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Abstract

Contrastive learning models have achieved great success in
unsupervised visual representation learning, which maximize
the similarities between feature representations of different
views of the same image, while minimize the similarities be-
tween feature representations of views of different images.
In text summarization, the output summary is a shorter form
of the input document and they have similar meanings. In
this paper, we propose a contrastive learning model for su-
pervised abstractive text summarization, where we view a
document, its gold summary and its model generated sum-
maries as different views of the same mean representation
and maximize the similarities between them during train-
ing. We improve over a strong sequence-to-sequence text
generation model (i.e., BART) on three different summariza-
tion datasets. Human evaluation also shows that our model
achieves better faithfulness ratings compared to its counter-
part without contrastive objectives. We release our code at
https://github.com/xssstory/SeqCo.

Introduction

Document summarization is the task of rewriting a long doc-
ument into a shorter form while still preserving its important
content, which requires the model to understand the entire
document. Many approaches for summarization has been ex-
plored in the literature and the most popular ones are extrac-
tive summarization and abstractive summarization (Nenkova
and McKeown 2011). Summaries in their nature are abstrac-
tive. The summaries generated by extractive summarization
methods are usually long and redundant, which bring bad
reading experience. Therefore, we focus on abstractive sum-
marization in this paper. Abstractive summarization is usually
modeled as a sequence-to-sequence (Seq2Seq) learning prob-
lem (Sutskever, Vinyals, and Le 2014), where a document
is viewed as a sequence of words and its summary another
sequence of words (Nallapati et al. 2016).

Although abstractive models have been more and more
powerful due to recent introduction of large pre-trained Trans-
formers (Liu and Lapata 2019; Raffel et al. 2020; Dong et al.
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2019; Lewis et al. 2020), the training paradigm for abstrac-
tive models is still not changed, which is to minimize the
negative log-likelihood (NLL) between the model predicted
word distributions and the gold summary. One great property
of the summarization task is that a document and its sum-
mary should convey the same meaning, which is not modeled
explicitly by the NLL loss.

In computer vision, contrastive learning methods for un-
supervised image representation learning advanced the state-
of-the-art in object detection and image segmentation (He
et al. 2020b). The key idea is to minimize distances (or maxi-
mize similarities) between feature representations of different
views of the same image (positive examples), while to maxi-
mize the distances between feature representations of views
of different images (negative examples) (He et al. 2020b;
Chen et al. 2020). As mentioned earlier, in summarization a
document and its summary should convey the same meaning.
Therefore, we view a document, its gold summary and its
model generated summaries as different views of the same
meaning representation and during training, we maximize
the similarities between them. To achieve that, we propose
SeqCo (as shorthand for Sequence Level Contrastive Learn-
ing), which is based on contrastive learning. In addition to
the gold summaries, we also use the dynamically generated
summaries from our model during training to increase the di-
versity of inputs to SeqCo. In text summarization, an abstrac-
tive summarization model needs to first encode the document
and then generate the summary. The contrastive objective in
SeqCo tries to map representations of a document and its sum-
mary (or generated summary) to the same vector space, which
intuitively helps the generation of summaries. Specifically, a
document may contain distinct (or unnecessary) information
from its summary. During training time, the contrastive objec-
tive between the document and summary actually encourages
the model to encode important (and necessary) information
from the document, otherwise the distance between the rep-
resentations of document and summary will be large (the
objective updates model parameters to make it small). In-
tuitively, the capability of encoding important information
from documents would help to generate better summaries.

In experiments, we find our proposed contrastive learning
based model SeqCo consistently improves upon a strong ab-
stractive summarization model based on BART (Lewis et al.



2020) across three different summarization datasets (i.e., CN-
N/DailyMail (Hermann et al. 2015), New York Times (Sand-
haus 2008) and XSum (Narayan, Cohen, and Lapata 2018)).
Human evaluation also shows that our model SeqCo achieves
better faithfulness ratings compared to its counterpart without
contrastive objectives.

