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Abstract

Pre-training and fine-tuning have become the de facto
paradigm in many natural language processing (NLP) tasks.
However, compared to other NLP tasks, neural machine trans-
lation (NMT) aims to generate target language sentences
through the contextual representation from the source lan-
guage counterparts. This characteristic means the optimization
objective of NMT is far from that of the universal pre-trained
models (PTMs), leading to the standard procedure of pre-
training and fine-tuning does not work well in NMT. In this
paper, we propose a novel framework to deep fuse the pre-
trained representation into NMT, fully exploring the poten-
tial of PTMs in NMT. Specifically, we directly replace the
randomly initialized Transformer encoder with a pre-trained
encoder and propose a layer-wise coordination structure to co-
ordinate PTM and NMT decoder learning. Then, we introduce
a partitioned multi-task learning method to fine-tune the pre-
trained parameter, reducing the gap between PTM and NMT
by progressively learning the task-specific representation. Ex-
perimental results show that our approach achieves consid-
erable improvements on WMT14 En2De, WMT14 En2Fr,
and WMT16 Ro2En translation benchmarks and outperforms
previous work in both autoregressive and non-autoregressive
NMT models.

Introduction
Pre-trained models (PTMs), such as GPT (Radford et al.
2018, 2019), BERT (Devlin et al. 2019), XLM (Lample and
Conneau 2019), have obtained large success in many nat-
ural language processing (NLP) tasks, from understanding
(NLU) (Devlin et al. 2019; Lample and Conneau 2019) to
generation (NLG) (Song et al. 2019; Lewis et al. 2019). Gen-
erally, training a PTM requires a large amount of unlabeled
data and well-designed self-supervised training objectives
(e.g., masked language model (MLM) (Devlin et al. 2019)
or auto-regressive language model (Radford et al. 2018)).
Various downstream tasks then directly utilize the pre-trained
knowledge by fine-tuning the parameters of PTMs with the
task-specific training data (Qiu et al. 2020).

However, neural machine translation (NMT) does not get
promising results in this transformation, especially for the
rich-resource language pairs (Yang et al. 2019; Zhu et al.
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2020; Weng et al. 2020a; Liu et al. 2020; Chen et al. 2021).
Unlike most NLP tasks, as a bilingual generation task (Bah-
danau, Cho, and Bengio 2014; Cho et al. 2014; Vaswani et al.
2017), the goal of NMT is to generate target language sen-
tences through the contextual information from the source
language counterparts. Both of pre-trained encoders (Radford
et al. 2018; Devlin et al. 2019; Lample and Conneau 2019)
and sequence to sequence models (Song et al. 2019; Lewis
et al. 2019) cannot fit this goal, i.e., these models only learn
representations in the same language. This phenomenon leads
to that simply fine-tuning the parameters of PTMs suffering
from the catastrophic forgetting problem (Goodfellow et al.
2013; Yang et al. 2019). Thus, how to explore the potential
of PTMs in NMT is still an issue worthy of study.

Recently, some studies have noticed the aforementioned
problem and proposed several effective fusion-based methods.
Zhu et al. (2020) proposed a BERT-fused NMT to fuse repre-
sentations of BERT into NMT. Yang et al. (2019) proposed
asymptotic distillation and dynamic switch methods for fur-
ther utilizing pre-trained knowledge. Meanwhile, Weng et al.
(2020a) proposed a dynamic fusion mechanism to choose the
pre-trained representations dynamically. Their primary mo-
tivation is to extract pre-trained representations from PTMs
and feed them into the NMT model. The pre-trained represen-
tation acts as a supplement to the NMT (i.e., shallow fusion),
which is not sufficient to make use of PTMs and renders the
scale of NMT becomes very large. In addition, another short-
coming is that they completely abandon the fine-tuning and
treat PTMs as a static knowledge base. However, a proper
fine-tuning strategy is helpful to reduce the gap between
PTMs and NMT, prompting the pre-trained representation to
be more suitable for translation (Gururangan et al. 2020).

