained-based SLU models on PROSLU to observe its per-
formance without supporting profile information. The same
trend is observed in Table 3. The overall accuracy of all
pre-trained-based SLU models (w/o Profile) is still less than
45%, which indicates that simply using pre-trained models
does not alleviate the situation.

Comparison Between Non Pre-Trained Models and Pre-
Trained Models Comparing with non pre-trained SLU
models, we can see that all the pre-trained-based SLU mod-
els are better than the non pre-trained SLU models, which
can bring 4% to 6% improvement. We attribute this to
the fact that the pre-trained models learn general semantic
knowledge in the pre-training stage, hence it can provide
rich semantic features that can help to ease the ambiguity
in PROSLU.

5Note that, compared with General SLU Model, Stack-
Propagation use token-level intent detection instead of sentence-
level intent detection, which brings performance degradation. We
speculate that because the input unit of all experiments is the char-
acter, token-level intent detection may bring some noise.

Model Slot (F1) Intent (Acc) Overall (Acc)
ELECTRA 84.38 86.63 82.30
w/o Sentence-level 77.32 48.78 43.88
w/o Word-level 79.99 81.36 78.15
w/o Multi-level 46.48 47.46 42.56

Table 4: Ablation Study of Multi-level Knowledge Adapter.

Analysis on Baselines with Profile Information
Table 3 (w/ Profile column) shows the performance of all
models with supporting profile information on the PROSLU
dataset. It can be seen that the performance of all models
improve significantly by a large margin based on our multi-
level knowledge adapter to incorporate supporting profile
information. All the three metrics improve by about 30%
to 40%, which indicates the supporting profile information
can help alleviate the ambiguity in the ambiguous utter-
ances. It further proves the significance and importance of
our PROSLU task for real-world scenarios.

Ablation Study of Multi-Level Knowledge Adapter
To explore the effectiveness of multi-level knowledge
adapter for PROSLU task, we perform the ablation study on
the best model, ELECTRA-based SLU model (w/ Profile),
in Table 4.

Effect of Sentence-level Adapter We first experiment by
only adopting a word-level slot adapter and the results are
shown in Table 4 (w/o Sentence-level Adapter Row), we
observe a significant decrease in all three metrics, 7.06%,
37.85%, 38.42%, respectively, and performance degradation
is most obvious on intent detection task. This is because the
sentence-level intent adapter can effectively help the intent
detection task to identify the correct intent and transfer the
correct guidance knowledge for the slot filling task through
explicitly interacting between two tasks.

Effect of Word-level Adapter We remove the word-level
slot adapter and only adopt the sentence-level intent adapter,
which means there is no direct supporting information is in-
jected into the slot filling decoder. The results are shown
in Table 4 (w/o Word-level Adapter Row). We observe that
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our framework drops 4.39% in slot filling task, which indi-
cates that the word-level adapter can effectively inject profile
knowledge for word-level slot filling task. An interesting ob-
servation is that the performance decrease of three metrics is
slightly lower compared to w/o Sentence-level Adapter. We
assume that although we remove the world-level adapter, the
remaining sentence-level adapter can still help train a good
intent detector, which can be used to guide the slot filling
task with the intent-guided mechanism we adopted.

Effect of Multi-level Adapter We remove the proposed
multi-level adapter and directly conduct experiments with
the ELECTRA-based SLU model (w/o Profile). As shown in
Table 4 (w/o Multi-level Adapter Row), we observe a more
significant decrease in all three metrics, 37.90%, 39.17%,
39.74%, respectively. This further demonstrates that our
multi-level adapter can effectively incorporate supporting
profile information into the intent detection task and slot fill-
ing task, achieving fine-grained knowledge transfer to effec-
tively cope with ambiguous sentences in real scenarios.

Error Analysis
In this section, we empirically provide error samples of
two different types generated from ELECTRA-based SLU
model(w/ Profile).