Related Work

The most popular paradigms for summarization are extrac-
tive and abstractive based approaches. We focus on abstrac-
tive summarization. Abstractive summarization may add
new words or phrases when generating summaries, which
is usually viewed as a sequence to sequence learning prob-
lem (Nallapati et al. 2016; See, Liu, and Manning 2017;
Paulus, Xiong, and Socher 2018; Gehrmann, Deng, and Rush
2018). Probably because small and shallow LSTM (Hochre-
iter and Schmidhuber 1997) based attentive seq2seq models
(Sutskever, Vinyals, and Le 2014; Bahdanau, Cho, and Ben-
gio 2015) without pre-training are not powerful enough to
model documents. Quality of summaries produced by these
mdoels are not satisfactory (Liu and Lapata 2019). As the re-
cent introduction of large pre-trained transformer models (Liu
and Lapata 2019; Dong et al. 2019; Zou et al. 2020; Lewis
et al. 2020; Zhang et al. 2020; Raffel et al. 2020), abstrac-
tive models are greatly improved. Best results for summa-
rization are achieved by finetuning large models pre-trained
with generation (or summarization) tailored objectives on
huge amount of unlabeled text (>160G). Dong et al. (2019)
pre-train jointly designed Transformer encoder and decoder
with language model and masked language model objectives.
Zhang et al. (2020) predict gapped sentences from a docu-
ment removing these sentences and Lewis et al. (2020) pro-
pose sentence permutation and text infilling tasks to pre-train
seq2seq transformers. There is also some work on combining
extractive and abstractive summarization models (He et al.
2020a; Dou et al. 2021) or multiple summarization models
(Liu, Dou, and Liu 2021). Unfortunately, pre-training trans-
formers from scratch or combining multiple summarization
systems are expensive, while our model can be applied to the
light-weighted finetuning stage.

Convoluational neural networks pre-trained with con-
trastive learning methods advance the state-of-the-art in ob-
ject detection and image segmentation in computer vision
(He et al. 2020b). The idea is to minimize the distances be-
tween feature representations of different views of the same
image (positive examples), while to maximize the distances
between feature representations of views of different images
(negative examples). To discriminate positive examples from
negative examples, He et al. (2020b) maintain a queue of neg-
ative sample representations and utilize momentum updates
for encoder of the queue to stabilize these representations.
Chen et al. (2020) use other examples from the same batch as
negative examples and as a result, they need a large batch size.
These works above suggest that using a large number of neg-
ative examples is crucial to obtain good performance, which
also increases the complexity for implementation. There is
also an interesting line of work without using negative exam-
ples. Caron et al. (2020) employ online clustering to assign
codes for two views of the same image and then use rep-
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resentation of one view to predict the cluster codes of the
other. During the training of BYOL (Grill et al. 2020), they
only minimized the distance between representations of two
views of the same image and they use a momentum encoder
for the target view to stabilize the training. Chen and He
(2020) find that even the momentum encoder can be removed,
although there might be a small drop in performance. The
contrastive learning method used in our model is most re-
lated to BYOL (Grill et al. 2020) in the sense that we do
not use negative examples either and we also employ a mo-
mentum encoder. In the models above, contrastive learning is
applied in the unsupervised pre-training stage, which create
different views of the same image by using effective data
argumentation methods. In this paper, we take advantage of
the nature of the summarization task and use the document,
gold summary, and generated summary as different views of
the same meaning representation (note that a summary is a
shorter form of the original document). To fit sequence-to-
sequence learning models for text generation, we handles two
sequence of embeddings of discrete words, while the vision
models handle two single embeddings of fixed dimensions.
In addition, the generated summary are created dynamically
during training with a model, which are more diverse than
using non-model-based approaches in vision tasks.

In NLP, previously contrastive learning methods are mostly
used in pre-training or natural language understanding tasks.
For example, word2vec (Mikolov et al. 2013) learns the
word embeddings by distinguishing words in a windows (pos-
itive examples) w.r.t. the current word and words randomly
sampled (negative examples) using negative sampling. (Iter
et al. 2020) propose a contrastive learning based method for
language model pre-training, which predicts the relative dis-
tance between sentences using randomly sampled sentences
as negative examples. More recently, MatchSum (Zhong et al.
2020) formulates extractive summarization as a semantic text
matching problem using contrastive learning. Wu et al. (2020)
measures the summary qualities without reference summaries
by contrasting the document with the summaries using a rank-
ing model. GSum (Dou et al. 2021) takes different kinds of
external guidance as additional input to the document and
advances summarization performance significantly. SimCLS
(Liu and Liu 2021) proposes a contrastive based framework
for abstractive summarization, which trains a model to rerank
the candidate summaries of an abstractive model. We add
constrastive learning to the training of an abstractive model
by enforcing similarities between document, summary and
generated summary, which does not need negative examples.

Model

In this section, we describe our contrastive learning model
SeqCo (as shorthand for Sequence Level Contrastive Learn-
ing) for abstractive text summarization. We first introduce
abstractive text summarization models (i.e., Seq2Seq model),
on which our model is based. Then we present SeqCo, which
adapts contrastive learning to the sequence-to-sequence learn-
ing setting.
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Figure 1: We enforce the similarities between the document,
gold summary and model generated summary.

Abstractive Text Summarization

For text summarization, we can view the document as a long
sequence of tokens! and the summary as a short sequence
of tokens. Let X = (zg = <s>,x1,22,...,2x| = </s>)
denote a document (i.e., the long sequence of tokens) and
Y = (yo = <s>,y1,¥2,...,Y)y| = </s>) its summary
(i.e., the short sequence of tokens), where <s> and </s>
are begin and end of sequence tokens. We predict Y one
token at a time given X. We adopt the Transformer model
(Vaswani et al. 2017), which is composed of an encoder
Transformer and a decoder Transformer. Specifically, the
encoder Transformer maps X into a sequence of hidden
states E = (eg, e1,...,€|x|).

