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Abstract

It is well known that natural language models are vulner-
able to adversarial attacks, which are mostly input-specific
in nature. Recently, it has been shown that there also exist
input-agnostic attacks in NLP models, special text sequences
called universal adversarial triggers. However, existing meth-
ods to craft universal triggers are data intensive. They re-
quire large amounts of data samples to generate adversarial
triggers, which are typically inaccessible by attackers. For
instance, previous works take 3000 data samples per class
for the SNLI dataset to generate adversarial triggers. In this
paper, we present a novel data-free approach, MINIMAL, to
mine input-agnostic adversarial triggers from models. Using
the triggers produced with our data-free algorithm, we reduce
the accuracy of Stanford Sentiment Treebank’s positive class
from 93.6% to 9.6%. Similarly, for the Stanford Natural Lan-
guage Inference (SNLI), our single-word trigger reduces the
accuracy of the entailment class from 90.95% to less than
0.6%. Despite being completely data-free, we get equivalent
accuracy drops as data-dependent methods.

1 Introduction
In the past two decades, deep learning models have shown
impressive performance over many natural language tasks,
including sentiment analysis (Zhang, Wang, and Liu 2018),
natural language inference (Parikh et al. 2016), automatic
essay scoring (Kumar et al. 2019), question-answering
(Xiong, Zhong, and Socher 2017), keyphrase extraction
(Meng et al. 2017), etc. At the same time, it has also been
shown that these models are highly vulnerable to adversarial
perturbations (Behjati et al. 2019). The adversaries change
the inputs to cause the models to make errors. Adversarial
examples pose a significant challenge to the rising deploy-
ment of deep learning based systems1.

Commonly, adversarial examples are found on a per-
sample basis, i.e., a separate optimization needs to be per-
formed for each sample to generate an adversarially per-
turbed sample. Since the optimization needs to be per-
formed for each sample, it is computationally expensive

*Equal Contribution
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1The code and reproducibility steps are given in https://github.
com/midas-research/data-free-uats

and requires deep learning expertise for generation and test-
ing. Lately, several research studies have shown the exis-
tence of input-agnostic universal adversarial trigger (UATs)
(Moosavi-Dezfooli et al. 2017; Wallace et al. 2019). These
are a sequence of tokens, which, when added to any exam-
ple, cause a targeted change in the prediction of a neural net-
work. The existence of such word sequences poses a consid-
erable security challenge since the word sequences can be
easily distributed and can cause a model to predict incor-
rectly for all of its inputs. Moreover, unlike input-dependent
adversarial examples, no model access is required at the run
time for generating UATs. At the same time, the analysis of
universal adversaries is interesting from the point of view of
model, dataset analysis and interpretability (§5). They tell
us about the global model behaviour and the general input-
output patterns learnt by a model (Wallace et al. 2019).

Existing approaches to generate UATs assume that an at-
tacker can obtain the training data on which a targeted model
is trained (Wallace et al. 2019; Behjati et al. 2019). While
generating an adversarial trigger, an attacker firstly trains
a proxy model on the training data and then generates ad-
versarial examples by using gradient information. Table 1
presents the data requirements during training for the current
approaches. For instance, to find universal adversaries on the
natural language inference task, one needs 9000 training ex-
amples. Also, the adversarial ability of a perturbation has
been shown to depend on the amount of data available (Mop-
uri, Garg, and Radhakrishnan 2017; Mopuri, Ganeshan, and
Babu 2018). However, in practice, an attacker rarely has ac-
cess to the training data. Training data are usually private
and hidden inside a company’s data storage facility, while
only the trained model is publicly accessible. For instance,
Google Cloud Natural Language (GCNL) API only outputs
the scores for the sentiment classes (Google 2021) while the
data on which the GCNL model was trained is kept private.
In this real-world setting, most of the adversarial attacks fail.

