
Hierarchical Heterogeneous Graph Attention Network for Syntax-Aware
Summarization

Zixing Song, Irwin King
The Chinese University of Hong Kong

{zxsong, king}@cse.cuhk.edu.hk

Abstract

The task of summarization often requires a non-trivial un-
derstanding of the given text at the semantic level. In this
work, we essentially incorporate the constituent structure into
the single document summarization via the Graph Neural
Networks to learn the semantic meaning of tokens. More
specifically, we propose a novel hierarchical heterogeneous
graph attention network over constituency-based parse trees
for syntax-aware summarization. This approach reflects psy-
chological findings that humans will pinpoint specific selec-
tion patterns to construct summaries hierarchically. Extensive
experiments demonstrate that our model is effective for both
the abstractive and extractive summarization tasks on five
benchmark datasets from various domains. Moreover, further
performance improvement can be obtained by virtue of state-
of-the-art pre-trained models.

Introduction
Text summarization has always been a fundamental task in
natural language processing (NLP) to condense a complex
input to a concise expression by retaining the core informa-
tion at the same time. The relevant techniques can be catego-
rized as either extractive ones, which only need to identify
salient sentences from the original text, or abstractive ones,
which may generate novel words and sentences.

Graph-based methods for summarization are becoming
heated topics with the rise of Graph Neural Networks (GNN)
thanks to its powerful capability to model the underlying
useful relationships in the text graph. However, the output
summary by existing graph-based methods tends to suffer
from semantic deviation from the input text as the graphs
constructed in these models are mostly at the statistical level,
like word-sentence graph in HSG (Wang et al. 2020). In
this case, the nodes tend to be text units and edges are
connected by simple statistical scores like co-occurrence,
pointwise mutual information (PMI), ignoring rich syntac-
tic and semantic information for summarization. Other lat-
est works (Jin, Wang, and Wan 2020; Wu et al. 2021) ex-
tend them with the aid of semantic graphs directly but suffer
from relatively higher computational costs due to the com-
plex graph construction step.
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Figure 1: The constituency parsing tree for sentence Eight
British nationals died in the plane crash. Red dotted line de-
notes the syntactic dependency path from died to in for the
relationship prep. The path from died to in reflects the re-
lation edge “died in” in the corresponding semantic graph.
Each constituent can store the semantic meaning hierarchi-
cally for the final summary.

Model Graph Level GNN Task

LexPageRank (2004a) Statistical w/o Extractive
Graph-based Attention (2019) Statistical w/o Abstractive

GatedGNN (2019) Statistical w/ Abstractive
SemSUM (2020) Semantic w/ Abstractive

DISCOBERT (2020) Statistical w/ Extractive
HSG (2020) Statistical w/ Extractive

HAHSum (2020) Statistical w/ Extractive
BASS (2021) Semantic w/o Abstractive

SynapSum (Ours) Syntactic w/ Both

Table 1: Comparison between our proposed model with
other related graph-based summarization models.

Previous studies (Li et al. 2014; Xu and Durrett 2019)
have shown that syntactic structure is beneficial for gener-
ating compressed yet informative summaries because its hi-
erarchical structure facilitates the removal of insignificant
parts and pays more attention to more salient ones (Fig-
ure 1). This also mimics the human way of generating sum-
maries: fusing the semantic meaning by extracting the most
significant information level by level, from words to phrases
and finally to sentences. Therefore, it is natural to guide
the neural summarization system with a tree-like text graph
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that embodies syntactic information so that it can identify
summary-worthy content and compose summaries that pre-
serve the vital meaning of the source texts. Besides, the syn-
tactic graph is generally easier to obtain than the semantic
graph and thus alleviates the computational issue in previous
methods based on constructed complicated semantic graphs.

Furthermore, we choose the constituency parsing tree of
the sentence as the text graph for the input of GNN in view
of two primary reasons. First, the syntactic dependency re-
lationship between tokens can be inexplicitly reflected via
the path between them (as shown in Figure 1), so it has al-
ready encoded the information from the dependency-based
parsing tree. Second, the constituency tree is a natural fit for
extracting sub-phrases from the sentence, which is the exact
case when identifying essential phrases to create summaries.
Third, the extracted syntactic dependency can reflect the se-
mantic relationship between tokens (Figure 1). That is why
we favor the constituency-based tree.