E = Trans"(X) (D)

Supposing that the first ¢ — 1 tokens y;.,—; have been gen-
erated and we are generating y;. The decoder Transformer
computes the current hidden state o; by self attending to the
encoder hidden states E and proceeding tokens yg.;—1.

o; = TransP (Y0:t—1, E)

@

Note that during training, we can obtain O = (01, ..., 0y
in parallel.
O = Trans”(Y, E) 3)

The probability of y; can be estimated using a linear projec-
tion and a softmax function

p(yt|yo.1—1, X ) = softmax(W? o;) )

Y]

LN = > log p(yelyot—1, X)
=1

5
V] 2 &)

SeqCo: Sequence Level Contrastive Learning for
Text Summarization

In text summarization, the summary Y is a shorter form of the
input document X and they should convey the same meaning.
Therefore, X and Y should be close in the semantic space
at least after certain types of transformations. However, a

"We use rokens instead of words, because the sequence might be
a sequence of sub-words.
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Seq2Seq model is trained using the negative log-likelihood
loss (see Equation (5)) and there is no explicit modeling for
the similarity between X and Y. Further, during the training
phase, given X as input, the model can also generate output
sequences from its distribution by either beam search or
sampling. Let Y denote one sample the model generated
from X. Intuitively, Y should also be similar to both X and
Y. As shown in figure 1, we enforce the similarities between
X,Y andY during model training. To do this, we propose
SeqCo, which is a contrastive learning based model for text
summarization.

Contrastive learning methods are proposed in the context
of self-supervised learning for image representations (Wu
et al. 2018; He et al. 2020b; Caron et al. 2020; Grill et al.
2020; Chen and He 2020). The training objective tries to
make representations of different views of the same image
closer (positive examples) while representations of views of
different images apart from each other (negative examples).
Inspired by Grill et al. (2020) and Chen and He (2020), we
propose a model that does not need negative examples. In
the following, we first define similarity measures between
sequences and then we present how to equip the similarity
measures into our training objective.

Sequence Representation Suppose that we have two
sequences .S; (wp, wy, wy, ..., wig,) and S;

(wh, w,wi, ..., w'\ijQ' S; and S; are two sequences, which
we will maximize their similarity in Eq. 15. For example,
S; and S; can be a document X and its gold summary Y,
or document and generated summary, or gold summary and
generated summary, just like Fig. 2. Before going to the simi-
larity computation, we first convert them into sequences of
hidden representations. We designed two mapping functions
here. The first one ( f(f) is unconditional, which reuses the
encoder of our Seq2Seq model (see Equation (1)):

f§(S:) = g(Trans"(5;)) (©6)
where Trans®(-) is the Transformer encoder described in
Equation (1) and g(+) is a feed-forward network that is used
to give more freedom for encoding S;. Here we use 6 to
denote the parameters in f§(-).

The second mapping function (fP) is conditional, which
takes of the input sequence into account.” Let X denote
the input sequence and 5; is its gold output sequence or a
sequence generated by the Seq2Seq model. In this mapping
function, we employ both the encoder and the decoder of the
Seq2Seq model (see Equation (1) and (2)):

fR(Si) = g(Trans®(S;, Trans®(X))) (7
where Trans®(-) and Trans®(-) are the Transformer encoder
and decoder described in Equation (1) and (3). As mentioned
earlier, g(+) is a feed-forward network to give more freedom
for encoding S;. In fP(-), we intend to use X as additional
input to encode S; more accurately in vector space. During

Note that in f§ we only consider that S; and S; as the gold
summary and the generated summary
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Figure 2: The contrastive objective. S; and S; are two se-
quences to contrast, fg and f¢ have the same architecture,
0 in fy is updated by gradient decent while £ in f¢ is the
moving average of 6.

contrastive training, using f§ (+) can force the objective to op-
timize both the encoder and the decoder of the summarization
model.

Sequence Similarity After defining the mapping functions,
we are ready to compute sequence similarities. Without losing
generality, let fy denote the mapping function, where 6 is the
parameter of the function. Note that fy can be either fg or
12 (see Eq. (6) and (7) for details). We additionally employ
another mapping function f¢, which has the same architecture
as fp, but with parameter £. We obtain the representations of
S; and S; by applying fg and f¢ to them:

hf's ) = fa(S)
1s,) = fe(S))

To fully utilize the word-to-word interactions between the
two sequences S; and S, we apply a cross attention between
H* and H7:

H' = MultiHeadAttn(H/, H', H') )

where MultiHeadAttn(-,-,-) is the multi-head attention
module (Vaswani et al. 2017) and H7, H* and H"* are the
query, key and value matrices, respectively. Note that the