In this paper, we present a novel data-free approach
for crafting universal adversarial triggers to address the
above issues. Our method is to mine a trained model (but
not data) for perturbations that can fool the target model
without any knowledge about the data distribution (e.g.,
type of data, length and vocabulary of samples, etc.). We
only need access to the embedding layer and model out-
puts. Our method achieves this by solving first-order Tay-
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Figure 1: Two step process to generate universal adversarial trig-
gers. First, we generate multiple class impressions for each class c.
For this, we take multiple initialization sequences differing in start-
ing word and length. After generating class impressions, we use
them as our dataset for generating universal adversarial triggers.

lor approximation of two tasks: first, we generate “class-
impressions” (§3.1), which are reconstructed text sentences
from a model’s memory representing the learned parame-
ters for a certain data class; and second, we mine univer-
sal adversarial triggers over these generated class impres-
sions (§3.2). Class-impression can be considered as the gen-
eral representation of samples belonging to a particular class
(Fig 5) and are used to emulate samples belonging to that
class in our method. The concept of data leaving its impres-
sion on a trained model has also been observed in prior work
in model inversion attacks in computer vision (Micaelli and
Storkey 2019; Nayak et al. 2019). We build on that concept
to mine universal adversarial triggers. We propose a combi-
nation of general model inversion attacks methodology with
trigger generation to mine data-free adversarial triggers and
show our results for several NLP models (Fredrikson, Jha,
and Ristenpart 2015; Tramèr et al. 2016).
The major contributions of our work are summarized as:
- For the first time in the literature, we propose a novel data-
free approach, MINIMAL (MINIng Models for Adversar-
iaL triggers), to craft universal adversarial triggers for natu-
ral language processing models and achieve state-of-the-art
success (adversarial) rates (§4). We show the efficacy of the
triggers generated using our method on three well-known
datasets and tasks, viz., sentiment analysis (§4.1) on Stan-
ford Sentiment Treebank (SST) (Socher et al. 2013), natu-
ral language inference (§4.2) on the SNLI dataset (Bowman
et al. 2015), and paraphrase detection (§4.3) on the MRPC
dataset (Dolan and Brockett 2005).
- We use both class impressions and universal adversarial
triggers generated by our models to try to understand the
models’ global behaviour (§5). We observe that the words
with the lowest entropy (i.e., the most informative features)
appear in the class impressions (Fig. 4). We find that these
low entropy word-level features can also act as universal ad-
versarial triggers (Table 12). The class-impression words are
good representations of a class since they form distinct clus-
ters in the manifold representations of each class.

2 Related Work
Universal Adversarial Attacks: Moosavi-Dezfooli et al.
(2017) showed the existence of universal adversarial pertur-
bations. They showed that a single perturbation could fool
DNNs most of the times when added to all images. Since
then, many universal adversarial attacks have been designed
for vision systems (Khrulkov and Oseledets 2018; Li et al.
2019; Zhang et al. 2021). To the best of our knowledge, there
are only three recent papers for NLP based universal adver-
sarial attacks, and all of them require data for generating uni-
versal adversarial triggers (Wallace et al. 2019; Song et al.
2021; Behjati et al. 2019). In simultaneous works, (Wallace
et al. 2019; Behjati et al. 2019) show universal adversarial
triggers for NLP. Song et al. (2021) extend it to generate nat-
ural (data-distribution like) triggers. We compare our work
with (Wallace et al. 2019) since they show improved adver-
sarial success rates over (Behjati et al. 2019). We leave min-
ing natural triggers from models as a future study. Our re-
sults demonstrate comparable performance as (Wallace et al.
2019) but without using any data. Table 1 mentions the data
requirement of (Wallace et al. 2019).
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Figure 2: Class Impression Generation (CIG) Algorithm. We start
with an initial sequence of “the the ... the” and continuously update
it based on its gradient with respect to output probabilities (Eq. 2).
The final sequence we get represents the class impression CIc for
the class c.

While there are many proposed classifications of adver-
sarial attacks, from the point of view of our work, they can
be seen in two ways: (a) data-based attacks; (b) data-free at-
tacks. Data-based computer vision attacks depend on train-
ing and validation dataset to craft adversaries, while data-
free attacks rely on other signals. There are some data-free
approaches in computer vision, for example, by maximizing
activations at each layer (Mopuri, Garg, and Radhakrishnan
2017; Mopuri, Ganeshan, and Babu 2018), class activations
(Mopuri, Uppala, and Babu 2018), and pretrained models
and proxy dataset (Huan et al. 2020). However, there has
been no work in NLP systems for data-free attacks.

3 The Proposed Approach
In summary, our algorithm of crafting data-free universal ad-
versarial triggers is divided into two steps, as shown in Fig 1.
First, we generate a set of class-impressions (§3.1) (Fig 2)
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for each class. These natural language examples represent
the entire class of samples and are generated solely from the
weights learnt by the model. Second, we use the set of class
impressions generated in the first step to craft universal ad-
versarial triggers corresponding to those impressions (§3.2)
(Fig 3).