In this paper, towards making more effective use of PTMs
in NMT, we propose a deep fusion framework, taking the
previous fusion-based approach a step further. On the one
hand, we propose a layer-wise coordination structure to coor-
dinate the learning of the PTM and the NMT decoder, rather
than regarding the PTM as a plug-in module of NMT. In our
structure, the PTM replaces the randomly initialized Trans-
former encoder, and the decoder generates target sentences
just relying on the contextual representation of the PTM. Dif-
ferent from the traditional coordination structure (He et al.
2018), each decoder layer only captures the representation
from the corresponding encoder layer. We adopt a coordina-
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tor to connect the PTM and the NMT decoder, which serves
as a bridge to map universal representation to task-specific
representation. The coordinator aggregates the multiple layer
representations of PTM, integrating all layer representations
into the NMT decoder (Dou et al. 2018a; Wang et al. 2018).

On the other hand, we propose a partitioned multi-task
training strategy with two bilingual intermediate tasks to
eliminate the intrinsic gap between PTMs and NMT. Firstly,
given the source language sentence, we introduce a target
sentence prediction (TSP) task to ask for the PTM to identify
the corresponding target sentence and a target words pre-
diction (TWP) task to predict words in this target sentence.
Then, each task takes on different responsibilities though
optimizing different parts of the model.1 To be more specific,
the translation task only trains the NMT decoder to learn to
translate, while two intermediate tasks with the MLM ob-
jective will optimize the encoder part to avoid the forgetting
problem.

To demonstrate the effectiveness of the proposed approach,
we experiment on widely used machine translation tasks
in both autoregressive (AT) (Vaswani et al. 2017) and non-
autoregressive (NAT) (Ghazvininejad et al. 2019) NMT mod-
els. Our approach with the AT model achieves 31.43, 43.91,
and 39.62 BLEU scores on the WMT14 En→De, WMT14
En→Fr and WMT16 Ro→En, respectively. When combined
with the NAT model, our approach gets 2.14 gains on the
WMT14 En→De task. We summarize our contributions as
follows:

• We study the problem of using PTMs in NMT models,
namely PTMs only learn representations in the same lan-
guage, while NMT models need the representations across
languages.

• We propose a novel deep fusion framework, including a
layer-wise coordination structure and a partitioned multi-
task learning paradigm, to fully explore the potential of
PTMs in NMT with limited model size.

• Experimental results on three machine translation bench-
marks show that our approach achieves considerable im-
provements over strong baselines and related work in both
autoregressive and non-autoregressive NMT models.

The Proposed Approach
In this section, we will briefly introduce the Transformer
based NMT (Vaswani et al. 2017) and MLM (Devlin et al.
2019), and give some necessary notations. Then, we will
introduce the proposed approach based on them in detail.

Background and Notations
Neural machine translation. Given a parallel sentence
pair {x, y}, where x and y are the source and target
sequences, respectively. In the NMT, y is generated by
DEC(ENC(x; θE); θD), where ENC(·) and DEC(·) are the en-
coder and the decoder networks, respectively. The θE and θD
are the parameters of the encoder and decoder. Both of them

1Our approach is a variant of the behavioral fine-tuning in
https://ruder.io/recent-advances-lm-fine-tuning.

are composed of multiple self-attention layers (Vaswani et al.
2017), the number of layer is denoted N .

The encoder encodes x to the contextual representation
RN ∈ RI×denc , where I is the length of x and denc is the
hidden size of the encoder. Formally, the nth layer’s repre-
sentation Rn is calculated by:

Rn = ENCn(Rn−1) = LN(R̃n + FFN(R̃n)), (1)

R̃n = LN(ATT(Rn−1,Rn−1,Rn−1) + Rn−1), (2)

where LN(·), FFN(·) and ATT(·) are layer normalization (Ba,
Kiros, and Hinton 2016), feed forward network and self-
attention network (Vaswani et al. 2017).

Similar to the encoder, the target representation SN ∈
RJ×ddec is computed by

Sn = DECn(RN , Sn−1) = LN(Hn + FFN(Hn)), (3)

Hn = LN(ATT(S̃n,RN ,RN ) + Sn−1), (4)

S̃n = LN(ATT(Sn−1, Sn−1, Sn−1) + Sn−1), (5)

where Sn−1 is from the previous layer and ddec is the decoder
hidden size which is the same as denc, J is the length of the
output sentence.