Based on the aforementioned motivation, we will first
utilize an off-the-shelf constituency parser to obtain the
constituency tree for each sentence. Then, we propose a
generic syntax-aware heterogeneous graph attention net-
work to learn the representation for each type of node in this
constructed tree-like graph. This proposed GNN model con-
sists of two types of layers. One is the syntax-aware graph
attention layer for detecting the syntactic dependency rela-
tionship between each constituent pair via meta-path, and
the other is the hierarchical graph pooling layer for hierar-
chically gathering information from the tree.

The contributions of this work are summarized as follows.
• We propose a novel heterogeneous graph attention net-

work for syntax-aware summarization based on the con-
stituency tree. To the best of our knowledge, we are the
first to incorporate constituency syntax for text summa-
rization based on GNN.

• We conduct extensive experiments on five datasets from
various domains under abstractive and extractive settings
to demonstrate its effectiveness. Our model is reasonably
flexible and can be easily adapted into both abstractive
and extractive tasks.

• Furthermore, we investigate the potentially increased
performance with the initiation of some SOTA pre-
trained models. Therefore, we further push the boundary
for the graph-based models in NLP tasks.

Related Works
Neural Text Summarization
Recent years have witnessed great success of text sum-
marization with the constant development of neural net-
works (Chen, Li, and King 2021; Li et al. 2019; Gao et al.
2021, 2020; Li et al. 2020), especially the recurrent neu-
ral networks (RNN) (See, Liu, and Manning 2017; Paulus,
Xiong, and Socher 2018; Gehrmann, Deng, and Rush 2018)
or Transformer (Liu and Lapata 2019; Zhang et al. 2020; Bi
et al. 2021). The most recent work focus on contextualized
pre-trained language models (Zhong et al. 2020; Lewis et al.
2020; Liu, Dou, and Liu 2021) for further performance en-
hancement.

Graph Neural Networks

Graph Neural Networks (GNN) is a series of neural archi-
tectures for graph-structured data and has a wide range of
applications (Song et al. 2021a,b; Yang et al. 2021). The
GNN model gains tremendous popularity after the success
of GCN (Kipf and Welling 2017) and GAT (Velickovic et al.
2018). GNNs use the graph topological structure along with
the node and/or edge features to learn a representation vector
for every node in the graph. More recently, there are a great
number of NLP applications with the aid of GNN models
for various tasks, like relation extraction (Zhu et al. 2019;
Zhang et al. 2019), semantic role labeling (Christopoulou,
Miwa, and Ananiadou 2019; Marcheggiani and Titov 2020)
and text classification (Zhang and Zhang 2020; Ding et al.
2020; Xint et al. 2021).

Graph-based Text Summarization

Graph-based methods have been explored for text sum-
marization since decades ago (Erkan and Radev 2004b,a).
Later, with the help of GNN, a GCN-based model for multi-
document summarization is purposed (Yasunaga et al. 2017)
and Tan, Wan, and Xiao (2017) also design a graph-based
attention mechanism for abstractive summarization. The lat-
est works for abstractive summarization are SemSUM (Jin,
Wang, and Wan 2020; Bi et al. 2021) via the semantic
graphs. The other recent works (Jia et al. 2020; Wang et al.
2020) mainly focus on extractive summarization based on
diverse message passing mechanisms in GNN..

Methodology
Our proposed model, SynapSum (short for Syntax-
aware Heterogeneous Graph Attention Network for
Summarization), follows the dominant sequence-to-
sequence framework (Sutskever, Vinyals, and Le 2014)
for abstractive summarization (Figure 2) and the encoder
part alone can be employed for extractive summarization.
We incorporate the syntax information into the encoder
to generate better representations for words, phrases, and
sentences with different levels of granularity based on the
constituency tree. Our model can easily be adapted for
the extractive summarization task as it can learn a global
representation for each sentence, and thus a graph-level
classifier can be trained.