3.1 Class-Impressions Generation (CIG)
Algorithm

To generate the class impression CIc for a class c, we pro-
pose to maximize the confidence of the model f(x) for an
input text sequence tc. Formally, we maximize:

CIc = argmax
tc

Etc∼V [L(c, f(tc))] , (1)

where tc is sampled from a vocabulary V . The input tc in
NLP is not continuous, but is made up of discrete tokens.
Therefore, we use the first-order Taylor approximation of
Eq. 1 (Michel et al. 2019; Ebrahimi et al. 2018; Wallace et al.
2019). Formally, for every token ecii in a class impression
CIc, we solve the following equation:

ecii = argmin
e′
i∈V

[e′i − ecii ]
ᵀ∇ecii

L, (2)

where V represents the set of all words in the vocabulary, and
∇ecii

L is the gradient of the task loss. We model the Eq. 2
as an iterative procedure by starting out with an initialisation
value of ecii as ‘the’. We then continually optimize it until
convergence. For computing the optimal e′i, we take |V| d-
dimensional dot products where d is the dimensionality of
the token embedding. We use beam-search for finding the
optimal sequence of tokens e′i to get the minimum loss in
Eq. 2. We score each beam using the loss on the batch in
each iteration of the optimization schedule.

Finally, we convert the optimal ecii back to their associ-
ated word tokens. Fig. 2 presents an overview of the process.
It shows the case where we initialized ecii with a sequence
of “the the .... the” and then follow the optimization proce-
dure for finding the optimal CIc for the class c2.

To generate class impressions for the models that use con-
textualized embeddings like BERT (Devlin et al. 2019), we
perform the above optimization over character and sub-word
level. We also replace the context-independent embeddings
in Eq. 2 with contextual embeddings as obtained from BERT
after passing the complete sentence to it.

We generate multiple class impressions for each class for
all models by varying the number of tokens and the starting
sequence. This gives us a number of class impressions for
the next step where we generate triggers over these class
impressions.

3.2 The Universal Trigger Generation (UTG)
Algorithm

After generating class impressions in the previous step, we
generate adversarial triggers as follows. From the last algo-
rithm, we get a batch of class impressions CIc for the class

2We vary the initialization sequence and sequence length to
generate multiple class impressions for the same class

Dataset Validation Size
(Real samples)

Impressions Size
(Generated samples)

SST 900 300
SNLI 9000 400
MRPC 800 300

Table 1: Number of Samples required to generate Universal Ad-
versarial Triggers for each Dataset. In a data-based approach like
(Wallace et al. 2019), validation set (column 2) is used to generate
the UATs. The third column lists the number of queries we make to
generate artificial samples. These artificial samples are then used to
craft UATs. Note that no real samples are required for our method.

c. The task of crafting universal adversarial triggers is de-
fined as minimizing the following loss function:

argmin
tadv

Et∼CIc [L(c̃, f(tadv; t))] , (3)

where c̃ denotes target class (distinct from the class c),
f(tadv; t) denotes the evaluation of f(x) on the input con-
taining concatenation of adversarial trigger tokens at the
start of the text t. The text t is sampled from the set of all
class impressions CIc. Again, we use the Taylor approxi-
mation of the above equation. Therefore, we get:

eadvi
= argmin

e′
i∈V

[e′i − eadvi
]
ᵀ∇eadvi

L, (4)

where V represents the set of all words in the vocabulary,
and ∇eadvi

L is the average gradient of the task loss over a
batch. We model Eq. 4 as an iterative procedure where we
initialize eadvi

with an initialisation value of ‘the’. For com-
puting the optimal e′i, similar to the previous step, we take
|V| d-dimensional dot products where d is the dimensional-
ity of the token embedding. We use beam-search for finding
the optimal sequence of tokens e′i to get the minimum loss
in Eq. 4. We score each beam using the loss on the batch
in each iteration of the optimization schedule. Additionally,
to generate impressions of varying difficulty, we randomly
select the token from a N-sized beam of possible minimal
candidates, instead of the least scoring candidate.

