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Abstract

State of the art neural methods for open information extrac-
tion (OpenIE) usually extract triplets (or tuples) iteratively
in an autoregressive or predicate-based manner in order not
to produce duplicates. In this work, we propose a different
approach to the problem that can be equally or more suc-
cessful. Namely, we present a novel single-pass method for
OpenIE inspired by object detection algorithms from com-
puter vision. We use an order-agnostic loss based on bipartite
matching that forces unique predictions and a Transformer-
based encoder-only architecture for sequence labeling. The
proposed approach is faster and shows superior or simi-
lar performance in comparison with state of the art mod-
els on standard benchmarks in terms of both quality metrics
and inference time. Our model sets the new state of the art
performance of 67.7% F1 on CaRB evaluated as OIE2016
while being 3.35x faster at inference than previous state of
the art. We also evaluate the multilingual version of our
model in the zero-shot setting for two languages and intro-
duce a strategy for generating synthetic multilingual data to
fine-tune the model for each specific language. In this set-
ting, we show performance improvement of 15% on multi-
lingual Re-OIE2016, reaching 75% F1 for both Portuguese
and Spanish languages. Code and models are available at
https://github.com/sberbank-ai/DetIE.

Introduction
Extracting structured information from raw texts is a key
area of research in natural language processing (NLP). It
has a core set of well-defined basic problems: relation ex-
traction, named entity recognition (NER), slot filling, and so
on, each defining a specific view on the perception and anal-
ysis of textual data. In this work, we follow the paradigm of
open information extraction (OpenIE) that represents texts
from an arbitrary domain as a set of (subject, relation, ob-
ject) triplets (Yates et al. 2007). OpenIE methods do not
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rely on a pre-defined ontology schema and are trained to be
domain-agnostic, so they can be used in many downstream
NLP tasks: multi-document question answering and sum-
marization (Fan et al. 2019), event schema induction (Bal-
asubramanian et al. 2013), fact salience (Ponza, Del Corro,
and Weikum 2018), word embedding generation (Stanovsky,
Dagan, and Mausam 2015), and more. Using triplets as
graph edges, OpenIE systems serve as a core component
for unsupervised knowledge graph construction (Mausam
2016); high-quality OpenIE systems can output an open
knowledge graph even without further post-processing.

Historically, OpenIE systems were purely statistical or
rule-based, often consisting of several components such as
PoS (part-of-speech) tagging or syntax parsing, so errors
tended to accumulate. Recently, end-to-end neural network
systems for OpenIE have begun to outperform their non-
neural counterparts. There exist two paradigms in neural
OpenIE: sequence labeling (Stanovsky et al. 2018; Roy et al.
2019; Kolluru et al. 2020a) and sequence generation (Cui,
Wei, and Zhou 2018; Kolluru et al. 2020b), each with their
own merits and drawbacks. To avoid duplicates, in both
paradigms triplets are usually extracted iteratively either
in the autoregressive (Kolluru et al. 2020a,b) or predicate-
based manner (Ro, Lee, and Kang 2020). During training,
autoregressive methods predict triplets in a prefedined order
that usually has no meaning and excessively penalizes the
model. Predicate-based methods first extract all predicates
and then iteratively find arguments for each, assuming that a
predicate occurs in only one chain of arguments, which may
not hold both in common benchmarks and in the real world.

In this work, we view OpenIE from a different perspec-
tive, as a direct set prediction problem. Our approach is in-
spired by one-stage anchor-based object detection models
from computer vision (Liu et al. 2015; Tan, Pang, and Le
2020) that predict all bounding boxes in one forward pass
and apply intersection-based matching to match predictions
with the ground truth. We bridge the inter-discipline gap and
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bring this idea to OpenIE, demonstrating increased or equiv-
alent performance compared to state of the art methods.

We train our model on two corpora: (1) training set of
OpenIE6 (Kolluru et al. 2020a) and (2) recently released
LSOIE (Solawetz and Larson 2021). For evaluation, fol-
lowing Kolluru et al. (2020a), we employ the CaRB test
set (Bhardwaj, Aggarwal, and Mausam 2019) together with
OIE2016 (Stanovsky and Dagan 2016), WiRe57 (Lechelle,
Gotti, and Langlais 2019), CaRB and CaRB (1-1) evalua-
tion scorers. Our main contributions are as follows: (1) we
introduce DetIE, a novel approach for OpenIE that demon-
strates improvements on common English benchmarks in
both quality metrics and inference time; DetIE does not re-
place the entire OIE pipeline and can be combined with
existing techniques such as grid constraints or coordina-
tion analysis, which, as we show, might further improve
the results; (2) we investigate the language transferability
of our model to other languages and obtain significant im-
provements on multilingual benchmarks; (3) we propose a
strategy for generating multilingual synthetic data and fine-
tuning the model for a specific language.