The input (document) tokens and the ground-truth out-
put (summary) tokens are given as x = {x1, x2, . . . , xn1

}
and y = {y1, y2, . . . , yn2} respectively. n1 and n2 are the
length of input and output tokens, respectively. There are n
sentences in total in the input tokens. A bidirectional LSTM
encoder is first employed to get the embedding he

i for each
input token xi while a single LSTM decoder is then used to
generate the embedding vector hd

i for each output token yi
with the initialization hidden state for the decoder being set
as hd

0 = he
n1

. The resulting embedding vectors will function
as the initial representation for each token. The initializa-
tion can also be incorporated with some popular pre-trained
models to gain potential performance increase.

11341



Figure 2: Overview of SynapSum model for abstractive summarization. The encoder follows Sequence GNN framework in
which we propose a novel syntax-aware graph attention network, consisting of the stacked syntax-aware graph attention layer
and a top hierarchical graph pooling layer.

Syntax-aware Heterogeneous Graph Attention
Network

The encoder follows the framework of the sequence
GNNs (Fernandes, Allamanis, and Brockschmidt 2019), and
we incorporate the constituent structure into the GNN model
so that syntactically-informed embeddings for both sen-
tences and constituents are generated for more concise sum-
marization.

At each step t, a constituency-based parsing tree (Fig-
ure 3) is constructed based on the tth sentence in the in-
put document. A constituency parsing tree consists of three
types of nodes in our setting: the root node at the top level
as the sentence node s, the leaf nodes as the word nodes w
and the other non-terminal nodes at the intermediate levels
as the constituent nodes c with various granularities.

Inspired by some representative models to tackle the het-
erogeneous graph embedding (Dong, Chawla, and Swami
2017; Fu et al. 2020), we propose a meta-path-based method
to yield representations for constituency nodes by learning
to detect and encode their syntactic dependency. Based on
the learned representations, we design a graph pooling layer
to encode the hierarchical information from bottom to top,
producing the final embedding for the sentence node.

Syntax-aware graph attention layer This layer aims to
incorporate syntactic information into the embeddings for
different types of nodes in the constituency parsing tree. By
virtue of the heterogeneity of nodes, a node-type-specific
projection matrix Wπi

is designed to transform nodes into

Figure 3: An example constituency tree for tth sentence. Dif-
ferent colors denote different types of nodes and edges. Yel-
low dotted directed lines show the attention mechanism in
the hierarchical graph pooling layer. (Also refer to Figure 4.)

a representation vector hi,t ∈ Rd defined as,

hi,t = Wπi
hπi
i,t, (1)

where hπi
i,t is the original embedding for node i at step t (tth

sentence) and the node type πi must satisfies πi ∈ {s, c, w}
as the node can be sentence node, constituent node or word
node. hi,t refers to the hidden state for node i at step t.

The goal of this layer is to detect the syntactic relation-
ship among them and encode the syntax information for ev-
ery constituent. More specifically, for each node i in the
constituency tree of tth sentence, we learn its syntactic de-
pendency with other nodes in its neighborhood N ϕ

i,t via the
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Figure 4: A toy example for updating h3,t (the target node
in Figure 3) in syntax-aware graph attention layer via meta-
path-based attention mechanism. The meta-path of length 2
is considered for constituency nodes. There are 3 types of
meta-paths in total Φ3 = {ϕ1, ϕ2, ϕ3} and ϕ1 has 3 meta-
path instances 3-12-13, 3-12-14 and 3-12-15.

meta-path-based graph attention mechanism as Eq. (2),

eϕij,t = LeakyReLU(aTϕ,t[hi,t∥hj,t]),

αϕ
ij,t =

exp eϕij,t∑
k∈Nϕ

i,t
exp eϕik,t

.
(2)

Here, αϕ
ij,t is the attention score. aϕ,t ∈ R2d is a learn-

able weight vector. ∥ is the concatenation operation. The
meta-path ϕ of length l is defined as a path in the form
of π1π2 . . . πl. All nodes appearing on the meta-path (in-
stances) ϕ of node i belong to its neighborhood N ϕ

i,t.
Afterward, the message is generated by a weighted sum

over all nodes along each meta-path in the neighborhood
and then aggregated together by a mean pooling operation
to update the embedding for the target node i as Eq. (3).

hi,t =
1

|Φi|
∑
ϕ∈Φi

σ(
∑

j∈Nϕ
i,t

αϕ
ij,thj,t), (3)

where Φi represents the set of all the considered meta-paths
and it depends on the node type πi. σ is the activation func-
tion. A toy example is illustrated in Figure 4. This syntax-
aware graph attention layer can be easily stacked by iterating
Eq. (2) to Eq. (3) multiple times.