The training objective of NMT is to minimize the negative
log-likelihood, denoted by:

LT = − logP (y|x; θE , θD), (6)
P (y|x) = softmax(FFN(SN )). (7)

Masked lanaguage model. Devlin et al. (2019) proposed
to use the masked language model task (MLM) to pre-train a
Transformer encoder.

Specifically, given the input sentence x, a sequence xR
is constructed by randomly masking some tokens of x.
The MLM task is to recover the masked tokens: x =
ENC(xR; θP), where θP is the parameters of the encoder. The
training objective of MLM is

LMLM = − logP (x|xR; θP), (8)

P (x|xR; θP) = softmax(FFN(RN )). (9)

Layer-wise Coordination Structure
Generally, the input of each Transformer decoder layer is
a static contextual representation from the encoder and the
output of the previous decoder layer (Eq.3-Eq.5). However,
previous work (Wei et al. 2020; Dou et al. 2018b; Wang et al.
2018) shown that a dynamic contextual representation from
the encoder’s multi-layer representations can help to generate
target sentences better. Compared to the vanilla encoder of
NMT models, PTMs trained by large-scale unlabeled data
have richer contextual information. A suitable approach to uti-
lizing multi-layer representations is essential for effectively
exploiting pre-trained knowledge.

We adopt a layer-wise coordination structure to feed each
decoder layer with the contextual representations from the
PTM. Different from He et al. (2018), which coordinates the
encoder and the decoder layer-by-layer strictly, we introduce
an inner structure (named coordinator) to soft connect the
PTM and the decoder with a multi-to-multi manner.
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Figure 1: The overview of the proposed layer-wise coordina-
tion structure.

Specifically, we define the PTM as PTM(·; θP), θP is the
parameters of the PTM, and divide it into N parts, each
part has M Transformer layers. N is equal to the number of
decoder layer. In other words, the total number of layers of
the PTM is N · M , and the overall layers of our model is
N ·(M+1). The proposed coordinator includes two modules,
an aggregation layer and a layer-wise attention mechanism.
We firstly adopt the aggregation layer to densely aggregate
representations in the same part:

RA
n = LN(FFN(RP

n,1 + · · ·+ RP
n,M )), (10)

where RP
n,M ∈ RI×dptm is the hidden states from the PTM.

Then, the contextual representation Cn ∈ RI×ddec is com-
puted by the layer-wise attention mechanism:

Cn = FFN(
N∑

k=1

αkRA
k ), (11)

where the FFN(·) is a mapping function (i.e., dptm � ddec)
to integrate the PTM representations into the decoder. The
attention weight αk is calculated by

αk =
exp(ek)∑N
t=1 exp(et)

, (12)

ek =FFN((
1

I

I∑
i=1

rAn,i) · (
1

I

I∑
i=1

rAk,i)). (13)

where rAn,i and rAk,i are the ith vector from RA
n and RA

k , re-
spectively. Finally, the decoder representation is:

Sn = DECn(Cn, Sn−1), (14)

In this process, the PTM and the coordinator can be con-
sidered as the encoder. The role of the aggregation layer is
to merge and regroup the similar pre-trained representations.
And the layer-wise attention determines which representation
is more important for the current decoder layer. The overview
is shown in the Figure 1.

Dec

DecCodPTM

CodPTM

LMLM LTLTWP LTSP+

LMLM

LT
LTWP LTSP+

Gradient Propagation Flow

Figure 2: The overview of the partitioned multi-task learning
framework. The Cod means the coordinator. The dash lines
are the gradient propagation flow of different tasks.

Partitioned Multi-task Training
We introduce a partitioned multi-task training to reduce the
gap between PTMs and NMT. Besides the NMT training ob-
jective, we design two simple training objectives as interme-
diate tasks to learning bilingual representation. Furthermore,
the masked language model (MLM) (Devlin et al. 2019) task
is also employed to avoid the forgetting problem.