Related Work
Early open information extraction approaches such as
TextRunner (Etzioni et al. 2008), ReVerb (Fader, Soder-
land, and Etzioni 2011), OLLIE (Schmitz et al. 2012),
ClausIE (Del Corro and Gemulla 2013), and MinIE (Gash-
teovski, Gemulla, and Corro 2017) were mostly rule-based,
used automatically generated training data and separated
modules such as PoS taggers, dependency parsers, and chun-
kers. While they have advantages such as domain indepen-
dence, errors from separate modules tend to accumulate.

Modern approaches are usually based on neural networks
with either recurrent (Stanovsky et al. 2018; Cui, Wei, and
Zhou 2018) or, more recently, Transformer-based architec-
tures (Kolluru et al. 2020a,b). Neural models can be trained
end to end but require labeled data, and manual relation an-
notation for supervised learning is extremely costly. There-
fore, neural open IE partly relies on classical approaches.

Sequence labeling approaches assume a triplet to be a
subset of the input sequence, either predicting spans for all
three parts in the input sequence or assigning a correspond-
ing label—subject, relation, object, or background—to ev-
ery token and assembling a triplet from these labels. These
models cannot change the sentence structure or introduce
new auxiliary words while generating predictions.

The RnnOIE model (Stanovsky et al. 2018) predicts enti-
ties given ground truth predicates during learning, but predi-
cates are extracted with a PoS tagger during inference. In or-
der for the model to be able to extract multiple overlapping
tuples for each sentence, the authors used an extended ver-
sion of BIO tagging (beginning-inside-outside) (Ramshaw
and Marcus 1999). Since then, several models have extended
and improved over RnnOIE. In order to alleviate the lack of
labeled training data, SenseOIE (Roy et al. 2019) augments
model inputs with extractions from existing IE systems such
as word embedding, part-of-speech tags, syntactic role la-
bels, and dependency structure. Multi2OIE (Ro, Lee, and
Kang 2020) is a two-step procedure that first predicts the

predicates and then the corresponding entities. This model
is able to make multilingual predictions by using multilin-
gual BERT embeddings even if it had been trained only on
an English dataset. SpanOIE (Zhan and Zhao 2020) is also a
two-step model, but unlike sequence labeling models shown
above it predicts a span instead of a BIO tag for every token.

In natural language texts, predicates are often present only
implicitly. To solve this, finding predicates can be viewed
as a classification task (Zeng et al. 2014), but this ap-
proach is unsuitable for an open vocabulary setting. There,
researchers use sequence generation approaches: encoder-
decoder frameworks that produce triplets as sequences, typ-
ically split via special tokens. The first such model was Neu-
ralOIE (Cui, Wei, and Zhou 2018), later improved in IMo-
JIE (Kolluru et al. 2020b). In IMoJIE, the next extraction is
conditioned on all previously extracted tuples, which leads
to more diverse tuples. Sequence generation models are
heavy and have relatively low performance in both learning
and inference due to autoregressive output generation. This
problem was partially resolved in the IGL-OIE model (Kol-
luru et al. 2020a), where the next extraction is still condi-
tioned on all previous extractions, but the tuples themselves
are extracted in the sequence labeling fashion.

A key advantage of sequence labeling over sequence gen-
eration is that the problem is formalized as token classifica-
tion, so all classification-related techniques can be applied.
On the other hand, it is hard to define similarity metrics be-
tween generated text and the ground truth; existing metrics
do not correlate well with human judgement (Mathur, Bald-
win, and Cohn 2020; Lukasik et al. 2020), so the sequence
generation approach is inherently biased.

Autoregressive generation of triplets inherent in previous
methods forces the model to predict triplets in a predefined
order, leading to additional arbitrary penalties. In this work,
we alleviate this problem and propose an approach that is
entirely novel compared to the works discussed above.

Method
We follow the sequence labeling paradigm. Given an input
sequence {x1 . . . xT }, the goal is to predict a set S of token
masks {{L1,1 . . . LT,1} . . . {L1,N . . . LT,N}}, |S| = N , la-
beling each token in a mask with exactly one of C = 4
classes: “Background”, “Subject”, “Relation”, or “Object”.
If a mask contains non-background tokens, it produces a
triplet; for some applications, it is needed to ensure that sub-
ject, relation, and object tokens are all present in the mask.