Finally, we convert the optimal eadvi
back to their associ-

ated word tokens. Fig. 3 presents an overview of the process.
Similar to Sec. 3.1, we initialize the iterative algorithm with
a sequence (eadv) of “the the .... the”3 and then follow the
optimization procedure to find the optimal eadv . We handle
contextual embeddings in a similar manner as in Sec. 3.1.
Next, we show the application of the algorithms developed
on several downstream tasks.

4 Experiments
We present our experimental setup and the effectiveness of
the proposed method in terms of the success rates achieved
by the crafted UATs. We test our method on several tasks in-
cluding sentiment analysis, natural language inference, and
paraphrase detection.

3We vary the initialisation sequence and sequence length to
generate multiple adversarial triggers
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Class Class Impression
Positive energizes energizes captivated energizes enthrall eye-catching captivating aptitude artistry passion
Positive captures soul-stirring captivates mesmerizing soar amaze excite amaze enthrall thrill captivating impress artistry accomplishments
Negative spiritless ill-constructed ill-conceived ill-fitting aborted fearing bottom-rung woe-is-me uncharismatically pileup
Negative laziest third-rate insignificance stultifyingly untalented hat-in-hand rot leanest blame direct-to-video wounds urinates

Table 2: Class Impressions for BiLSTM-Word2Vec Sentiment Analysis Model. Note that the words in the class impression examples highly
correspond to the respective sentiment classes.

Type Direction Trigger Acc.
Before

Acc.
After

Data-based P→ N worthless
endurance useless 93.6 9.6

Data-free P→ N useless
endurance useless 93.6 9.6

Data-based N→ P kid-empowerment
hickenlooper enjoyable 80.3 7.9

Data-free N→ P compassionately
hickenlooper gaghan 80.3 8.1

Table 3: The table reports the accuracy drop for the BiLSTM-
Word2Vec sentiment analysis model after prepending 3-word ad-
versarial triggers generated using MINIMAL and data-based meth-
ods.

Type Direction Trigger Acc.
Before

Acc.
After

Data-free P→ N useless
endurance useless 86.2 32

Data-free N→ P compassionately
hickenlooper gaghan 86.9 35

Table 4: Accuracy drop for transfer attack with data-free UAT
generated by our method. We prepend 3-word adversarial triggers
to the SST BiLSTM-ELMo model.

4.1 Sentiment Analysis
We use the Stanford Sentiment Treebank (SST) dataset
(Socher et al. 2013). Previous studies have extensively used
this dataset for studying sentiment analysis (Devlin et al.
2019; Cambria et al. 2013). We use two models on this
dataset: Bi-LSTM model (Graves and Schmidhuber 2005)
with word2vec emebddings (Mikolov et al. 2018), Bi-LSTM
model with ELMo embeddings (Peters et al. 2018). The
same models have been used in previous work (Wallace
et al. 2019) for generating data-dependent universal adver-

Class Class Impressions

Contradiction

Hypothesis: lynched cardinals giraffes lynched
lynched a mown extremist natgeo illustration
Premise: zucchini restrooms swimming golds

weekday rock 4 seven named dart

Entailment

Hypothesis: civilization va physical supersonic
prohibits biathlon body land muffler mobility

Premise: gecko robed abroad teetotalers blonds
pluggling sprinter speeds corks dogtrack

Neutral

Hypothesis: porters festivals fluent a playgrounds
ratatouille buttercups horseback popularity waist

Premise: bowler teaspoons group tourism tourism
spiritual physical physical person

Table 5: Class Impressions for ESIM model trained for the Natural
Language Inference Task

Class Type: Entailment→Neutral
Original Accuracy: (ESIM: 91%, DA: 90.3%)

Data-Inputs Data-Type Trigger ESIM DA

Hypothesis and
Premise

Data-Based
nobody

whatsoever
cats

0.06
0.6
0.69

0.18
43
0.7

Data-Free
nobody

no
mars

0.06
0.1
0.1

0.18
2

0.3

Hypothesis-Only Data-Free
monkeys

zebras
cats

0.7
0.5
0.69

0.54
0.39
0.7

Class Type: Neutral→Contradiction
Original Accuracy: (ESIM: 88%, DA: 80%)

Data-Inputs Data-Type Trigger ESIM DA

Hypothesis and
Premise

Data-Based
shark
moon

spacecraft

18
17
12

28
13
8.4

Data-Free
skydiving
orangutan
spacecraft

14
12
12

20
75
8.4

Hypothesis-Only Data-Free
sleep

drowning
spacecraft

11
15
12

19
29
8.4

Class Type: Contradiction→Entailment
Original Accuracy: (ESIM: 79%, DA: 85%)