Target words prediction. The first training objective is the
target words prediction (TWP), which is to assess whether
the word is in the target sentence according to the source
sentence. Specifically, we introduce a sub-task to predict
the target sentence’s bag-of-words, forcing the contextual
representation to capture lexical-level knowledge of the target
sentence. Following Zhao, Zhao, and Eskenazi (2017); Weng
et al. (2017), we assume each target word is independent of
each other. Formally, given an output sentence y, the loss of
TWP task is defined as:

LTWP = − logP (ybow|rAN ; θC, θP)

= − log
J∏

j=1

P (yj)∑V t

k P (yk)
, (15)

rAN =
1

I

I∑
i=1

rAN,i, (16)

where θC is the parameters of the proposed coordinator, V t is
the target vocabulary and ybow is a unordered set containing
all words in the given target sentence y.

Target sentence prediction. Inspired by Wei et al. (2021)
and Chen et al. (2020), we introduce a contrastive learning
based training objective, named target sentence prediction
(TSP), to predict the target sentence.

Given the representation rAN (Eq.16) from x, we denote
the sentence representation g(x) is computed by FFN(rAN ),
where FFN(·) is a linear projection layer (Chen et al. 2020).
Then, the training objective here is defined as:

LTSP = − log
exp(s(g(x), g(y)))∑B

b=1 exp(s(g(x), g(ŷb)))
, (17)
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where s(·) is the cosine similarity, ŷb is the negative sample
in the contrastive learning framework (Khosla et al. 2020).
In the NLP, the key factor of employing contrastive learning
is how to get reasonable negative samples (Fang and Xie
2020; Lee, Lee, and Hwang 2020). Here, we use two meth-
ods to collect negative samples. The first one is considering
other target sentences in the same batch as negative samples.
The next one is replacing some words in the y to build neg-
ative samples. We choose 50% words in the y, and swap,
replace and delete them randomly. The synthetic sentences
have similar words to the target sentence but do not have
correct semantic. Each method will produce 1

2B sentences,
where B is the batch size. Finally, we can get a set of negative
examples {ŷ1, ŷ2, ..., ŷB}.

Training. Each task in our multi-tasking learning frame-
work optimizes different parts of the model. As shown in the
Figure 2, the optimization parts of the translation task (LT)
includes the decoder (θD) and the coordinator (θC). While
the proposed TWP and TSP tasks optimize the coordinator
and the PTM (θP). The purpose of this is to enable the gener-
ated contextual representation to obtain bilingual information.
Then, the MLM only optimizes the PTM to avoid forgetting
the pre-trained knowledge. Finally, the training function can
be summarized as

L = LT + LTWP + LTSP + LMLM. (18)

Experiment
Data-sets
We evaluate our approach on three WMT translation tasks2,
including WMT 14 English to German (En→De), WMT14
English to French (En→Fr) and WMT16 Romanian to En-
glish (Ro→En). Here, the En→De is the most widely used
benchmark in machine translation. The En→Fr has the most
training data of any public dataset. And the Ro→En could be
treated as a low-resource language pair.

Following previous work (Vaswani et al. 2017; Caswell,
Chelba, and Grangier 2019), on the En→De task, the training
set has about 4.5M sentence pairs. We use newstest2013
as validation set which has 3000 sentence pairs, and
newstest2014 as test set which has 3003 sentence pairs.
On the En→Fr task, our training set has about 36M sen-
tence pairs. We use newstest2013 as validation set
which has 3000 sentence pairs, and newstest2014 as
test set which has 3003 sentence pairs. On the Ro→En
task, our training set has about 0.6M sentence pairs. We
use newstest2015 as validation set which has 2000 sen-
tence pairs, and newstest2016 as test set which has 2000
sentence pairs.

Implementation Detail
We adopt cased multilingual BERT3 (mBERT) as the default
PTM in our experiments for fairly comparing to previous
work. The depth of the mBERT is 12 and the hidden size
is 768. The hyperparameter M is set 2 and the ddec is set

2http://www.statmt.org/wmt17/translation-task.html
3https://github.com/google-research/bert

as 768. So, the layer number of the decoder are 6. We use
the vocabulary from the mBERT as the source vocabulary
and the target vocabulary is limited to 30k. We implement
the proposed approach with the in-house implementation
derivated from tensor2tensor.