KG Representation When KG information consists of
seven entities, it is relatively large and become hard to be
represented and understood by the model. As shown in the
first block of Table 9, when the KG information shows the
“Answer” can be the music or audiobook entity, the model
predicts “Answer” as “O” incorrectly. We attribute it to the
fact that we simply represent each entity by flatting its KG
information into a sequence and perform average pooling
to obtain the overall aggregated KG representation, which
would not effectively and correctly represent the KG infor-
mation.

Supporting Profile Information Fusion Take the second
block in Table 9 as an example, although the supporting pro-
file information shows that the user prefers listening to au-
diobook rather than watching videos, the model predicts the
intent as PlayVideo incorrectly, which means the knowl-
edge fusion between the three types of supporting profile
information needs to be more accurate and effective.

Challenges
Based on above analysis, we summarize the current chal-
lenges for our PROSLU dataset.

Representation of KG Information In this paper, we fol-
low Chen et al. (2020) to represent KG information as long
text sequences which composed of key-value pairs. Numer-
ous entities with plentiful attributes poses a huge challenge
for the KG encoder. It is an important and fundamental issue
to investigate more efficient ways to encode KG informa-
tion. For example, it is also possible to train the representa-
tion of each entity directly on the knowledge graph through
knowledge graph embedding methods (Bordes et al. 2013).

Effectiveness of Fusion Approaches We follow Li-
bovický and Helcl (2017) to adopt the hierarchical attention
fusion mechanism to fuse three types of supporting profile
information. Many representation fusion approaches exist in
the machine learning research area (Zadeh et al. 2017; Liu
et al. 2018; Tsai et al. 2019). It will be challenging and re-
warding to explore the effectiveness of these approaches on
PROSLU.

Expansion of Supporting Profile Information In this pa-
per, we investigate three types of supporting profile infor-
mation, which is common in real-world scenarios. To better
solve PROSLU task and alleviate ambiguity from user utter-
ances, more types of supporting profile information can be
expanded in future research.

Related Work
Dominant SLU systems adopt the joint model to jointly
consider the correlation between intent detection and slot
filling (Qin et al. 2021d). Zhang and Wang (2016) and
Hakkani-Tür et al. (2016) propose the multi-task framework
to jointly model the correlation between the two tasks. Goo
et al. (2018); Qin et al. (2019) and Teng et al. (2021) ex-
plicitly incorporate intent information for guiding the slot
filling. Another series of work (Li, Li, and Qi 2018; E et al.
2019; Qin et al. 2021b) consider the bidirectional connec-
tion between the two tasks. Zhu, Cao, and Yu (2020) also
considers the semi-supervised NLU setting. However, their
work mainly focus on the plain text-based SLU. In contrast,
we mainly consider the ambiguous setting and propose a
new and important task, PROSLU which requires a model
to predict the intent and slots correctly given text and its
supporting profile information.

The ambiguous problem has attracted increasing atten-
tion in dialogue direction. Bhargava et al. (2013); Xu and
Sarikaya (2014); Chen et al. (2015, 2016); Su, Yuan, and
Chen (2018); Qin et al. (2021a) have shown leveraging con-
textual information can handle the ambiguous problem in
SLU direction. Compared with their work, we focus on how
to incorporate the corresponding supporting profile informa-
tion to alleviate ambiguity in a single-turn setting while they
adopt the multi-turn interaction manner. Another strand of
work Zhang et al. (2018); Zheng et al. (2019); Song et al.
(2020) consider incorporating profile information to ease
ambiguity and generate consistent dialogue responses. Un-
like their work, we focus on the SLU domain while they
mainly consider the end-to-end dialogue systems. To the
best of our knowledge, this is the first work to consider ad-
ditional information to alleviate the ambiguity of utterances
in the SLU system.