Hierarchical graph pooling layer To ensure that the sen-
tence node’s hidden state vector embodies rich and accu-
rate semantic information and properly attends all the child
constituency nodes in a hierarchical manner, another graph
pooling layer is attached on top of the stacked syntax-aware
graph attention layers. Note that the hidden state vector for
the root sentence node is fixed in the aforementioned layers.
Therefore, this graph pooling layer is designed to generate
a final representation vector for the whole constituency tree
by taking its hierarchical structure information into account,
and it will then be assigned to the sentence node.

The graph pooling operation is conducted from bottom to
top along edges in the constituency tree via another atten-
tion mechanism. As not all child nodes contribute equally to

the representation of the parent nodes, the proposed atten-
tion mechanism learns the importance of each child node to
its parent node in a hierarchical order. The attention score
between node i and its child node j is given as Eq. (4).

uj,t = tanh(W
πjπi

p,t h
πj

j,t + b
πjπi

p,t ),

αij,t =
exp(uT

j,th
πi
i,t)∑

k∈Child(i) exp(u
T
k,th

πi
i,t)

.
(4)

As the hidden state hπi
i,t for each node after the aforemen-

tioned layers has encoded the neighborhood information, it
can act as a context vector in Eq. (4). The importance of
each child node j is measured as the similarity of uj,t with
the parent node’s context vector hπi

i,t, followed by a normal-
ization. The parameters Wπjπi

p,t and b
πjπi

p,t in the Eq. (4) are
shared across the same type of edges to align the dimension
difference between the parent and child nodes.

We associate each non-terminal node with an accumu-
lation vector h′

i,t, whose dimension is the same as hπi
i,t, to

record the information it receives from all of its child nodes.
The accumulation vector for the word node is directly as-
signed as its corresponding embedding hw

i,t. We also apply
the gating mechanism to decide how much information is al-
lowed to transfer from lower-level node j to the higher-level
node i as Eq. (5) and Eq. (6).

zi = σ(Wg,t

∑
j∈Child(i)

h′
j,t + bg,t) (5)

h′
i,t = (1− zi)⊙hπi

i,t+ zi⊙ (Wπiπj

∑
j∈Child(i)

αij,th
πj

j,t) (6)

The σ in Eq. (5) is the sigmoid function, and the ⊙ oper-
ator indicates the Hadamard product. The trainable weight
Wπiπj

serves as a projection matrix when the node type of
the parent node πi and the child node πj are disparate.

Finally, the accumulation vector for the root sentence
node h′

1,t is obtained by iterating between Eq. (5) and Eq. (6)
to generate h′

i,t along the edges from bottom to top. Note
that the index for the sentence node is always set to 1
for convenience. This hierarchical graph pooling operation
is followed by another one-layer MLP to produce the ini-
tial embedding for the sentence node at the next step as
hs
1,t+1 = tanh(Whhh

′
1,t + bh).

It is worth noting that the root sentence node attends over
all the constituency nodes with the help of a hierarchical
graph pooling operation. The attention score between the
sentence node (index fixed as 1) with any constituency node
j at step t is given as Eq. (7)

α1j,t =

j−1∏
i=1

αvivi+1,t, (7)

where a unique path v1, v2, . . . , vj exists between the root
sentence node i and the constituency node j with v1 = 1
and vj = j. It is easy to see that node vi+1 must be a child
node of node vi and each term αvivi+1,t is given by Eq. (4).
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Token Generator and Constituency Pointer
With the purpose of avoiding the out-of-vocabulary (OOV)
issue (See, Liu, and Manning 2017), we adopt the copying
mechanism (Gu et al. 2016). To reduce the number of repe-
titions during decoding steps (Sankaran et al. 2016), we first
calculate the encoder context vector cet as Eq. (8). hd

t is the
hidden state at decoding time step t.