We use label smoothing with the value 0.1 and dropout
with the rate of 0.1. Adam (Kingma and Ba 2014) is used
to update parameters, and the learning rate is set as 0.0001.
The batch size is set as 64 and the max sentence length
is limited to 80. All experiments are conducted on 8 V100
GPUs, and we accumulate the gradient 4 iterations in En→De
and En→Fr tasks.

After the training stage, we use beam search as the decod-
ing algorithm, and the beam size is set as 4. We measure
the translation quality with the BLEU score (Papineni et al.
2002) computed by multi-bleu.perl script provided
by Moses4, and report the tokenized case-sensitive score.

Main Results
Translation quality. We firstly evaluate the proposed ap-
proach on WMT14 En→De and En→Fr tasks. All results are
summarized in the Table 1. Line 1 and 2 are the Transformer-
Base and Transformer-Big baselines from Vaswani et al.
(2017). We also implement them with the same setting in
our experiment, which are shown in the line 7 and 8. Ours
outperform the results from Vaswani et al. (2017).

Compared to the above setting, our model has a deeper
encoder. So, we implement two Transformer baselines with
12 and 20 encoder layers, which are denoted as Transformer-
12 (line 9) and Transformer-20 (line 10). Here, we set the
hidden size of them as 768 and use the pre-norm (Wang et al.
2019) in the Transformer-20 for achieving better performance.
Moreover, we also report some advanced work about NMT
with a deep encoder (line 3-6) (Bapna et al. 2018; Wang et al.
2019; Wu et al. 2019; Li et al. 2020).

Our model gets 31.59 and 44.21 BLEU scores on
the En→De and En→Fr tasks, respectively. Compared to
the Transformer-Base/Big, our model (line 11) achieves
3.81/2.46 BLEU score improvements. Then, compared to
the Transformer-20, which is the strongest baseline in Table
1, our model achieves 1.77 and 1.28 improvements. Com-
pared to previous work, our model gets the best performance
in both of the two tasks. Moreover, our model only add a lim-
ited number of parameters. Experimental results on the above
two translation tasks show that our approach can effectively
exploit PTMs to improve translation quality.

Compared to previous work. We also make a comparison
to some related work in our experiment. The overall results
are reported in Table 2. The first one is that using mBERT
to initialize the encoder’s parameters of the Transformer-12.
Then, in the NMT training process, the encoder is fine-tuned
(line 2) and frozen (line 3), respectively. Following Weng et al.
(2020a), we adopt knowledge distillation to learn the knowl-
edge from mBERT to NMT (line 4). In addition, we use two
sequence to sequence pre-trained models, i.e., mBART (Liu

4https://github.com/moses-smt/mosesdecoder/blob/
master/scripts/generic/multi-bleu.perl
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# Model #Param En→De En→Fr
1 Transformer-Base (Vaswani et al. 2017) 65M 27.3 38.1
2 Transformer-Big (Vaswani et al. 2017) 213M 28.4 41.0
3 Transparent (Bapna et al. 2018) 137M 28.04 −
4 Deep NMT (Wang et al. 2019) 137M 29.3 −
5 Depth Growing NMT (Wu et al. 2019) 268M 29.92 43.27
6 SD-Transformer(Li et al. 2020) 437M 30.46 43.29

7 Transformer-Base 62M 27.78 38.96
8 Transformer-Big 207M 29.13 41.70
9 Transformer-12 (dmodel = 768) 123M 29.32 42.39
10 Transformer-20 (dmodel = 768, pre-norm) 159M 29.82 42.93

11 Ours 171M 31.59† 44.21†

Table 1: The translation quality of our model (Ours). The column #Param is the number of parameters. † indicate significantly
better than the baseline (p < 0.01), which is computed by compare-mt (Neubig et al. 2019).