Data-Inputs Data-Type Trigger ESIM DA

Hypothesis and
Premise

Data-Based
expert

siblings
championship

64
66
65

73
68
74

Data-Free
inanimate

final
championships

67
66
68

82
68
85

Hypothesis-Only Data-Free
humans

semifinals
championship

70
68
65

79
74
74

Table 6: We prepend a single word (Trigger) to SNLI hypotheses.
We display the top 3 triggers created using both Validation set and
Class Impressions for ESIM and show their performance on the
DA. The original accuracies are mentioned in brackets.

Class Class Impressions

Paraphase
Detected

Sentence 1:nintendo daredevil bamba bamba the
the lakers dodgers weekend rhapsody seahawks

Sentence 2: nintendo multiplayer shawnee dodgers
anthem netball the olympics soundtrack

overture martial

Paraphase
Detected

Sentence 1: mon submitted icus submit arboretum
templar desires them requirements kum

Sentence 2: lection rahul organizers postgraduate
qualifying your exercises signifies its them

No Paraphase
Detected

Sentence 1: b 617 matrices dhabi ein wm spelt
rox a proportional alamo swap

Sentence 2: drilled traced 03 02 said
mattered million 0% 50% corporations a a

No Paraphase
Detected

Sentence 1: cw an hung kanda singapore
tribu chun mid 199798 nies bula latvia

Sentence 2: came tempered paced times than
an saying say shone say s copp

Table 7: Class Impressions for ALBERT model trained for
the Microsoft Research Paraphrase Corpus
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sarial triggers. The models achieve an accuracy of 84.4%
and 86.6% over the dataset, respectively. We compare our
algorithm with (Wallace et al. 2019) since it is demonstrated
to work better than other works (Behjati et al. 2019).
Class Impressions: First, we generate class impressions for
the model. Table 2 presents 2 class impressions per class.
As can be seen from the table, the words selected by the
CIG algorithm highly correspond to the class sentiment. For
instance, the algorithm selects positive words such as ener-
gizes, enthrall for the positive class, and negative words such
as spiritless, ill-conceived, laziest for the negative class. We
posit that the class impressions generated through our algo-
rithm can be used to interpret what a model has learnt.
UAT: Next, using the class impressions generated for the
models, we generate universal adversarial triggers with
the UTG algorithm (Sec 3.2). In order to avoid select-
ing construct-relevant words, we remove such words4 from
our vocabulary for this task. Table 3 shows the results for
the performance of adversarial triggers generated using our
method and those by the data-based approach of (Wallace
et al. 2019). Despite being completely independent of data,
we achieve comparable accuracy drops as (Wallace et al.
2019). We are able to reduce the sentiment prediction ac-
curacy by more than 70% for both the classes.

Transfer of Mined UATs: We check whether the trig-
gers mined from one model also work on other models. For
this, we test the triggers mined from BiLSTM-Word2Vec
model on the BiLSTM-ELMo model. Table 4 notes the re-
sults for the same. The triggers reduce the accuracy for both
the classes by more than 50%. This is significant since they
are completely mined from the model without any informa-
tion of the underlying distribution. We also compare the at-
tack success rate as a function of trigger length (Fig. 6).

4.2 Natural Language Inference
For natural language inference, we use the well-known Stan-
ford Natural Language Inference (SNLI) Corpus (Bowman
et al. 2015). We use two models for our analysis on this
task: Enhanced Sequential Inference Model (ESIM) (Chen
et al. 2017) and Decomposable Attention (DA) (Parikh et al.
2016) with GloVe embeddings (Pennington, Socher, and
Manning 2014). The accuracies reported by ESIM is 86.2%,
and DA is 85%.
Class Impressions: Modelling natural language inference
involves taking in two inputs: premise and hypothesis and
deciding the relation between them. The relation can be one
amongst entailment, contradiction, and neutral. Following
the algorithm in Sec. 3.1, we find both premise and hypothe-
sis together after starting out from a common initial word se-
quence. Through this, we get a typical premise and its corre-
sponding hypothesis for the three output classes (entailment,
contradiction, and neutral).