Conclusion
In this paper, we investigate the Profile-based SLU, which
requires a model to rely not only on the surface utterance but
also on the supporting information. We further introduce a
large-scale annotated dataset to facilitate further research. In
addition, we explore a multi-level knowledge adapter to ef-
fectively inject the supporting information. To the best of our
knowledge, we are the first to consider Profile-based SLU.
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Appendix
General SLU Model
Intent Detection Decoder To perform intent detection,
a sentence self-attention mechanism (Zhong, Xiong, and
Socher 2018) is applied for obtaining sentence representa-
tion g, using:

αi =
exp

(
w>g ei

)∑
j exp

(
w>g ej

) , (11)

g =
∑

i
αiei, (12)

where wg ∈ Rd are trainable model parameters.
Then, g is used as input for intent detection:

yI = softmax (WI g) , (13)

oI = argmax(yI), (14)

where oI is the predicted intent label; WI are trainable pa-
rameters.

Slot Filling Decoder We use a unidirectional LSTM as the
slot filling decoder. At each decoding step t, we adopt the
intent-guided mechanism (Qin et al. 2019) and the decoder
hidden state hS

t can be formalized as:

st = et ⊕ φintent (oI)⊕ φslot (oSt−1) , (15)

hS
t = LSTM

(
st,h

S
t−1
)
, (16)

where hS
t−1 is the previous decoder state; et is the aligned

encoder hidden state and st is the concatenated input for the
slot filling decoder; φintent (·) and φslot (·) represent the em-
bedding matrix of intents and slots, respectively. Finally, hS

t
is used for slot filling:

yS
t = softmax

(
WSh

S
t

)
, (17)

oSt = argmax(yS
t ), (18)

where oSt is the slot label of the t-th word in the utterance
and WS are trainable parameters.

Models Slot (F1) Intent (Acc) Overall (Acc)
AGIF (Qin et al. 2020) 42.55 36.35 33.90
AGIF w/Profile 80.57 81.54 74.95

GL-GIN (Qin et al. 2021c) 37.49 38.61 35.03
GL-GIN w/Profile 82.70 85.69 79.28

Table 5: The result of multi-intent baselines on PROSLU.

Fusion Methods Slot (F1) Intent (Acc) Overall (Acc)
Concat 80.08 82.67 76.84
MLP 80.60 83.43 77.78
Hierarchical 83.27 85.31 79.10

Table 6: Ablation Experiments of Different Fusion Methods.

Intent Group
PlayMusic, PlayVideo, PlayAudioBook
SearchMusic, SearchVideo, SearchAudioBook
SearchLocation, SearchLocationOntheway
SearchMetroRoute, SearchBusRoute, SearchDriveRoute
SearchTrainTicket, SearchFlightTicket, SearchCoachTicket

Table 7: Intent groups in the PROSLU dataset.

Joint Training The intent detection objection is formu-
lated as:

LI , −
nI∑
i=1

ŷi,I log
(
yi,I
)
. (19)

Similarly, the slot filling task objection is defined as:

LS , −
T∑

t=1

nS∑
i=1

ŷi,St log
(
yi,St

)
, (20)

where ŷi,I and ŷi,St are golden intent labels and golden slot
labels separately, nI and nS is the number of intent labels
and slot labels respectively. The final joint objective to opti-
mize intent detection and slot filling together is:

L = LI + LS. (21)

In addition, the shared encoding representations learned
by the shared self-attentive encoder can consider two tasks
jointly and further ease the error propagation compared with
pipeline models (Zhang and Wang 2016) through the final
joint loss function.

Exploration of the Multi-Intent Baselines
We explore the state-of-the-art multi-intent baselines
AGIF (Qin et al. 2020) and GL-GIN (Qin et al. 2021c) on
the PROSLU dataset. The results are shown in Table 5. We
observe that both baselines show poor performance with-
out profile information. With the help of supporting profile
information, they improve significantly by a large margin
based on our multi-level knowledge adapter.
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Intent

Utterance

Slot

Hi Siri, help me play Monkey King on my iPad

deviceType: iPad
videoName: Monkey King

PlayVideo
(b) Ambiguous Mention Case

KG

Monkey King

Video Music Audiobook

UP

CA

Video Audiobook

＞ ＞

Home

Music

②

①

②

User preferences for video is more likely
to be greater than music and audiobook.UP

Running
CA

Lying

Figure 4: An illustration of generating UP and CA Information.