# Model #Param En→De En→Fr

1 Transformer-12 123M 29.32 42.39
2 Transformer-12 + Use mBERT to initialize the encoder 164M 29.19 41.46
3 Transformer-12 + Use frozen mBERT as the encoder 164M 28.17 40.03
4 Transformer-12 + Knowledge Distillation 123M 29.97 42.88

5 Use mBART (Liu et al. 2020) to initialize NMT 610M 28.82 41.77
6 Use MASS (Song et al. 2019) to initialize NMT 123M 29.41 42.03

7 CTNMT (Yang et al. 2019) − 30.1 42.3
8 BERT-fused NMT (Zhu et al. 2020) ∼500M 30.75 43.78

9 Ours 171M 31.59 44.21

Table 2: The comparison of our approach (Ours) and previous approaches. #Param is the number of parameters.

et al. 2020) and MASS (Song et al. 2019), to initialize and
fine-tune the parameters of NMT (line 5 and line 6).5 Finally,
two approaches about incorporating PTMs into NMT, i.e.,
CTNMT (Yang et al. 2019) and BERT-fused NMT (Zhu et al.
2020), are reported in line 7 and 8.

The fine-tuning method cannot get substantial improve-
ments. The knowledge distillation method only can get
marginal improvements in both En→De and En→Fr tasks.
CTNMT and BERT-fused NMT can get considerable improve-
ments. While the proposed model largely outperforms all of
them. Typically, compared to the BERT-fused NMT, which
needs to using BERT-Large on-the-fly, our approach can get
better results with fewer computational resources.

Employed on non-autoregressive NMT. Our work only
changes the encoder of NMT, which is not affected by de-
coding mode. Thus, whether our approach can work on non-
autoregressive translation (NAT) models (Gu et al. 2017;
Ghazvininejad et al. 2019) is worthy to investigate. Com-
pared to the autoregressive NMT, NAT relies more on the
quality of the contextual representation.

Here, we employ the proposed approach based on the

5We convert the parameters of the public mBART and MASS to
our code base. The results in our experiment are consistent with the
Liu et al. (2020).

Model #Speedup En→De

(Vaswani et al. 2017) 1.0x 27.3
(Gu et al. 2017) 2.36x 19.17
(Ghazvininejad et al. 2019) 1.7x 27.03
(Zhu et al. 2020) 0.95x 27.73
(Guo et al. 2020) 1.26x 28.69

Transformer-20 1.0x 29.82
Ours 1.57x 29.17

Table 3: The results of our method on the non-autoreggressive
NMT (NAT). #Speedup is the decoding efficiency.

Mask-Predict (Ghazvininejad et al. 2019) framework6 and
evaluate in the En→De task. The results are shown in Table
3, our work largely outperforms the Mask-Predict baseline
(+2.14). Then, compared to the BERT-Fused NAT (Zhu et al.
2020) and AB-Net (Guo et al. 2020), our work get 1.44 and
0.48 BLEU score gains, respectively. This experiment shows
that our approach can get better contextual representation for
NMT no matter which decoding modes.

6The detail of the setting is shown in Ghazvininejad et al. (2019).
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Model En→De Ro→En

(Zhu et al. 2020) − 39.10
(Caswell, Chelba, and Grangier 2019) 31.40 −
Transformer-Base 27.78 31.93
Transformer-12 29.32 33.79
+ Back-translation 31.63 37.51

Ours 31.59 36.71
+ Back-translation 32.56 39.48

Table 4: The comparison of our model and back-translation.

Combined with back-translation. An interesting question
is whether pre-trained models and back-translation can work
together. Here, to verify that, we make an experiment on
the En→De and Ro→En tasks. Specifically, for the En→De
task, we use 24M synthetic data from Caswell, Chelba, and
Grangier (2019). For the Ro→En task, we use 2M back-
translated data from Sennrich, Haddow, and Birch (2016).

The results are shown in Table 4, our method with back-
translation can achieve 0.93 and 1.97 improvements com-
pared to Transformer-12 with the same synthetic data in two
tasks. Moreover, our model with back-translation gets 0.97
and 2.77 gains compared to only using parallel data. The
results demonstrate that our method could work with back-
translation to achieve better performance.

A hypothesis of our model can work together with back-
translation is that the PTM enhances the encoding ability
of NMT, while the back-translation improves the ability of
the translation model. We will carry out further research and
analysis in the future work.