αe
ti =

exp((Wwh
d
t )

TWe(Wsh
s
1,i))∑n

j=1 exp((Wwhd
t )

TWe(Wshs
1,j))

cet =
n∑

i=1

αe
tih

s
1,i.

(8)

Then we define a binary value ut as a switch at each de-
coding step t to decide whether to generate a token from
the dictionary or copy a certain constituent with distribu-
tion p(ut = 1) = σ(Wu[h

d
t ∥cet ] + bu). On the one hand,

the token generation follows the probability distribution as
p(yt|ut = 0) = softmax(Wgen[h

d
t ∥cet ] + bgen). On the

other, the constituent pointer mechanism utilizes the atten-
tion score appearing in the hierarchical graph pooling layer
as the probability p(yt = cj,i[0]|ut = 1) = αe

tiα1j,i to copy
the first token in the specific constituency. Here, αe

ti and
α1j,i is given by Eq. (8) and Eq. (7) respectively. cj,i[0] rep-
resents the first token in the constituency node j in sentence
i. The final distribution for the output token p(yt) is given as
p(ut = 1)p(yt|ut = 1) + (1− p(ut = 1))p(yt|ut = 0).

Loss Function
For the abstractive summarization task, the final loss func-
tion is based on the maximum-likelihood training ob-
jective with the ground-truth summary sequence y =
{y1, y2, . . . , yn2

} and the input token sequence x as L =
−
∑n2

t=1 log p(yt|y1, . . . , yt−1, x). For the extractive sum-
marization task, we convert the problem into a graph-level
classification problem and directly train a binary classifier.

Experiment
Datasets
We choose five datasets to evaluate our model. The data split
is described in Table 2. CNN/DM (Hermann et al. 2015;
See, Liu, and Manning 2017) is the most widely used dataset
that contains news articles and associated highlights as refer-
ence summaries. New York Times (NYT) (Sandhaus 2008)
is another dataset that is composed of news articles and asso-
ciated gold summaries. We follow the split in (Kedzie, McK-
eown, and III 2018). Reddit (Kim, Kim, and Kim 2019) is
a social media dataset collecting posts from Reddit. TIFU-
long version is used. WikiHow (Koupaee and Wang 2018)
is a large-scale dataset extracted from a knowledge base.
PubMed dataset comes from an academic paper database.

Baseline Models
Abstractive models Pointer-generator (See, Liu, and
Manning 2017) is the first model that copies words from

Dataset Split Avg. Len #ExtTrain Valid Test Doc. Sum.
CNN/DM 287K 13K 11K 766.1 58.2 3

NYT 44K 5K 6K 1183.2 110.8 4
Reddit 42K 0.6K 0.6K 482,2 28.0 2

WikiHow 168K 6K 6K 580.8 62.6 4
PubMed 83K 5K 5K 44.0 209.5 6

Table 2: Datasets statistics. #Ext is the number of the ex-
tracted sentences for the extractive summarization task.

the source text via pointing and coverage mechanism. Intra-
attention (Paulus, Xiong, and Socher 2018) is a deep re-
inforced model with intra-attention. Graph-based Atten-
tion (Tan, Wan, and Xiao 2017) is the early work to use
the graph for summarization. Bottom-up (Gehrmann, Deng,
and Rush 2018) model uses a bottom-up attention step.
Gated GNN (Fernandes, Allamanis, and Brockschmidt
2019) model extends the sequence model with a GNN to
reason about long-distance relations. SemSUM (Jin, Wang,
and Wan 2020) and BASS (Wu et al. 2021) are the state-of-
the-art GNN models for the abstractive summarization task.

Extractive models NeuSUM (Zhou et al. 2018) jointly
learns to score and select sentences. BanditSum (Dong
et al. 2018) extracts summarization as a contextual bandit.
JECS (Xu and Durrett 2019) is another extractive model via
syntactic compression. HSG (Wang et al. 2020) is the state-
of-the-art GNN model for extractive summarization based
on the statistical text graph. DISCOBERT (Xu et al. 2020)
and HANSum (Jia et al. 2020) are also two latest GNN-
based models, pre-trained with BERT (Devlin et al. 2019).