Our method has two main components: a feedforward
neural architecture and an order-agnostic loss function.
It follows the general idea of convolutional architectures
used for object detection in computer vision: it (1) makes
mutually-aware predictions in a single pass and (2) matches
them with the ground truth via intersection-based matching
during training. The latter both encourages relevant predic-
tions to be closer to the ground truth and serves to discard
irrelevant predictions and duplicates. This type of architec-
tures has been used in one-stage object detection, especially
in the family of single-shot detectors (SSD) (Liu et al. 2015)
and their later developments with feature pyramids, e.g.,
RetinaNet (Lin et al. 2017). In computer vision, SSD uses a
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Figure 1: Model architecture.

Figure 2: Sample matching: predictions vs. ground truth;
pred3 is not matched and will be penalized.

set of predefined anchor boxes that represent default bound-
ing box predictions for each position in the feature map; the
same network predicts both class labels and refined positions
for each anchor box, usually on several different scales, and
the network is trained in an end-to-end fashion with a single
loss function. In DetIE, the counterparts of anchor boxes are
masks representing possible triplets.

Model
Our model aims to extract a large predefined number of
probability masks from a single text fragment, each cor-
responding to a possible triplet. For a given sequence of
tokens, the model produces a three-dimensional tensor of
probabilities p (Fig. 1) of shape (T,N,C), where T corre-
sponds to the number of tokens, N is a pre-defined number
of possible extracted triplets, and C is the number of classes
designated above. Since N serves as an upper bound on the

number of predictions, it should be large enough to cover all
possible triplets in a document. However, larger values of N
exacerbate the class imbalance discussed in the next section.
We found N = 20 to be sufficient for our datasets.

The output at position (t, n, c) is the probability of a to-
ken t to belong to class c in mask n. The actual prediction
is obtained from the probabilities by taking the arg max
over classes for each token and filtering out background-
only masks (i.e., if the maximal mask contains at least one
non-background token, we extract it as a triplet).

The core of the architecture is a pre-trained BERT en-
coder as implemented in the HuggingFace library (Devlin
et al. 2019; Wolf et al. 2020). We map its output to N × C
channels for every input token with a fully-connected layer,
and then reshape the obtained tensor to the shape of p from
above. The value of N does not affect the performance sig-
nificantly since it only scales the last layer in our model lin-
early, leaving the most computationally intensive part—the
BERT encoder—intact.. In the BERT architecture, we un-
freeze several top layers to capture inter-token dependencies
relevant for OpenIE. However, we provide an alternative ver-
sion of our model with fully frozen BERT and an additional
Transformer on top. This model has slightly worse perfor-
mance but may be beneficial in the multilingual setting since
it cannot lose multilingual information by unfreezing BERT.

Order-Agnostic Loss
To solve the issue of the predefined ordering of triplets, we
design a special loss function with a bijective match between
each predicted mask and the nearest ground truth triplet.
Let N and M be the number of masks and ground truth
triplets respectively; we choose M most relevant predictions
and encourage them to match the ground truth exactly with
the cross-entropy loss. To find the best matching, we cal-
culate the N ×M IoU (intersection-over-union) matrix be-
tween each probability mask and one-hot representation of
the ground truth. We then maximize the sum of IoUs over
all matches with the Hungarian algorithm (Kuhn 1955); see
Fig. 2 for an example. During training, we do not com-
pute exact labels predicted by our model to avoid thresh-
olding, but rather directly calculate the average smooth IoU
between predicted probability masks and labels as follows:
IoUnm = Inm

Unm
, where Inm =

∑
t,c ptncltmc; Unm =∑

t,c ptnc+
∑

t,c ltmc−Inm, p is the probability tensor pre-
dicted by the model, and l is the one-hot tensor of ground
truth labels. The main drawback of this approach is that as
the number of relations increases, the proportion of back-
ground (non-relation) tokens rapidly grows as well. We have
taken measures against this induced class imbalance, dis-
carding the background class in the IoU and reweighting
non-background classes. We have also experimented with
the focal loss instead of cross-entropy, but it did not yield
any improvements, only shifted the precision-recall tradeoff.

Setup and Datasets
Experimental Setup
We implement our model in pytorch lightning (Falcon 2019)
with Hydra configuration framework (Yadan 2019). We use
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Split Dataset # sentences # tuples

Train
IMoJIE 91,725 190,661
LSOIE 34,780 100,862
Synth 10,000 41,645

Test

LSOIE 7,900 17,459
CaRB 641 2,715
MultiOIE2016 595 1,508

Table 1: Dataset statistics; the MultiOIE2016 and Synth
numbers are given for each language.

Prob Action
0.1 Concatenating the triplet and adding ’.’
0.2 Triplet + conjunction + triplet.