Initializing the parameters of the decoder with PTMs.
Generally, the target side unlabeled data can be used to pre-
train a language model, which can serve as the decoder
of NMT. Thus, we use all 216M monolingual data from
WMT (Edunov et al. 2018) to pre-train a GPT model (Rad-
ford et al. 2018). Then, the pre-trained GPT is used to initial-
ize the parameters of the decoder. As a comparison, we also
use the mBERT to initialize the decoder in our framework.

The results are shown in Table 5, no matter what PTM
is used, the fine-tuning method does not work. In addition,
when freezing the parameters of the PTM, the performance
drops dramatically, which shows that the current methods of
using pre-trained decoders are not appropriate for NMT.7

Analysis
The effectiveness of training objectives. To verify the
effectiveness of each objective in the partitioned multi-task
learning framework, we make an ablation study here.

The results are shown in Table 6, both of the target words
prediction (LTWP) and target sentence prediction (LTSP) af-
fect the final performance. When ablating one of the two
tasks, BLEU score drops about 0.4. BLEU drops 0.65 when

7The prompt learning (Lester, Al-Rfou, and Constant 2021; Li
and Liang 2021) is a promising direction to use pre-trained decoders
in NMT. We will study it in the future.

Model En→De ∆

Ours 31.59 −
Initialize decoder by BERT 30.73 -0.86
Initialize decoder by GPT 31.22 -0.37
Use frozen BERT as decoder 25.48 -6.11
Use frozen GPT as decoder 27.69 -3.90

Table 5: The results of our model with pre-trained decoders.

Model En→De ∆

Ours 31.59 −
−LTWP 31.21 -0.38
−LTSP 31.17 -0.42
−LTWP−LTSP 30.94 -0.65

Without pre-training 30.17 -1.42
Adopt monolingual BERT 30.99 -0.60
Optimize θP by all tasks 30.62 -0.97
Freeze θP for all tasks 30.98 -0.61

Table 6: The ablation study of the additional training objec-
tives in the proposed model.

ablating LTWP and LTSP together. When removing the LMLM,
the BLEU score drops 0.53. Furthermore, when only using
MLM task, our model gets comparable results to BERT-fused
NMT, while the model size of BERT-fused NMT is about
three times than ours (500M vs. 170M).

Then, we design four settings to evaluate our model: 1).
without pre-training, 2). adopting the monolingual BERT
on our model, 3). training the PTM by all tasks, in which
the LT is used to optimize the θP, and 4). freezing the PTM
in the training process. The results are shown in the last
four rows in Table 6, all of them reduce translation quality
to varying degrees. Further, compared to training by NMT
objective, freezing the PTM gets better performance. This
results suggest that forgetting is a more serious problem than
the representation mismatch.

The effectiveness of the hyperparameter M . In our ap-
proach, the hyperparameter M determines the grain of repre-
sentation aggregation and the depth of the decoder. So, we
make an experiment to compare the effects of different M .
Typically, the PTM we used has 12 layers, so the decoder
depth N is equal to 12/M .

The results are shown in Table 7, our default setting
(M = 2) gets the best performance and the decoding speed
is similar to Transformer-20. When the M is 1, in which the
PTM connects the decoder layer-by-layer, BLEU drops 0.45
compared to the default setting and the speed is only 0.41x
compared to the Transformer-base. When the M is 4, BLEU
drops 0.9 and the speed approaches the Transformer-base.
This experiment shows that a suitable granularity of aggrega-
tion is useful for exploiting PTMs. Furthermore, when the M
is 6, our model gets the similar performance of Transformer-
Big, while the decoding speed is faster than the Transformer-
Base. We think it can be used in some real-time scenarios.
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Model M /N #Speedup BLEU

Transformer-Base − 1.0x 27.78
Transformer-Big − 0.26x 29.13
Transformer-20 − 0.58x 29.82

Ours

1/12 0.41x 31.14
2/6 0.52x 31.59
4/3 0.93x 30.69
6/2 1.21x 29.31

Table 7: The results of our model with different M . N is the
depth of the decoder. #Speedup is the decoding efficiency.

Figure 3: The BLEU curve of Transformer-12, Transformer-
20 and our work on the test set of the WMT14 En→De task.