H' = (hj,ht, ...,

, o 8
H’ = (h),h!,... . h ®)

resulting H? and H’ have the same size. The similarity be-
tween S; and S; is the averaged cosine similarities of all
vectors with the same index:

[S;]

1 ~
Z cos(hj, hi)

sim(Si, S]) = Ta 7
|95 +1 &=

(10)

We adopt multi-head attention (MHA) for similarity compu-
tation for two reasons. 1) The sequences (esp. documents) are
long and MHA takes all pairs of tokens across two sequences
into account, which is intuitively more powerful than [CLS]

pooling based methods (will introduce below). 2) The two
sequences we compare may have different lengths (e.g., a
document v.s. a summary). MHA can convert the hidden
states of one sequence to the same length as the hidden states
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of another sequence (see Equation 9), which are easier to use
for the similarity computation.

Note that we can also define a simpler similarity function
using the [CLS] pooling as in BERT (Devlin et al. 2019):

(1)

where ¢ is a feed-forword network to project hj, following
Grill et al. (2020). We obtained worse results using the simi-
larity measure above and the measure also sometimes leads
to numerical errors during training.

sim(S;, S;) = cos(q(h), h))

Training To make S; and S closer, we can minimize the
following loss:

ﬁg,g(si, Sj) =1- szm(SZ, SJ)

As mentioned earlier, fy (the encoding function for S;) and f
(the encoding function for S;) use different set of parameters
(i.e., 0 and &). If we update the parameters in both fy and f
simultaneously, the optimization maybe too easy, which may
lead to collapsed solutions (Grill et al. 2020). So we use f¢
to produce regression targets for fy. Specifically, we do not
update the parameters in f¢ during the optimization of the
loss above and ¢ is a moving average of 6:

E=71E+(1—-1)0

where T € [0,1] is a hyper-parameter to control the extend
of retaining &. This contrastive objective is demonstrated
in figure 2. Note that Lg ¢(S;, S;) is not symmetric and we
make the loss symmetric as follows:

Lsm(Si, S5) = Lo e(Si, S5) + Lo (S, Si)

Hence, 6 in fy will have more chances to be updated. As
mentioned earlier, the encoding function fy can be either f§

12)

(13)

(14)

or fP. We use LE  to denote the loss function using f§ and
LD to denote the loss function using f5.

To enforce the similarities between the document X, its
gold summary Y and one of the model generated summary
Y, we employ the following loss function as our final training
loss®:

£=rNb gy y[,Elm(X Y)+ Ao yﬁ'im( )7) {15)

This objective contains five terms. ENLL is the negatlve log-

likelihood; £2, . is the similarity loss w.r.t. (Y, Y) with fP;

stm
LE”,L terms are the similarity losses with ff w.rt. (X,Y),

(X,Y)and (Y,Y). \y_y, Ao_g» \y_g and )\B_@ are weight
hyper-parameters for the last four terms. We completely train
the model end-to-end following this loss function and em-
pirically find that using a single similarity loss works bet-
ter than using multiple ones, which is also more efficient
for training. For example, we can set A\,_; = 1.0 and
Ao—y = Ay—g = AD_, = 0. When Y is adopted, The model

iteratively generates Y by using the loss to update parameters

3We can also use multiple generated summaries in training, we
refrained to do so for efficiency reasons.



and generating new Y. Since Y can not be perfect, iteratively
generating Y makes it change toward ground-truth summary
and make the positive examples for contrastive learning more
accurate and diverse. Since SeqCo is designed for the fine-
tuning stage, and the model SeqCo based on (i.e., BART)
is pre-trained with a denoising auto-encoding objective, it
can naturally generate the sequence with the same meaning
as the input even before fine-tuning in a specific dataset. In
addition, enforcing the similarity of y and ¢ does not equals
optimizing NLL, since the similarity loss is on sequence level
while the NLL loss is on token level.

Experiments

In this section, we assess the performance of our contrastive
learning model on the task of text summarization. We will
first introduce the datasets we used. Then we present our
implementation details. Finally, we compare our model with
multiple previous models.

Datasets

CNNDM  We conduct our experiments on three summariza-
tion datasets. The CNN/DailyMail dataset (CNNDM; Her-
mann et al. 2015) contains news articles and their associated
highlights (i.e., reference summaries) from the CNN and
Daily Mail websites. We follow the standard pre-processing
steps in (See, Liu, and Manning 2017)* and the resulting
dataset contains 287,226 articles for training, 13,368 for vali-
dation and 11,490 for test.

NYT The New York Times dataset (NYT; Sandhaus 2008)
is composed of articles published by the New York Times
with summaries written by library scientists. Following the
pre-processing procedures in (Durrett, Berg-Kirkpatrick, and
Klein 2016; Liu and Lapata 2019), we first obtain 110,540 ar-
ticles with abstractive summaries. The test set is constructed
from the 9,706 articles published after January 1, 2007. Af-
ter removing articles whose summaries are shorter than 50
words, the final test set contains 3,452 articles. The remaining
100,834 articles are filtered and splitted into 38,264 articles
for training and 4,000 articles for validation.