One example per class for the ESIM model is given in Ta-
ble 5. Unlike sentiment analysis, class impressions for SNLI
are not readily interpretable. This is because that while a

4https://www.cs.uic.edu/∼liub/FBS/sentiment-analysis.html#
lexicon

sentence from the SST corpus can be considered a combina-
tion of latent sentiments, the same cannot be assumed of a
hypothesis sentence from the SNLI corpus. A statement by
itself is not a characteristic hypothesis (or premise). For in-
stance, the SST sentence “You’ll probably love it.” is a char-
acteristic positive polarity sentence and can be understood
to be so by the word ‘love’. The same cannot be said for the
SNLI premise sentence “An older and younger man smil-
ing.” SNLI class impressions give us a glance into a model’s
learnt deep manifold representation of premise-hypothesis
pair. They are generally far away from the training data.
Strong priors about the natural training distribution might be
needed to make them closer to the training data, . We leave
this task for future investigation.

UAT: After obtaining a batch of class impressions from
the previous step, we craft the universal adversarial triggers.
A comparison of the results for UATs generated using our
method, and those of (Wallace et al. 2019) are given in Ta-
ble 6. As can be seen, we achieve comparable results as
(Wallace et al. 2019). A single word trigger is able to reduce
the accuracy of the entailment class from 90.3% to 0.06%.

Hypothesis Only UATs: Several recent research studies
have indicated that the annotation protocol for SNLI leaves
artefacts in the dataset such that by giving just hypothesis,
one can obtain 67% accuracy (Gururangan et al. 2018; Po-
liak et al. 2018). Following that line of study, we generate
only the hypothesis class impressions using the CIG algo-
rithm. Then, we generate triggers over the hypothesis-only
generated class impressions. Table 6 notes the results for the
hypothesis-only attacks. We find that hypothesis-only trig-
gers perform equivalently to hypothesis and premise attacks.
This provides further proof that there are many biases in the
SNLI dataset and more importantly, the models are using
those biases as class representations and adversarial triggers
actively exploit these (§5).

Transfer of Mined UATs to Other Models: To deter-
mine how the triggers mined from one model transfer to
another, we test both data-based and our data-free triggers
generated using the ESIM model on the DA model. Table 6
shows the results. We check the transfer attack performance
in two cases: where both hypothesis and premise are given
and where only the hypothesis is given. It can be seen that
even though both the models are architecturally very differ-
ent, the triggers transfer remarkably well for both cases. For
instance, for the entailment class, the original and transfer
attack accuracy drops are comparable. It is also noteworthy
that our results are equivalent to (Wallace et al. 2019) even
for transfer attacks.

4.3 Paraphrase Identification
For paraphrase identification, we use the Microsoft Research
Paraphrase Corpus (MRPC) (Dolan and Brockett 2005).
Paraphrase identification is the task of identifying whether
two sentences are semantically equivalent. We use the AL-
BERT model (Lan et al. 2020) for the task. It reports an ac-
curacy of 89.9% over this.
Class Impressions: Similar to natural language inference,
here, the models require two input sentences. The task of the
model is to identify whether the two sentences are semanti-
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cally the same. The class impressions generated on the AL-
BERT model are given in Table 7. We find that similar to the
SNLI corpus, the MRPC class impressions are not readily
interpretable. For specific examples like the first example in
the table, we find that sometimes words related to one topic
occur as class impressions. Words like ‘nintendo’ and ’dare-
devil’ in sentence one and ‘multiplayer’ and ‘anthem’ often
occur in the context of multiplayer digital games. We should
have got similar class impressions in an ideal scenario for
sentences 1 and 2 for actual paraphrases. However, we find
that the model considers even those sentence pairs (example
2) as paraphrases that have zero vocabulary or topic over-
lap. This indicates that the model is performing a similarity
match in the high dimensional data manifold. We do some
analysis for this in Sec. 5. We leave the further investigation
of this for future work.

UAT: Table 8 notes the performance of 3 word data-
free adversarial triggers generated using MINIMAL. As can
be seen, the mined artefacts reduce the accuracy for both
classes by more than 70%.