The convergence speed. We sampled checkpoints every
5000 training steps to evaluate the convergence speed. The
results are shown in Figure 3. For simplicity, the STEP in the
figure is the number of actual training steps divided by 5,000.
The Transformer-12 converges faster than other models (be-
tween Step 5 and 10), because of its shallow layers. Our
model and Transformer-20 converge almost simultaneously
(between Step 15 and 20). Compared to Transformer-20, our
method will not affect the convergence speed. Furthermore,
our model can achieve a better result very early (Step 5),
which is the result of the pre-trained encoder.

Related Work
Data-augmentation for NMT. Data-augmentation is
widely used in NMT. Sennrich, Haddow, and Birch (2016)
proposed back-translation to generate synthetic parallel data
from target language unlabeled data. Zhang et al. (2018) pro-
posed to jointly train the source-to-target and target-to-source
NMT models with the pseudo parallel data. Although back-
translation is useful, it is time-consuming and heavily relies
on the quality of the synthetic data. Recently, how to use pre-
trained models (PTMs) in NMT attracts many researchers’
attention. Zhu et al. (2020) proposed a BERT-fused NMT to
fuse pre-trained representations into NMT. Yang et al. (2019)
proposed asymptotic distillation and dynamic switch methods
for further utilizing PTMs. Weng et al. (2020a) proposed to

use knowledge distillation to transfer knowledge from PTMs
to NMT, which get considerable improvements. However the
issue of how to exploiting PTMs into NMT is worthy of study.
Unlike them, our approach has the advantage of fine-tuning
and fusion to incorporate PTMs into NMT effectively.

Pre-training and fine-tuning. The paradigm of using a
large amount of unlabeled data to pre-train a model and fine-
tune it with labeled data has achieved great success. Peters
et al. (2018) firstly proposed a Bi-LSTM based PTM (ELMo)
to learn contextual information. Radford et al. (2018) pro-
posed to use a self-attention network (GPT) as backbone.
Then, Devlin et al. (2019) proposed to use a masked lan-
guage model objective to capture bi-directional encoder rep-
resentation (BERT). Following them, several varieties are
proposed, Song et al. (2019) and Liu et al. (2020) extended to
a sequence to sequence structure for text generation, Lample
and Conneau (2019) and Conneau et al. (2020) extend to a
cross-lingual manner for cross-lingual tasks.

Another key factor is the fine-tuning strategy, which largely
affects the performance of PTMs (Gururangan et al. 2020).
Fang et al. (2020) proposed several fine-tuning tricks accord-
ing to different tasks. Gururangan et al. (2020) pointed out
that using in-domain data continuously trains the PTM be-
fore fine-tuning can improve the performance of downstream
tasks. Inspired by them, our work adopts multi-task learning
to fine-tune the PTM in the NTM training process, reducing
the gap between the bilingual and monolingual tasks.

Multi-task learning in NMT. Multi-task learning has been
widely used in NMT. Dong et al. (2015) proposed to share an
encoder between different translation tasks to exploit multi
lingual knowledge. Luong et al. (2015) proposed to jointly
learn the translation task for different languages, the parsing
task and the image captioning task, with a shared encoder
or decoder. Zhang and Zong (2016) proposed to use multi-
task learning for incorporating source side monolingual data
in NMT. Weng et al. (2017) and Ma et al. (2018) proposed
to introduce a bag-of-words training objective to model the
future information in NMT. Wang, Zhai, and Hassan (2020)
proposed to use multi-task learning in multilingual NMT.
Weng et al. (2020b) exploited multi-task learning framework
to improve the faithfulness of NMT. Different from these
attempts, our work focus on tuning the PTM to map universal
representation to task-specific representation.

Conclusion

In this paper, we propose to deep fuse pre-trained models
into NMT effectively and efficiently. In terms of the model
structure, we propose a layer-wise coordination structure to
exploit the pre-trained representation into NMT. We intro-
duce a partitioned multi-task learning framework for learn-
ing the task-specific representation, reducing the gap from
the different training objectives. Our extensive experiments
demonstrate that the proposed approach achieves consider-
able gains on three WMT translation tasks and outperforms
previous work with much smaller model sizes.
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