Input
Utterance Play Monkey King

KG
subject: Monkey King, type: CreativeWork, singer: Mayday, Year: 2004, Description: ...,
subject: Monkey King, type: Movie, Producer: Pengcheng Wang, Writer: Pengcheng Wang, Description: ...,
subject: Monkey King, type: CreativeWork, Category: Fantasy Novel, Description: ...,

UP Preference for [music, video & audiobook]: [0.2, 0.7, 0.1], Has Car: True, ...
CA Movement State: stationary, Posture: lying down, Geographic Location: home, ...

Output
Intent PlayVideo
Slot O B-PlayVideo.videoName I-PlayVideo.videoName

Table 8: An example in the PROSLU dataset.

Utterance Open my iPad and search for Answer , sung by Joey Yung
Supporting KG: Mention “Answer”: 7 entities of{music or audiobook}
Slot Predict: O O deviceType O O O songName O artist artist

Real: O O deviceType O O O O O artist artist
Utterance Play Martial Universe by Hu Li on my iPad

Supporting
KG: Mention “Martial Universe”: 3 entities of {video or audiobook}, ...
UP: Preference for [music, video, audiobook]: [0.4, 0.2, 0.4], ...
CA: Movement State: Walking, Geographic Location: Home, ...

Intent Predict: PlayVideo
Real: PlayAudioBook

Table 9: Error examples in ELECTRA-based SLU model (w/ Profile). Some supporting information are omitted for brevity.

Ablation Experiments of Different Fusion Methods
In addition to adopting the hierarchical attention fusion
mechanism, we also try to utilize two traditional fusion
layers to aggregate information from different sources as
knowledge adapter:

• Concatenation (Concat) is a simple and effective
method (Wu et al. 2018) that directly concatenate rep-
resentation from different sources for each sample and

• Multilayer Perceptron (MLP) can automatically capture
the integrated representation (Nguyen and Okatani 2018)
which applies an MLP layer on the concatenated output
to further abstract the expressive aggregated representa-
tions and better extract the multi-source information.

As shown in Table 6, MLP fusion achieves better results
than Concat fusion, but underperforms our hierarchical fu-
sion method. This demonstrates that our hierarchical fusion
can get word-level dynamic representations of multi-source

information and inject them through the multi-level adapter
to achieve fine-grained knowledge transfer.

Example
Ambiguous Intent Groups The ambiguous intent groups
we designed are shown in Table 7. For example,
{PlayMusic, PlayVideo, PlayAudioBook} is an
ambiguous intent group where each intent is ambiguous with
each other (“Play Monkey King” can be any intent in this
ambiguous intent group). Slot labels are collected directly
from the slot label sets corresponding to the intents.

Generation of UP and CA Information As shown in Fig-
ure 4, for the PlayVideo intent, the movement state in CA
information cannot be running, and if the entity types of enti-
ties in the KG information are music, video and audiobook,
the user preferences for video is more likely to be greater
than music and audiobook.
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A Detailed Example in PROSLU We show a detailed
example in our PROSLU dataset in Table 8. For the utter-
ance “Play Monkey King”, PlayMusic, PlayVideo,
PlayAudioBook are possible intents in our intent set.
Given the three entities in the KG information, the above
intents are all reasonable. Considering the UP information,
we can find that the user likes watching videos more than lis-
tening to music and audiobook. Finally, the CA information
shows that the user is lying at home, which is a reasonable
state to watch videos. Therefore, the real intent of the user
can be predicted to PlayVideo.
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