Model
f(x)

the the the

Update Sequence
according to Eq.4

∇eadv_iL

soar amaze enthrall thrill

Class Impressions Batch

rich write warm is

calm well post war

0.01

0.07

0.02

P(neg)

me

half sorry

poor ill dismal

the the the
Trigger Sequence

wow stun enthrall polite

Class Impressions Batch

lean write amaze war

just robust thrill fit

Model
f(x)

0.21

0.57

0.32

P(neg)

Update Sequence
according to Eq.4 ∇eadv_iL

captivates captivates raucously Class Impressions Batch Model
f(x)

0.91

0.99

0.95

P(neg)

ill

poor dismal

Final Trigger Sequence

Figure 3: Iterative Universal Trigger Generation (UTG) Algo-
rithm.

5 Analyzing the Class Impressions
We futher analyze class impressions and their relationship
with universal adversarial triggers. Specifically, we try to
answer these questions: which words get selected as class
impressions, why are we able to find universal adversarial
triggers from a batch of class impressions and no train data
distribution is required? We also try to relate it to the obser-
vation made by (Gururangan et al. 2018; Poliak et al. 2018),
which ranked the dataset artefact words by calculating their
pointwise-mutual information (PMI) values for each class.
We further show that the trigger words align very well with
dataset artefacts.

Class Impression Words: For analyzing why certain
words are selected as representatives of a particular class,

Type Direction Trigger Acc.
Before

Acc.
After

Data-free P→ N insisting sacrificing either 95 45
Data-free N→ P waistband interests stomped 80.9 61.6

Table 8: Accuracy drop for the ALBERT paraphrase identification
model after prepending 3-word adversarial triggers generated using
MINIMAL.

Stanford Sentiment Treebank
Positive % Negative %

beautifully 99.97 dull 99.99
wonderful 99.95 worst 99.99
enjoyable 99.94 suffers 99.98
engrossing 99.94 stupid 99.98
charming 99.89 unfunny 99.97

Impression Average 73.89 Impression Average 77.97

Table 9: PMI percentiles for sample class impression words and
their average

Microsoft Research Paraphrase Corpus
Paraphrase % Non-Paraphrase %

experts 99.89 biological 99.91
such 99.84 important 99.39
only 99.67 drug 99.92
due 99.65 case 98.91
said 99.57 among 98.73

Impression Average 77.23 Impression Average 81.89

Table 10: PMI percentiles for sample class impression words and
their average

Stanford Natural language Inference
Contradiction % Entailment % Neutral %
naked 99.99 human 99.91 about 99.73
sleeping 99.97 athletic 99.73 treasure 99.06
tv 99.96 martial 99.71 headed 99.05
asleep 99.96 clothes 99.53 school 98.87
eats 99.93 aquatic 99.38 league 98.83
Average 67.89 Average 70.89 Average 68.97

Table 11: PMI percentiles for sample class impression words and
their average

11335



Negative Positive
0.0

0.1

0.2

0.3

0.4

0.5

SST-2

Contradiction Entailment Neutral

SNLI

0 1

MRPC

Class

M
ea

n 
En

tr
op

y

CI
RND

Figure 4: Mean Entropy of class impression words and 350 words randomly selected from the SST, SNLI, and MRPC dataset vocabularies.
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Figure 5: t-SNE plots for SST, SNLI, and MRPC class impression words. The words from the different class impressions form different
distinct clusters depending on its class for all three datasets. The clusters are shown in different colors based on their classes.

Ground Truth→Attacked Target Trigger ESIM

Entailment→Neutral
Accuracy:88%

beatboxing
insects

reclining

77
68
83

Entailment→Contradiction
Accuracy:79%

qualities
coexist

stressful

70
71
70

Neutral→Contradiction
Accuracy: 79%

disoriented
arousing

championship

69
67
65

Neutral→Entailment
Accuracy: 91%

championship
semifinals

aunts

0.1
0.9
0.5

Contradiction→Entailment
Accuracy: 91%

ballet
nap

olives

5
2
9

Contradiction→Neutral
Accuracy: 88%

nap
hubble
snakes

14
21
9

Table 12: We prepend a single word trigger to SNLI hypotheses.
We take the first word from all ground truth class impressions and
evaluate them on class impressions of the target class.

Figure 6: Attack success rate as a function of trigger length

we find the discriminative power of each word by calculat-
ing its entropy. Concretely, we calculate entropy of the ran-
dom variable Y |X where Y denotes a model class and X
denotes the word level feature. Formally, we compute:

H(Y |X) = −
K∑

k=1

p(Y = k|X) log2 p(Y = k|X) (5)

for the class impression words and we compare them with
randomly chosen words from the model vocabulary. Fig. 4
shows the results for SST, SNLI, and MRPC datasets. In-
terestingly, we find that the words which form class impres-
sions are low entropy features. These words are much more
discriminative than other randomly sampled words for all
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three datasets. This is further reinforced by Fig. 5 where we
show t-SNE plots for all the datasets . They show that words
from different class impressions form distinct clusters.