XSum The articles in the XSum dataset (Narayan,
Cohen, and Lapata 2018) are from the BBC website with
accompanying single sentence summaries, which are
professionally written. We use the official splits of (Narayan,
Cohen, and Lapata 2018) (i.e., 204,045 articles for train-
ing, 11,332 articles for validation and 11,334 articles for test).

All datasets are tokenized with the byte-pair encoding of
GPT2 (Radford et al. 2019).

Implementation Details

Our model is initialized from BARTY o (Lewis et al. 2020).
Therefore, the size is identical with BART 4. (Lewis et al.
2020). Specifically, the encoder and decoder are all 12-layer
transformers with 16 attention heads, hidden size 1,024 and

* Available at https://github.com/abisee/cnn-dailymail
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feed-forward filter size 4,096, which amounts to 406M train-
able parameters. We also have additional component for
contrastive learning. The feedforward network g (see Equa-
tion (6) and (7)) for projecting sequence features contains
one hidden layer of 4,096 neurons with ReLLU activation
function. The multi-head attention module (see Equation (9))
used to compute cross attention between sequences also has
16 heads. These two components above contribute to an extra
13M trainable parameters.

We optimize the model using Adam with 8; = 0.9, 83 =
0.999. Following (Lewis et al. 2020), we employ a linear
schedule for the learning rate. We firstly warmup the model
by increasing the learning rate linearly to a peak learning
rate and then decrease the learning rate linearly to zero. The
peak learning rate, warmup steps, total number of updates and
batch size are tuned on validation sets and are different across
datasets, which are 1000, 20000, 4e — 5, 128 on CNNDM,
500, 5000, 2¢ — 5, 64 on NYT, 500, and 15000, 6e — 5, 64
on XSum. In all datasets, the number of training epochs are
between 5 to 10. During the optimization, parameters ¢ in
the online encoding function f¢ (see Equation (6) and (7))
are not updated. Parameters £ inf¢ are updated following
Equation (13) with 7 = 0.99. We employ label smoothing of
0.1 (Szegedy et al. 2016; Vaswani et al. 2017). The models for
CNNDM are trained on 8 Tesla V100 GPUs, and the models
for the other datasets are trained on 4 Tesla V100 GPUs.
During decoding, we select minimum generated length and
length penalty according to ROUGE scores on the validation
set. Following (Paulus, Xiong, and Socher 2018), we also
blocked repeated trigrams during beam search. Following
(Lewis et al. 2020), the articles are truncated to 1024 tokens
in both training and decoding.

Evaluations

We use ROUGE (Lin 2004) to measure the quality of gener-
ated summaries. We reported full-length F1 based ROUGE-1,
ROUGE-2 and ROUGE-L scores on CNNDM and XSum
datasets. Following (Durrett, Berg-Kirkpatrick, and Klein
2016), we use the limited-length recall based ROUGE-
1, ROUGE-2 and ROUGE-L on NYT, where generated
summaries are truncated to the length of gold summaries.
ROUGE scores are computed with the ROUGE-1.5.5.p1
script>.

Results

We present our main results on the CNNDM dataset in Ta-
ble 1. We compare our model against both extractive and
abstractive systems. The first block summarizes the results
for extractive systems. Lead3 is a baseline which simply takes
the leading three sentences in a document as its summary.
BERTEXT (Liu and Lapata 2019) employs BERT as encoder
and predicts whether a sentence is a summary. MatchSum
(Zhong et al. 2020) is the best performing extractive models,
which formulates summarization as a semantic text matching
problem using contrastive learning. The abstractive models
are in the second block. PTGen (See, Liu, and Manning 2017)
is a LSTM-based Seq2Seq model augmented with copy and

Swith -c 95 -r 1000 -n 2 -a -m arguments



coverage models. Large pre-trained language models mostly
dominate summarization. BERTSUMEXTABS (Liu and La-
pata 2019) is an abstractive model with encoder initialized
with BERT and decoder randomly initialized. UniLM (Dong
et al. 2019) is trained using language modeling and masked
language modeling objectives. TS5 (Raffel et al. 2020), PE-
GASUS (Zhang et al. 2020), BART (Lewis et al. 2020) and
STEP (Zou et al. 2020) pre-train Seq2Seq transformers using
different unsupervised text-to-text tasks. PEGASUS (Zhang
et al. 2020) is trained by predicting gapped sentences (se-
lected by some heuristics) in a document given the document
with these sentences masked. Similar to BERTSUMEXTABS,
the encoder of STEP is initialized from RoBERTa (Liu et al.
2019). BART + R3F (Aghajanyan et al. 2021) applies a trust
region theory based fine-tuning method to BART. Our model
is based on BART and therefore we also re-implement BART
(BART«). These models above are single models. We also
present the results of recent combination models in the third
block. CTRLsum (He et al. 2020a) and GSum (Dou et al.
2021) combine a keywords extraction model (or an extractive
model) with an abstractive model by taking the resulting key-
words (or sentences) as additional input. SimCLS(Chen et al.
2020) and Refsum (Liu, Dou, and Liu 2021) train re-ranking
models to rank multiple candidate summaries.