0.35 Joining 3–5 concatenated triplets with ’,’
0.35 Joining 2–9 concatenated triplets with ’.’

Table 2: Templates and their probabilities for Synth.

the pretrained bert-base-multilingual-cased BERT by Hug-
gingFace (Wolf et al. 2020) for both English and multilin-
gual benchmarks. During training, performance is measured
as token-wise macro F1-score between predicted masks and
ground truth labels. The best checkpoint is monitored along
epochs. In case of IMoJIE data, 10% of the samples are se-
lected as validation. In case of LSOIE, the validation was
performed on the test split of the dataset. Our best model
was trained with Adam optimizer with learning rate 5e-4 and
weight decay 1e-6, batch size 32, unfreezing 4 top layers of
BERT, N = 20 detections, matching based on IoU similar-
ity metrics, and doubled weights of non-background classes.
Typical training time until the best model is reached is about
1.5 hours on an NVIDIA Tesla V100 GPU. Inference speed
is measured in sentences processed per second on a well-
known set of 3,200 sentences (Stanovsky et al. 2018). We
refer to results by Kolluru et al. (2020a) and assess the per-
formance (Table 3) in a similar setting: batches of 32 pro-
cessed on a single NVIDIA Tesla V100 GPU and 6 cores
Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz without any
additional model optimizations.

Datasets
Dataset statistics are summarized in Table 1. First, we use
the recent LSOIE (Large-Scale Open Information Extrac-
tion) dataset (Solawetz and Larson 2021). For a fair compar-
ison, we have also trained models on the dataset used by Kol-
luru et al. (2020a,b), called IMoJIE below. Another reason
for training on two different datasets is that LSOIE differs in
its annotation scheme from popular evaluation datasets such
as OIE2016 (Stanovsky and Dagan 2016) and CaRB (Bhard-
waj, Aggarwal, and Mausam 2019); e.g., in LSOIE auxiliary
verbs such as “is” or “was” are (intentionally) not included
into predicates, while CaRB adds more context into pred-
icates than other OIE systems. We also experimented with
adding Wikidata-based synthetic sentences during training
(see below). Thus, in our experiments we use crowdsourced
(LSOIE), prediction-based (IMoJIE), and synthetic data. All
these approaches are discussed in detail below.

Wikidata-based synthetic sentences. For this dataset,
called Synth below, we have used Wikidata (Vrandečić
and Krötzsch 2014) to devise a simple sentence genera-
tion strategy. We lexicalize Wikidata triplets, joining the
subject, object, and relation (predicate) by white spaces,
e.g., (Albert Einstein, is, physicist) be-
comes “Albert Einstein is physicist”. These phrases are used
to generate sentences, e.g., “Albert Einstein is physicist
while Amelia Mary Earhart is pilot.” These sentences obvi-
ously have poor and highly standardized grammatical struc-
ture, but we have found that extra data of this quality leads
to better relation extraction on multilingual benchmarks (see
below). Sentences for Synth are generated with a set of tem-
plates selected with fixed probabilities (Table 2). Wikidata
is a very rich data source, with nearly 9,000 different prop-
erties (predicates) that are highly imbalanced in the data, so
Synth is also imbalanced w.r.t. predicates.

We used Stanza (Qi et al. 2020) for tokenization and PoS
tagging. Tags are used for filtering aimed to create more
grammatical sentences. Since synthetic sentences are sim-
plistic, our model does not need too many examples of each
type, although it important to have typological diversity in
the samples. We generate data in two languages, Spanish and
Portuguese.

LSOIE. We have used the LSOIE dataset (Solawetz and
Larson 2021) prepared based on QA-SRL 2.0 (FitzGer-
ald et al. 2018) that expands the scope of OIE2016 and
AW-OIE (Stanovsky et al. 2018). The dataset can be con-
verted to several different formats1; we have concatenated
the lsoie (wiki|science) *.conll subsets as sources for our
training and test data. Most datapoints in LSOIE are sin-
gle sentences with a tuple of extractable subsequences; re-
lations in LSOIE are N -ary. One of the elements usu-
ally represents a predicate (P-B, P-I), others are argu-
ments (A[N]-B, A[N]-I). Since we are interested only
in subject-relation-object triplets, we have removed the dat-
apoints that do not have a predicate and at least two ar-
guments. Then, predicates were converted into “relation”
(“rel”/“pred”), arguments A0-* were converted into “sub-
ject” (“source”, “arg1”), and arguments AN-* (for N > 0)
were combined into a single argument defined as “object”
(“target”, “arg2”).