Implementation Details
Graph Construction We train the state-of-the-art con-
stituency parser1 on the English Penn Treebank (PTB)
dataset2 via self-attention mechanism. After that, we can use
the trained parser to get the constituency parsing tree of the
sentences in our tested datasets. We use the same set of pa-
rameters suggested in the original paper (Mrini et al. 2020).

Parameters Setting There are three types of nodes in the
constituency parsing tree: sentence node, constituency node,
and word node. The dimension of the embedding for them is
4096, 512, 128, respectively by default. In the syntax-aware
graph attention layer, the node embedding for the root sen-
tence node and the leaf word nodes are fixed without up-
dating. The meta-paths for each constituency node are all
length-two paths starting from itself. The number of stacked
syntax-aware graph attention layers ranges from 2 to 5. We
only stack one layer of hierarchical graph pooling to avoid
the issue of over-smoothing. We choose the Adam opti-
mizer with an initial learning rate 0.0001, momentum values
β1 = 0.9, β2 = 0.999 and weight decay ϵ = 10−5. We feed
the graph into our model in a mini-batch fashion with a size
of 256. In addition, during the decoding step, a beam search
strategy is utilized with the beam size of 3.

1https://github.com/KhalilMrini/LAL-Parser
2https://catalog.ldc.upenn.edu/LDC2015T13
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Automatic Evaluation
We evaluate the quality of the summarization based on
ROUGE (Lin 2004). We report unigram and bigram overlap
(ROUGE-1 and ROUGE-2) between generated or extracted
summaries and gold summaries to assess informativeness.
The longest common subsequence (ROUGE-L) on sentence-
level is reported for evaluating fluency.

Evaluation w/o pre-training In our original model, no
pre-trained models are involved so we remove any pre-
trained models in the baseline models for fair comparison
in this section. We show the results of our proposed model
against recently released summarization models on three
news datasets in Table 3. We classify all the baselines into
two groups: non-graph-based models and graph-based mod-
els. From the results, we can see that graph-based meth-
ods generally show comparable performance with the non-
graph-based ones when GNN models are incorporated, as
the case for Gated GNN and SemSUM. Furthermore, Synap-
Sum outperforms the existing popular graph-based models
and the listed non-graph-based models without pre-training
in abstractive and extractive settings. SynapSum achieves
the improvement by converting each sentence into a hier-
archical graph with finer granularity and generating repre-
sentations for words, constituents, and sentences simultane-
ously with rich syntactic and semantic meanings. However,
the graphs used in other models tend only to capture the re-
lationship between words and sentences, which leads to the
loss of semantic meanings of the phrases as a whole. There-
fore, our model can better mimic the human way of conduct-
ing summarization hierarchically, from words to phrases to
sentences and documents, finally.

Evaluation w/ pre-training The most recent summariza-
tion models are typically instantiated with some contextu-
alized pre-trained models like BERT (Devlin et al. 2019).
Consequently, it is essential to demonstrate the potential per-
formance improvement of our proposed model with the help
of pre-trained models. We use two popular recent pre-trained
models: BART (Lewis et al. 2020) and MatchSum (Zhong
et al. 2020) for abstractive and extensive summarization
tasks respectively. More specifically, we firstly pre-train the
model, following the setting used in PEGASUS (Zhang et al.
2020). Then we feed the word embeddings as the initial
hidden states for word nodes in SynapSum to substitute
for the original bidirectional LSTM and further fine-tune
the model. Besides, we add the same pre-training step for
fair comparison. We investigate the potential effects of pre-
trained on graph-based methods and compare the results
with the SOTA pre-training methods for text summariza-
tion. We summarize the results in Table 4, and it shows that
SynapSum performs better than all the other graph-based
models. It is obvious that pre-training can further enhance
the performance of SynapSum, and it even shows compa-
rable results with the current SOTA pure pre-trained model
RefSum (Liu, Dou, and Liu 2021).