The fourth block includes results of our model SeqCo. As
mentioned in Equation (15), we can do contrastive learning
between document and gold summary (i.e., SeqCo (Az—y)),
document and generated summary (i.e., SeqCo (Az—y))
as well as gold summary and generated summary (i.e.,
SeqCo (Ay—g)). Note SeqCo (\._,) means that A\,_, > 0
and all the other As equal to zero in Equation (15)°. We can
see that SeqCo (\;—y), SeqCo (A,—3;) and SeqCo (Ay—z)
all outperform BART* significantly (p < 0.05) measured
by the ROUGE script, which demonstrates the effectiveness
of our proposed contrastive methods. SeqCo (A, _g) outper-
forms all single models in comparison (first two blocks) and
differences between them are significant w.r.t. the ROUGE
script. We also observe that using generated summaries in
contrastive learning leads to better performance (i.e., results
of SeqCo (A\;—3) and SeqCo (A, _g) are better), which is not
surprising. Generated summaries are created dynamically
during training and they might be more diverse than gold
summaries.

It is also possible to employ multiple pairs of text for
contrastive learning. Results on validation set with different
combinations of text pairs are shown in Table 2. We obtain
worse results with more than one pair of text in contrastive
learning. Perhaps because the information learned using dif-
ferent pair of text is a bit redundant. We compared the results
on the validation and test sets of the other two datasets and
observed similar trends.” We find best results are achieved
by using a single similarity loss on all datasets except for the
validation set of XSum, where SeqCo (A;_y + Ay_g) and Se-
qCo (Ag—y + Az—g + Ay—_y) outperform SeqCo(x-y) slightly.

SWe tune A\y—y, Ao—g, Ay—gy € {0.5,1.0} on the validation set
when > 0

"Please refer to https://arxiv.org/abs/2109.03481 for Appedix,
detailed numbers are shown in Appendix.
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Model R-1 R-2 R-L
Extractive
Lead3 40.34 17.70 36.57
BERTEXT (2019) 43.85 20.34 39.90
MATCHS UM (2020) 44.41 20.86 40.55
Abstractive
PTGen (2017) 39.53 17.28 36.38
BERTSUMEXTABS (2019) 42.13 19.60 39.18
UnilLLM (2019) 43.47 20.30 40.63
T5 (2020) 43.52 21.55 40.69
PEGASUS (C4) 43.90 21.20 40.76
PEGASUS (HugeNews) 44.17 21.47 41.11
STEP (2020) 44.03 21.13 41.20
BART (2020) 44.16 21.28 40.90
BART«* (2020) 44.10 21.31 40.91
BART + R3F (2021) 44.38 21.53 41.17
Combination Methods
CTRLsum (2020a) 45.65 22.35 42.50
GSum (2021) 45.94 22.32 42.48
simCLS (2021) 46.67 22.15 43.54
Refsum (2021) 46.12 2246 4292
Ours

SeqCo (Ag—y) 44.667 21.57* 41.38*
SeqCo (Az—g) 44947 21.821 41.68F
SeqCo (Ay—g) 45.021 21.801 41.75%

Table 1: Results on the test split of CNNDM using full length
F1 based ROUGE-1/2/L. x means our own re-implementation.
SeqCo (Az—y), SeqCo (A;—3) and SeqCo (\y_y) stand for
contrastive learning between document and gold summary,
document and generated summary as well as gold and gener-
ated summary, respectively. * means outperforms BART« sig-
nificantly,  means outperforms best performing single model
“BART+R3F” significantly (p < 0.05). Models in “Combina-
tion Methods” employ multiple summarization models.

Given the fact that adding one more similarity loss increases
around 30% training time and the observations above, we
recommend using a single similarity loss. We probably need
to encourage the “disagreement” between them (we leave
this for future work). As mentioned in Equation (7), we can
also use decoder based encoding function fp (see the SeqCo
()\5_@) and SeqCo (A\,_g) rows in Table 2) and we obtain
worse results. It may because influencing the decoding dur-
ing contrastive training is too aggressive. Therefore, we only
report results of contrastive models on single pair of text (i.e.,
SeqCo (Az—y), SeqCo (A;—4) and SeqCo (A,—_35)) on NYT
and XSum. We also propose to employ multi-head attention
based similarity modeling (see Equation (9) and (10)) rather
than [CLS] based method (see Equation (11)). It also shows
attention based similarity, which takes associations across
two sequences into account, is better (see SeqCo (Ay_;) and
SeqCo (Ay—y) w/ [CLS] rows in Table 2).