IMoJIE (dataset). To provide a fair comparison with
state of the art models such as OpenIE6 (Kolluru et al.
2020a) and IMoJIE (Kolluru et al. 2020b), we also used
the large-scale dataset they were trained on2 for training De-
tIE. The dataset consists of tuples extracted from Wikipedia
sentences via OpenIE4 (Christensen, Soderland, and Etzioni
2011), ClausIE (Del Corro and Gemulla 2013), and Rn-
nOIE (Stanovsky et al. 2018) and filtered with a Score-and-
Filter technique proposed by Kolluru et al. (2020b). IMoJIE
data is labelled for sequence generation: each sentence is
assigned with a set of string tuples representing triplets. We
find that the triplets are typically a combination of different
pieces of the input sentence, so we apply a heuristic algo-
rithm to retrieve them as masks for sequence labeling. The

1https://github.com/Jacobsolawetz/large-scale-oie
2https://github.com/dair-iitd/imojie
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algorithm iteratively finds longest common substrings of a
sentence and a triplet, converts them into labeled spans and
excludes, until either sentence or triplet are exhausted; since
spans are excluded, (S, R, O) masks are guaranteed to be
disjoint. This method fails only if some tokens (e.g., “is”)
are understood implicitly and do not occur in the sequence.
Similarly to Kolluru et al. (2020a), to cover such cases we
append tokens “[is]”, “[from]”, and “[to]” to the end of a se-
quence, both in the converted IMoJIE and during prediction.

Next we describe our evaluation datasets: CaRB, LSOIE,
and MultiOIE2016. We do not use two popular datasets,
OIE2016 and WiRe57; the flaws of OIE2016 were discussed
in (Zhan and Zhao 2020; Bhardwaj, Aggarwal, and Mausam
2019), while WiRe57 is almost 2x smaller than CaRB test
set: only 57 sentences with 343 manually extracted facts.

CaRB (test). This evaluation dataset3 is a subset of sen-
tences from the OIE2016 dataset (Stanovsky and Dagan
2016) re-annotated via Amazon Mechanical Turk crowd-
sourcing. Annotators selected (arg1; rel; arg2) triplets and
annotated time and location attributes if possible (Bhardwaj,
Aggarwal, and Mausam 2019).

LSOIE (test). We have used a combination of test sets of
LSOIEwiki and LSOIEscience.

MultiOIE2016 (test). This dataset is based on Re-
OIE2016 (Zhan and Zhao 2020), a version of OIE2016
tailored for sequence tagging (unlike generation-oriented
CaRB). Ro, Lee, and Kang (2020) extended it to Spanish
and Portuguese; the number of sentences and tuples is the
same for each language.

Evaluation Metrics
Following Kolluru et al. (2020a), we score model predic-
tions against CaRB reference extractions, evaluated using
the schemes introduced in OIE2016, WiRe57, CaRB, and
OpenIE6 and discussed in detail below. Note that DetIE pre-
dicts a set of probabilities per token rather than confidence
scores, but probabilities can be converted to “confidence” in
many ways, e.g. aggregated max probability per argument
or average log of probabilities.

OIE2016. We use a scheme proposed for evaluation by
Stanovsky and Dagan (2016)4, who compare systems in
terms of precision and recall; the crucial step is to match pre-
dicted and ground truth extractions. A prediction is matched
with the ground truth if they agree on the grammatical head
of the elements (arguments and predicate).

WiRe57. Lechelle, Gotti, and Langlais (2019) introduced
a new scoring procedure5 that penalizes overly long extrac-
tions and assigns a token-level prediction quality score to all
gold-prediction pairs for each sentence. Unlike the OIE2016
scorer, it considers all pairs of extractions. First, a predicted
tuple is considered possibly matching a reference tuple from
the same sentence if they share at least one token from each
relation, argument 0 and argument 1 (with triplets, as in our
case, this means at least one token in common for every cor-
responding element of the tuple). Then precision, recall, and

3https://github.com/dair-iitd/CaRB
4https://github.com/gabrielStanovsky/oie-benchmark
5https://github.com/rali-udem/WiRe57

F1 scores are computed for all possibly matching pairs of
predicted t and reference g tuples as follows:

prec(t, g) = 1
|t|

∑
k |t(k) ∩ g(k)|,

rec(t, g) = 1
|g|

∑
k |t(k) ∩ g(k)|,

F1(t, g) = 2prec(t,g)rec(t,g)
prec(t,g)+rec(t,g) ,

where t(k) is the bag of words/tokens representation of the
kth part of the tuple and |t| and |g| are the numbers of tokens
in the corresponding tuples.

Having computed the scores for all possibly matching
pairs, we greedily construct the best matching. Overall sys-
tem performance is measured by micro-averaged precision
and recall. For more details we refer to (Lechelle, Gotti, and
Langlais 2019) and the original implementation6.