Human Evaluation
We further access the proposed model by eliciting human
judgment (Fabbri et al. 2021). For CNN/DM dataset, we ran-

Figure 5: Syntactic efficacy analysis on CNN/DM dataset.
The LAL parser and the Berkeley Neural Parser are denoted
as the SOTA parser and previous parser respectively.

domly choose 100 samples from the testing set, along with
a list of generated summaries by different models, and then
present them to several qualified volunteers. These annota-
tors are requested to rank these summaries by taking the fol-
lowing criteria into account: fluency (is the summary gram-
matically correct?), informativeness (does the summary cap-
ture important facts?), and succinctness (is there any repeti-
tion in the summary?). The ranking value is 1 (best) to 5
(worst), and ties are allowed. We also normalize the ranking
value by converting 1, 2, 3, 4, 5 to 2, 1, 0, -1, -2 respectively.
The final rating value is obtained by averaging the scores for
all the test samples. Table 5 summarizes the results of human
evaluation on four baseline models and the proposed model
for the abstractive summarization task. Based on these re-
sults, our model performs better than others.

Model Analysis

Syntactic Efficacy Analysis To further demonstrate the
efficacy of introducing syntactic information into summa-
rization, we use various constituency parsers with differ-
ent levels of quality. If better metrics of the generated sum-
maries can be obtained when a higher-quality parser is uti-
lized during the graph construction step, the efficacy and the
benefits of the syntax structure can be empirically proven
because the performance would not even vary with respect
to the quality of the constituency parser if syntactic infor-
mation were not helpful. To get constituency parsers with
different levels of accuracy, we use the same SOTA con-
stituency parser, LAL Parser, but train it with different por-
tions of data so that parsers with different qualities can
be obtained. After that, the parsers with different qualities
can be plugged into the proposed model for graph con-
struction. To get more data points, we also choose another
older constituency parser (Berkeley Neural Parser3). The de-
tailed results are summarized in Figure 5. It clearly shows
that BERTScore increases as the quality of the parser rises,
demonstrating the efficacy of our idea to incorporate the syn-
tactic information into the model.

3https://github.com/nikitakit/self-attentive-parser
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Model CNN/DM NYT Reddit WikiHow PubMed
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Oracle 55.76 33.22 51.83 55.84 38.39 50.00 36.21 13.74 28.93 35.59 12.98 32.68 45.12 20.33 40.19
Non-graph-based Methods (Abstractive)

Pointer-generator 36.44 15.66 33.42 43.15 26.98 40.14 - - - - - - - - -
Intra-attention 38.30 14.81 35.49 43.86 27.10 40.11 - - - - - - - - -

Bottom-up 41.22 18.68 38.34 47.38 30.37 41.81 - - - - - - - - -
Graph-based Methods (Abstractive)

Graph-based
Attention 30.35 9.80 20.07 42.93 26.75 39.22 15.67 3.56 13.28 22.86 3.90 22.13 32.74 6.09 26.35

Gated GNN 38.10 16.11 33.23 44.37 27.70 40.65 21.46 3.41 16.91 26.02 5.15 24.68 34.70 8.35 30.20
SemSUM 40.03 18.56 37.58 47.86 28.83 40.60 23.28 4.08 18.67 27.21 5.95 26.84 36.32 10.78 31.60

BASS 39.76 17.96 36.33 45.43 29.46 41.07 22.06 3.85 17.26 26.84 6.07 25.92 35.88 9.70 31.42
SynapSum-Abs 41.52 18.82 38.29 47.21 30.93 41.84 22.13 3.76 17.64 27.73 6.21 27.88 37.65 11.30 32.98

Non-graph-based Methods (Extractive)
BanditSum 41.50 18.70 37.60 46.94 25.71 41.43 - - - - - - - - -
NeuSUM 41.59 19.01 37.98 47.35 27.03 42.05 - - - - - - - - -

JECS 41.77 18.53 37.92 47.70 28.57 41.99 - - - - - - - - -
Graph-based Methods (Extractive)