Results on NYT are shown in Table 3 and the trend is sim-
ilar. ROBERTA-S2S is a transformer based Seq2Seq model
with encoder initialized from RoBERTa (Liu et al. 2019) and
its results are reported in (Zou et al. 2020). SeqCo (A\;—g)



Model R1  R2 RL
BARTx 4524 2210 42.01
SeqCo (Ay—y) 45.60 2230 4236
SeqCo (Ap—g) 4580 2239 42.57
SeqCo (Ay—z) 4588 22.46 42.66
SeqCo (Ay_g) w/ [CLS] 4572 2242 4248
SeqCo (Ag—y + Ap_g) 45.68 2238 42.45
SeqCo (Ag—y + Ay—g) 4562 2229 4237
SeqCo (Mg + Ay_g) 4572 2235 4245
SeqCo Mgy + Ag—g + Ay_g) 4572 2238 4246
SeqCo (\2_ ) 4574 2239 41.55

Table 2: Results on the validation split of CNNDM using
full length F1 based ROUGE-1/2/L. “w/ [CLS]” means we
replace MHA with [CLS] pooling defined in Eq. 11

Model R-1 R-2 R-L
Extractive

Lead3 39.58 20.11 35.78

BERTEXT (2019) 46.66 26.35 42.62
Abstractive

PTGen (2017) 43.71 26.40 -

BERTSUMEXTABS (2019)  49.02 31.02  45.55

ROBERTA-S2S (2019) 45.92 29.48 42.73

STEP (2020) 50.03 32.12 46.25

BART«* (2020) 53.20 35.04 49.23

Combination Methods
GSum (2021) 54.27 35.37 47.63
Ours

SeqCo (Ag—y) 53.79 3543 49.84

SeqCo (Az—g) 54.25* 35.82* 50.24*

SeqCo (Ay—g) 54.14 35.69 50.11

Table 3: Results on the test split of NYT using limited-length
recall based ROUGE. x means our own re-implementation. *
means outperforms BART* significantly (p < 0.05).

outperforms BART« by +1.0 ROUGE-1, +0.8 ROUGE-2 and
+1.0 ROUGE-L and the differences between them are signifi-
cant measured by the ROUGE script. SeqCo (A;_j;) obtains
better results than all models in comparison. We again ob-
serve that using generated summaries in SeqCo are better
than using gold summaries only.

Table 4 summarizes our results on the XSum dataset.
BARTx* (our reimplementation) are better at ROUGE-1, but
worse at ROUGE-2 and ROUGE-L compared to BART. Se-
qCo (Az—,) outperforms BART significantly measured with
the ROUGE script. Results of SeqCo (A, _,) are better than
all previously published models except for PEGASUS (Huge-
News) and Refsum. It is not entirely surprising, because
PEGASUS (HugeNews) is trained on 3,800 GB news data
(the same genre as the XSum dataset), while PEGASUS(C4)
is pre-trained on the C4 dataset consist of text from 350M
Web pages (750GB) and performs worse than PEGASUS
(HugeNews). Refsum reranks outputs of PEGASUS (Huge-
News). Note that the pre-trained transformer (i.e., BART) in
SeqCo is trained on only 160 GB data, which also contains
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Model R-1 R-2 R-L
Extractive
Lead3 16.30 1.60 11.95
MATCHS UM (2020) 24.86 4.66 18.41
Abstractive
PTGen (2017) 28.10 8.02 21.72
BERTSUMEXTABS (2019)  38.81 16.50 31.27
ROBERTA-S2S (2019) 43.54 20.49 35.75
STEP (2020) 43.02 20.11 35.34
PEGASUS (C4) 45.20 22.06 36.99
PEGASUS (HugeNews) 47.21 2456  39.25
BART (2020) 45.14 22.27 37.25
BART«* (2020) 45.35 22.01 36.76
Combination Methods
GSum (2021) 45.40 21.89 36.67
simCLS (2021) 47.61 24.57 39.44
Refsum (2021) 47.45 24.55 3941
Ours

SeqCo (Ag—y) 45.65* 22.41* 37.04*
SeqCo (Az—g) 45.6 22.36 36.94
SeqCo (Ay—g) 45.52 22.24 36.90

Table 4: Results on the test split of XSum using full length
F1 based ROUGE. * means our own re-implementation. *
means outperforms BARTx significantly (p < 0.05).

data in other domains rather than news data.