CaRB. This is a crowdsourced OIE2016 re-annotation
initiative (Bhardwaj, Aggarwal, and Mausam 2019) already
mentioned above; we use the evaluation scheme which
here is different from the predecessors. CaRB uses filtering
of stopwords and makes use of binary model predictions.
CaRB scorer is not greedy; it constructs a matching table for
all gold-predicted pairs, computes and averages maximum
overall recall in each row, thus matching gold tuples with
the best extraction. For precision, extractions are matched
with gold annotations in a 1-1 fashion, then averaged as well.
CaRB scorer uses only matches with at least one common
word in the relation field. All higher order arguments (be-
yond (arg1; rel; arg2) triplets) are appended to the last ar-
gument. Illustrations of this single-to-many approach and a
more detailed discussion are given in (Bhardwaj, Aggarwal,
and Mausam 2019) and reference code7.

CaRB (1-1). Used by Kolluru et al. (2020a), this evalua-
tion scheme retains CaRB’s similarity computation but uses
a one-to-one mapping for both precision and recall, similar
to OIE16 and Wire57.

Experiments and Results
Models and Systems in Comparison
We compare the proposed Det-IE model on the LSOIE
and CaRB datasets with the following non-neural mod-
els: (1) MinIE (Gashteovski, Gemulla, and Corro 2017),
(2) ClausIE (Del Corro and Gemulla 2013), (3) OpenIE48

(Christensen, Soderland, and Etzioni 2011), (4) OpenIE59

(Saha, Pal et al. 2017; Saha et al. 2018); and the following
neural models: (5) IMoJIE (Kolluru et al. 2020b), (6) Neu-
ralOIE (Cui, Wei, and Zhou 2018), (7) RnnOIE (Stanovsky
et al. 2018), (8) SenseOIE (Roy et al. 2019), (9) SpanOIE
(Zhan and Zhao 2020), (10) CIGL-OIE, (11) OpenIE6
(CIGL-OIE + IGL-CA)10 (Kolluru et al. 2020a). SpanOIE
is a span-based model. IMoJIE and NeuralOIE are genera-
tive models. RnnOIE, SenseOIE, CIGL-OIE, and OpenIE6
are sequence labeling models.

6https://github.com/rali-udem/WiRe57/blob/master/code/
wire scorer.py

7https://github.com/dair-iitd/CaRB
8https://github.com/allenai/openie-standalone
9https://github.com/dair-iitd/OpenIE-standalone

10https://github.com/dair-iitd/openie6
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Model
CaRB evaluation schemes Speed

CaRB CaRB(1-1) OIE16-C Wire57-C (sent./sec)F1 AUC F1 AUC F1 AUC F1
MinIE (Gashteovski, Gemulla, and Corro 2017) 41.9 - 38.4 - 52.3 - 28.5 8.9
ClausIE (Del Corro and Gemulla 2013) 45.0 22.0 40.2 17.7 61.0 38.0 33.2 4.0
OpenIE4 (Christensen, Soderland, and Etzioni 2011) 51.6 29.5 40.5 20.1 54.3 37.1 34.4 20.1
OpenIE5 (Saha, Pal et al. 2017; Saha et al. 2018) 48.0 25.0 42.7 20.6 59.9 39.9 35.4 3.1
SenseOIE (Roy et al. 2019) 28.2 - 23.9 - 31.1 - 10.7 -
SpanOIE (Zhan and Zhao 2020) 48.5 - 37.9 - 54.0 - 31.9 19.4
RnnOIE (Stanovsky et al. 2018) 49.0 26.0 39.5 18.3 56.0 32.0 26.4 149.2
NeuralOIE (Cui, Wei, and Zhou 2018) 51.6 32.8 38.7 19.8 53.5 37.0 33.3 11.5
IMoJIE (Kolluru et al. 2020b) 53.5 33.3 41.4 22.2 56.8 39.6 36.0 2.6
IGL-OIE (Kolluru et al. 2020a) 52.4 33.7 41.1 22.9 55.0 36.0 34.9 142.0
CIGL-OIE (Kolluru et al. 2020a) 54.0 35.7 42.8 24.6 59.2 40.0 36.8 142.0
OpenIE6 (Kolluru et al. 2020a) 52.7 33.7 46.4 26.8 65.6 48.4 40.0 31.7
DetIELSOIE (ours) 43.0 27.2∗ 33.1 18.3∗ 49.7 32.7∗ 31.2 708.6
DetIEIMoJIE (ours) 52.1 36.7∗ 40.1 24.0∗ 56.0 38.7∗ 36.0 708.6
DetIELSOIE (ours) + IGL-CA from OpenIE6 39.6 26.7∗ 36.3 22.7∗ 63.3 47.9∗ 33.5 112.2
DetIEIMoJIE (ours) + IGL-CA from OpenIE6 47.3 35.1∗ 43.1 29.3∗ 67.7 54.0∗ 37.8 112.2

Table 3: Comparison on CaRB test set with scoring schemes from CaRB (Bhardwaj, Aggarwal, and Mausam 2019), CaRB
(1-1) (Kolluru et al. 2020a), OIE2016 (Stanovsky and Dagan 2016), WiRe57 (Lechelle, Gotti, and Langlais 2019). Results for
all models except DetIE are cited from (Kolluru et al. 2020a). Best results are shown in bold; second best, underlined. DetIE
does not provide confidence scores, so ROC-AUC values are approximated from a single TPR-FPR point.