DISCOBERT
w/o BERT 43.26 20.11 39.45 46.94 27.64 41.83 20.94 4.12 15.18 27.45 5.90 24.59 36.33 9.26 30.88

HSG 42.31 19.51 38.74 46.89 27.26 42.58 24.96 6.29 20.21 30.27 8.46 28.95 40.37 13.90 36.03
HAHSum

w/o ALBERT 43.74 20.84 39.93 48.32 30.61 43.37 23.91 5.30 19.14 28.36 7.93 28.01 39.95 12.50 34.32

SynapSum-Ext 44.32 21.07 40.36 48.93 31.98 43.34 25.02 6.17 20.02 31.79 8.94 29.56 41.20 14.88 36.79

Table 3: Automatic evaluation of SynapSum against recently released summarization models on five datasets. All scores have a
95% confidence interval of at most ±0.25 as reported by the official scripts.

Model CNN/DM NYT
R-1 R-2 R-L R-1 R-2 R-L

Oracle 55.76 33.22 51.83 55.84 38.39 50.00
Abstractive

Gated GNN 38.10 16.11 33.23 44.37 27.70 40.65
Gated GNN w/ BART 41.38 17.77 34.02 48.08 30.41 41.98

SemSUM 40.03 18.56 37.58 47.86 28.83 40.60
SemSUM w/ BART 42.33 21.03 38.35 48.42 30.59 42.31

RefSum-Abs (SOTA) 44.96 21.50 41.43 48.30 30.74 42.85
SynapSum-Abs 41.52 18.82 38.29 47.21 30.93 41.84

SynapSum-Abs w/
BART 44.32 21.93 41.10 48.45 31.48 43.27

Extractive
DISCOBERT 43.26 20.11 39.45 46.94 27.64 41.83

DISCOBERT w/
MatchSum 43.37 20.42 40.23 49.79 30.32 42.95

HSG 42.31 19.51 38.74 46.89 26.26 42.58
HSG w/ MatchSum 43.24 20.33 39.60 48.45 29.02 43.14

RefSum-Ext (SOTA) 46.12 22.46 42.92 50.27 32.96 46.50
SynapSum-Ext 44.32 21.07 40.36 48.93 31.98 43.34

SynapSum-Ext w/
MatchSum 46.08 22.48 42.71 50.30 33.02 45.33

Table 4: Automatic evaluation of SynapSum against other
graph-based summarization models w/ & w/o pre-training.

Ablation Study We perform the ablation study to investi-
gate the potential influence of different components. We de-
sign five settings: (1) we delete the bidirectional LSTM layer
for word node embedding and directly use random initializa-
tion; (2) we remove the syntax-aware graph attention layer
and use the accumulation vector in hierarchical graph pool-
ing operation; (3) we take off the hierarchical graph pooling
layer and update the sentence node’s hidden state in syntax-
aware graph attention layer. (4) For the abstractive setting,
we may also eliminate the copying mechanism. We conduct

Model 1st 2nd 3rd 4th 5th Mean Rating
Graph-based

Attention 0.14 0.24 0.28 0.12 0.22 -0.04∗

Gated GNN 0.24 0.18 0.11 0.29 0.18 0.01⋆

SemSUM 0.46 0.26 0.20 0.03 0.05 1.05
BASS 0.31 0.17 0.27 0.19 0.06 0.48⋆

SynapSum-Abs 0.48 0.32 0.13 0.04 0.03 1.18

Table 5: Overall ranking results of summaries by human
evaluation on CNN/DM dataset. The larger mean rating in-
dicates better quality. ∗ denotes the overall mean rating of
the corresponding model is significantly outperformed by
SynapSum via Welch’s t-test (p < 0.01).

Models R-1 R-2 R-L
SynapSum-Abs 41.52 18.82 38.29

w/o LSTM 41.40 18.47 38.04
w/o graph attention layer 41.04 17.96 37.78
w/o graph pooling layer 41.12 18.04 37.75
w/o copying mechanism 41.26 18.50 37.81

Table 6: Ablation study on CNN/DM dataset.

the experiments and list all the results in Table 6 and it shows
that the graph attention layer is the most influential module.

Conclusion
This paper introduces another graph-based method for text
summarization, which utilizes syntactic information as guid-
ance based on the constituency tree. We leave how to incor-
porate graph information in the decoder as future work.
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