Fig. 4 shows that CIG algorithm selects low entropy fea-
tures as representatives of different classes. However, it does
not show the class-preference of these low entropy word-
features. We hypothesize that those words become represen-
tatives of a particular class with a higher PMIs with respect
to that class. In order to show this, we calculate PMI val-
ues of class representatives for each class and note that class
representatives have a higher PMI for their own class than
other classes. Formally, we compute:

PMI(word, class) = log
p(word, class)

p(word, .)p(., class)
(6)

We use add-10 smoothing for calculating this. We then
group each class impression word based on its target class
and report their PMI percentile. We show the results in
Tables 9-11. It can be seen that class representatives have
very high PMI percentiles. Previous studies have character-
ized high PMI words as dataset artefacts (Gururangan et al.
2018; Poliak et al. 2018). Wallace et al. (2019) have also
shown that universal adversarial triggers have a high over-
lap with these dataset artefacts and consequently have high
PMI values. Since we observe that class representatives too
have high PMI values, we hypothesize that they could act as
good adversarial triggers.

Following this, we postulate that adding class impression
words of one class to a real example of another class should
change the prediction of that example. For validating this,
we conduct an experiment where we take words from class
impressions of class ci and prepend them to real examples of
class cj . Table 12 shows the results of the experiment over
SNLI dataset. As can be seen, the results are very promising.

We observe that the class which was more adversarially
unsecure (Entailment>adv−unsecureContradiction) has bet-
ter class impression words. These words, when added to ex-
amples of other classes, produce more successful perturba-
tions. For e.g., when entailment words are added to contra-
diction examples, they reduce the accuracy from 91% to less
than 10%. On the other hand, contradiction was adversari-
ally more secure, and hence there is no appreciable reduction
in the accuracy of any other class upon adding the contradic-
tion class impression words5. This result can potentially help
dataset designers design more secure datasets on which the
model-makers can train adversarially robust models.

The above analysis shows that we can get class-
impressions and adversarial triggers from dataset itself by
computing entropy and PMI values. Moreover, our experi-
ments in Sec. 4 show that one can equivalently mine mod-
els to get class impressions and adversarial triggers. There-
fore, we conclude that we can craft both class impressions
and adversarial triggers given either dataset or a well-trained

5We find similar results on the MRPC dataset. We did not do
these experiments for the SST dataset since SST class impres-
sion words are construct-relevant words and hence are bound to
change sentiment scores while the same is not true for the other
two datasets.

model (i.e., the one which can model training data distribu-
tion well). Further, the models represent their classes with
dataset artefacts. These artefacts are also responsible for
making them adversarially unsecure. The lesser the dataset
artefacts in a class, the lesser is a trained model’s represen-
tative capacity for that class, and the more is the model’s
adversarial robustness for that class. We would like to fur-
ther develop on these initial results to better dataset design
protocols in future work.

6 Conclusion and Future Work
This paper presents a novel data-free approach, MINI-
MAL to mine natural language processing models for input-
agnostic (universal) adversarial triggers. Our setting is more
natural, which assumes an attacker does not have access to
training data but only the trained model. Therefore, exist-
ing data-dependent adversarial trigger generation techniques
are unrealistic in practice. On the other hand, our method
is data-free and achieves comparable performance to data-
based adversarial trigger generation methods. We also show
that the triggers generated by our algorithm transfer remark-
ably well to different models and word embeddings. We
achieve this by developing a combination of model inver-
sion and adversarial trigger generation attacks. Finally, we
show that low entropy word-level features occur as adver-
sarial triggers and hence one can equivalently mine either a
model or a dataset for these triggers.

We conduct our analysis on word-level triggers and class
impressions based model inversion. While this analysis
leads to crucial insights into dataset design and adversarial
trigger crafting techniques, it can be extended to multi-word
contextual analysis. This will also potentially lead to better
dataset design protocols. We are actively engaged in this line
of research. Further, another research focus can be to gener-
ate natural-looking class impressions and, consequently ad-
versarial triggers.
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