Model F1 AUC
OllIE (Mausam et al. 2012) 36.8 16.7
ReVerb (Fader, Soderland, and Etzioni 2011) 36.8 16.9
OpenIE4 54.6 32.3
OpenIE5 49.5 25.8
CIGL-OIE 59.7 48.0
OpenIE6 (CIGL-OIE + IGL-CA) 51.6 32.7
DetIEIMoJIE 55.7 44.9∗

DetIEIMoJIE (ours) + IGL-CA 45.9 41.7∗

DetIELSOIE 71.4 61.3∗

DetIELSOIE + IGL-CA 58.7 55.9∗

Table 4: Comparison on combined LSOIE test sets (So-
lawetz and Larson 2021) with the original CaRB evaluation
scheme (Bhardwaj, Aggarwal, and Mausam 2019). Best re-
sults are shown in bold; second best, underlined. DetIE does
not provide confidence scores, so ROC-AUC values are ap-
proximated from a single TPR-FPR point.

In experiments with monolingual data, we additionally
preprocess raw sentences in the test set using a coordina-
tion analysis (CA) model IGL-CA following OpenIE6 ap-
proach (Kolluru et al. 2020a)11 which considers CA as a
grid labeling problem and is trained on the coordination-
annotated Penn Treebank (Ficler and Goldberg 2016). We
first apply CA to sentences in the test set and then apply De-
tIE to the resulting “simplified” texts, attributing the extrac-
tions to the corresponding original sentences with neither
post-filtering nor rescoring.

We also compare DetIE with three systems on Mul-
tiOIE2016: rule-based multilingual systems (1) ArgOE
(Gamallo and Garcia 2015) and (2) PredPatt (White et al.

11https://github.com/dair-iitd/openie6

Lang. Model F1 Prec. Rec.

EN

ArgOE 43.4 56.6 35.2
PredPatt 53.1 53.9 52.3
Multi2OIE 69.3 66.9 71.7
DetIEIMoJIE (ours) 78.7 85.4 69.9
DetIEIMoJIE+Synth (ours) 79.3 87.1 72.8

ES

ArgOE 39.4 48.0 33.4
PredPatt 44.3 44.8 43.8
Multi2OIE 60.2 59.1 61.2
DetIEIMoJIE (ours) 73.2 83.7 65.0
DetIEIMoJIE+Synth (ours) 75.0 85.6 66.8

PT

ArgOE 38.3 46.3 32.7
PredPatt 42.9 43.6 42.3
Multi2OIE 59.1 56.1 62.5
DetIEIMoJIE (ours) 74.7 85.1 66.6
DetIEIMoJIE+Synth (ours) 75.0 86.0 69.4

Table 5: Binary extraction performance on Multi-
OIE2016 (Zhan and Zhao 2020) measured with CaRB’s
evaluation scheme. Results for models other than DetIE are
cited from (Ro, Lee, and Kang 2020).

2016) and (3) neural BERT-based Multi2OIE system (Ro,
Lee, and Kang 2020).

Results
Tables 3 and 4 report the quality metrics and performance
comparisons across all metrics for the CaRB and LSOIE
datasets respectively (DetIE and IGL-CA inference times
were estimated separately, on an NVIDIA Tesla V100). In
Table 3, IGL-CA is a pretrained coordination analysis model
by Kolluru et al. (2020a), used as discussed above. Table 3
shows that variations of DetIE improve upon the state of the
art for almost all evaluation schemes on CaRB. For LSOIE,
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as expected, DetIELSOIE performs best on LSOIE test set
(Table 4) since it was trained on data with the same anno-
tation principles. Note, however, that even training on a dif-
ferent dataset (IMoJIE) allows DetIE models to be among
the best-performing ones. Our hypothesis is that our train-
ing scheme being able to capture multiple relations at once
allows the underlying Transformer architecture to better use
its ability to perceive relations in a text for extraction.

Results for MultiOIE2016 are presented in Table 5. Here,
the DetIEIMoJIE model trained on IMoJIE significantly out-
performs previous approaches. The margin in the F1 eval-
uation metric reaches 15.6% on the Portuguese part of
the dataset, while for English it is 8.6%. Interestingly,
Multi2OIE shows better performance on English in terms of
recall, although the gap between it and DetIE is only 1.8%.