Human Evaluation We do human evaluations on CN-
NDM, NYT and XSum with 100 documents each. We asked
the participants to rank the outputs of different systems ac-
cording to their faithfulness and the mean rank scores (lower
is better) are shown in table 5. We employed (self-reported)
native speakers to annotate our output summaries on Ama-
zon Mechanical Turk. To further guarantee the annotation
quality, we filter out the annotated assignments which were
done less than two minutes (average time spent per assign-
ment is 6 minutes). After the filtering process, we guarantee
each document is annotated by three annotators. In CNNDM
and NYT datasets, Seqco outperforms BART significantly.
In XSum dataset, there are no significant differences among
these systems. It may be because generated summaries in
XSum are shorter, which are difficult for annotators to tell
the differences. We calculate the ratios of agreement between
annotators (i.e., ratio of all three annotators’ agreement and
ratios of at least two annotators’ agreement) to measure the
agreement for human evaluation. As shown in table 6, there
are around 30% of summaries that all of 3 participants give
the same annotations, and more than 90% of summaries
obtained the same annotations by at least 2 annotators. In
addition, the Fleiss” Kappa scores are 0.329 on CNNDM,
0.313 on NYT and 0.364 on XSum, which demonstrate a
fair degree of agreement. We believe the agreement between
annotators is reasonable.

Analysis  Different from CNNDM and NYT, why does using
generated summaries in contrastive learning perform worse
on XSum? As shown in Table 7, it may because XSum is more
abstractive (see the novel ngram statistics of Gold on the



systems | BART z—y z—9y y—9
CNNDM | 2.62 251 2.45%  2.42%
NYT 2.68  246* 2.39* 246*
XSum 247 244 258  2.50

Table 5: Human evaluation on faithfulness with mean rank
(lower is better). We randomly sample 100 documents for
each dataset and asked the participants to rank the outputs
of different systems according to their faithfulness. * means
this result is significantly different (p < 0.05) from BART.

Datasets | CNNDM NYT Xsum
3 agree 26.50%  31.00% 29.50%
> 2agree | 96.25%  95.75% 94.75%

Table 6: The ratios of agreement between annotators.

three datasets) and more difficult. As a result, the generated
summaries are easier to have different meanings from their
documents and gold summaries (at least in the early stage
of training). Maybe that is the reason why the z — ¢ and
y — ¢ objective is worse than the x — y objective. CNNDM
and NYT are less abstractive and the generated summaries
could retain the main meanings more easily and are also more
diverse (compared to gold summaries), which leads to the
x — ¢ and y — ¢ objectives work better.

We can also see from Table 7 that SeqCo can either be more
abstractive than BART or almost as abstractive as BART. To
choose the contrastive objective, our suggestion is 1) for the
datasets whose summaries are highly abstractive, choose the
x — y pair as the contrastive objective; 2) for less abstractive
datasets (the case for most datasets), choose either x — ¢ or
y — ¥ as the contrastive objective. As far as we observed, the
performance of  — ¢ and y — ¢ are similar.

Ablation Study We list the ablation results on three
datasets in the appendix A.® We compared single similar-
ity loss v.s. multiple similarity losses on the validation and
test sets and observed the similar trends. We find best re-
sults are achieved by using a single similarity loss on all
datasets except for the validation set of XSum, where SeqCo
(Az—y + Ay—g) and SeqCo (A\z—y + Az—y + Ay_g) outper-
form SeqCo(x-y) slightly. Given the fact that adding one
more similarity loss increases around 30% training time and
the observations above, we recommend using a single simi-
larity loss.

Example Outputs Some example outputs of SeqCo and
BART* are also listed in appendix B. In conclusion, BART
sometimes miss some important points, while SeqCo can do
better.

Conclusions

In text summarization, a document, its gold summary and
model generated summaries can be viewed as different views
of the same meaning representation. We propose SeqCo, a

8Please refer to https:/arxiv.org/abs/2109.03481 for Appedix.
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Model 1-gram 2-gram 3-gram
CNNDM

Gold 0.1360 0.4871  0.6908

BART 0.0157 0.1140 0.2161

SeqCo 0.0228 0.1524  0.2769
NYT

Gold 0.1064 0.4260 0.6189

BART 0.0350 0.2231 0.3896

SeqCo 0.0368 0.2284  0.3961
XSum

Gold 0.3752  0.8328 0.9551

BART 0.2821 0.7341 0.8924

SeqCo 0.2929 0.7465 0.9015

Table 7: Proportions of novel n-grams w.r.t. original docu-
ments in gold and model generated summaries on the valida-
tion sets of CNNDM, NYT and XSum.

sequence level contrastive learning model for text summa-
rization, which intends to minimize distances between the
document, its summary and its generated summaries dur-
ing training. Experiments on three summarization datasets
(CNNDM, NYT and XSum) show that SeqCo consistantly
improves a strong Seq2Seq text generation model. In the
future, we plan to extend SeqCo in the multi-lingual or cross-
lingual text generation tasks. We observed in experiments
that using multiple contrastive objectives did not improve the
results. We are interested in developing methods for regular-
izing different contrastive objectives.
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