Effectively, training on IMoJIE makes DetIE a zero-shot
model for Spanish and Portuguese, since IMoJIE is col-
lected entirely in English. Thus, we decided to fuse train-
ing data with Synth for our model; the result is shown as
DetIEIMoJIE+Synth. Synthetic data adds another 1.8% of F1
for Spanish, 0.6% for English, and 0.3% for Portuguese.
This model outperforms previous state of the art w.r.t. all
metrics, including recall on English.

Note that Multi2OIE is a two-stage approach, thus it is run
at least twice for each sentence: one time to extract predi-
cates and possibly several times for the predicates, one for
each. In contrast, DetIE is a single-shot model; we extract
all relations at once, only capping at the number of possible
extractions12. We believe that this is the main reason why
our model is so much faster during inference.

Discussion and Error Analysis
We have analyzed the outputs of DetIEIMoJIE on a random
sample of 100 sentences from the CaRB validation set (Ta-
ble 6). According to our analysis, DetIE is prone to aggre-
gating conjunctions and comparisons into a single triplet
(Sent. #1, #2), which explains the improvements from co-
ordination analysis in Table 3. Occasionally, we observed
incorrect prediction of triplets in sentences with coreference
(Sent. #3). Since our model uses a single pass for relation
extraction, we hypothesise that it could be applied to whole
passages of text (multiple sentences) and extract relations
which permeate the limits of a single sentence. Thus, the co-
reference task could be done alongside with relation extrac-
tion in end-to-end manner; we leave this for further work.

The performance of DetIE on CaRB varies widely across
training sets, which is expected since CaRB is only a test
set and has its own markup scheme, different from schemes
used in training datasets. There is no conventional gold stan-
dard training set for OpenIE: IMoJIE was obtained with
an advanced bootstrapping scheme, OpenIE6 (SotA) was
trained on it, and LSOIE is the latest published dataset of
size suitable for neural models but it differs significantly,
hence the difference in performance.

We hypothesise that one-hot-encoded PoS and/or depen-
dencies head labels or appending the dependency head’s em-

12It serves as a hyperparameter of our model; we used 100 pos-
sible extractions as a large upper bound for a single sentence.

Sent.
#1

Males had a median income of $ 28,750 versus $ 16,250
for females.

Gold (Males; had a median income of; $ 28,750)
(females; had a median income of; $ 16,250)

DetIE (Males; had; a median income of $ 28,750 versus $ 16,250
for females)

Sent.
#2

Hapoel Lod played in the top division during the 1960s
and 1980s, and won the State Cup in 1984.

Gold
(Hapoel Lod; played in; the top division; during the 1960s)
(Hapoel Lod; played in; the top division; during the 1980s)
(Hapoel Lod; won; the State Cup; in 1984)

DetIE (Hapoel Lod; played; in the top division during the 1960s
and 1980s)
(Hapoel Lod; won; the State Cup in 1984)

Sent.
#3

A spectrum from a single FID has a low signal-to-noise
ratio, but fortunately it improves readily with averaging of
repeated acquisitions.

Gold (A spectrum from a single FID; has; a low signal-to-noise
ratio)
(signal-to-noise ratio; improves readily with averaging of;
repeated acquisitions)

DetIE (A spectrum from a single FID; has; a low signal-to-noise
ratio)
(it; improves; readily with averaging of repeated acquisi-
tions)

Table 6: Sample sentences with gold annotations and rela-
tions predicted by DetIEIMoJIE.

bedding to each token’s embedding could have improved the
results. We believe so since many early OpenIE models did
heavily rely on syntax (e.g, OpenIE5, OpenIE6), but it re-
mains to be tested in further work.

Conclusion

We have introduced a novel DetIE model for the OpenIE
task; it is based on the ideas of single-shot object detection
in computer vision and extracts multiple triplets in a single
pass. The proposed model is atomic and can be used as a
part of OIE pipelines that may include coordination analy-
sis, rescoring, syntactic chunks collapsing etc. Our approach
outperforms existing state of the art on the LSOIE dataset
and performs at least on par or better for every considered
evaluation scheme on CaRB. The DetIE model is 5x faster
than previous state of the art in terms of inference speed.

Moreover, DetIE has shown excellent performance in the
zero-shot cross-lingual setting, exceeding existing state of
the art for Spanish and Portuguese by 13% and 15% respec-
tively. We have also introduced a technique for multilingual
synthetic data generation and used it to generate additional
training data that further improved the results (by 1.8% in
Spanish and 0.3% in Portuguese).

As a first step for future work, our method may benefit
from enrichment with PoS tags, syntactic information (e.g.,
deprel tags), and traditional neural sequence labeling lay-
ers (e.g., CRF). We also plan to experiment with other pos-
sible improvements in the model architecture.
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