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Abstract

Active learning attempts to maximize a task model’s perfor-
mance gain by obtaining a set of informative samples from an
unlabeled data pool. Previous active learning methods usually
rely on specific network architectures or task-dependent sam-
ple acquisition algorithms. Moreover, when selecting a batch
sample, previous works suffer from insufficient diversity of
batch samples because they only consider the informative-
ness of each sample. This paper proposes a task-independent
batch acquisition method using triplet loss to distinguish hard
samples in an unlabeled data pool with similar features but
difficult to identify labels. To assess the effectiveness of the
proposed method, we compare the proposed method with
state-of-the-art active learning methods on two tasks, relation
extraction and sentence classification. Experimental results
show that our method outperforms baselines on the bench-
mark datasets.

Introduction

Deep neural networks have shown unprecedented break-
throughs in various research areas. Particularly in the field
of natural language processing (NLP), pre-trained language
models such as GPT (Radford et al. 2018) and BERT (De-
vlin et al. 2019) achieve high performance in many NLP
tasks (Conneau and Lample 2019; Vu, Phung, and Haffari
2020; Wang et al. 2019). Although a pre-trained language
model is learned with massive corpora, it still needs to ob-
tain sufficient supervised data for a target task. To address
this low-resource problem, active learning has gradually at-
tracted the attention of researchers.

While unsupervised and semi-supervised learning fully
utilize the unlabeled samples, active learning aims to select
a few unlabeled samples to be labeled for efficient train-
ing. The key challenge of active learning is to find the most
informative unlabeled samples that maximize the task per-
formance when labeled and used for training. Some recent
works rely on feature representation derived from specific
network architectures such as Bayesian Neural Networks
(Gal, Islam, and Ghahramani 2017; Tran et al. 2019; Kirsch,
Van Amersfoort, and Gal 2019), or use task-dependent
algorithms to find informative samples (Ostapuk, Yang,
and Cudré-Mauroux 2019; Wang, Chiticariu, and Li 2017).
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However, dependence on the fixed feature representation
of task classifiers may cause divergent issues (Wang et al.
2016). Also, it is unreliable for choosing the most informa-
tive sample based on the classifier’s unreliable response. In
summary, it is challenging to apply existing approaches to
different tasks because of their task dependency.

Another challenge is that typical active learning strate-
gies acquire and query the informative samples one by one,
which is difficult to be used in real-world applications (Zh-
danov 2019). To improve one-by-one sample acquisition,
many researchers present the batch acquisition strategies
(Kirsch, Van Amersfoort, and Gal 2019; Zhdanov 2019; Ash
et al. 2019; Gal and Ghahramani 2016). A simple approach
selects a batch sample based on the continuous one-by-one
query (Gal and Ghahramani 2016). However, this approach
tends to take redundant informative samples. Some works
consider the mutual information inherent in batch samples
to exclude redundant samples (Kirsch, Van Amersfoort, and
Gal 2019; Ash et al. 2019; Zhdanov 2019; Yuan, Lin, and
Boyd-Graber 2020), but those methods still suffer from in-
sufficient diversity of batch samples because they do not
fully capture the data distribution.

This paper proposes a task-independent batch acquisi-
tion algorithm on a pre-trained language model with triplet
loss (BATL). Previous approaches usually require a certain
amount of labeled data at the early stage of active learning to
guarantee the ability to choose informative samples. To over-
come the limitation, our model utilizes the self-supervision
of a pre-trained language model to find informative samples
in the early sampling iterations.

On the other hand, if unlabeled data is sampled only with
the self-supervision of a sentence, it can be overlooked that
different unlabeled samples have different importance for
the task model depending on a type of downstream task. In-
stead of relying solely on the self-supervision of a language
model, the proposed approach chooses informative samples
using both the pre-trained knowledge of the language model
and the task-related feature extracted from task classifiers.

Moreover, our method acquires diverse batch samples
with respect to data distribution. Specifically, the proposed
method utilizes triplet loss to distinguish hard samples in
the unlabeled data pool that have similar features to each
other (Schroff, Kalenichenko, and Philbin 2015; Hermans,
Beyer, and Leibe 2017; Zeng et al. 2020). Triplet loss effec-
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Figure 1: The workflow of the proposed method. In the batch acquisition phase, the shape of points indicates the label of data
sample, and the size of points indicates the amount of information in the data sample. The distance between points represents

the similarity between them.

tively increases the distance between different samples and
decreases the distance between similar samples in high di-
mensional space.

Figure 1 illustrates the workflow of the proposed method.
The training model consists of a pre-trained language model
and task classifier, and the classifier is initialized on the la-
beled dataset. The proposed model utilizes the pre-trained
sentence representation of the language model and task-
related features to measure the informativeness of sam-
ples. Our method selects informative samples (black colored
points in the figure) using target task loss and triplet loss by
updating the model and data pools, considering the quantity
and diversity of information.

We evaluate our method on two target tasks, relation ex-
traction and sentence classification with various datasets.
Experimental results demonstrate that our method consis-
tently outperforms the state-of-the-art active learning meth-
ods under different task settings. Furthermore, we conduct
experiments to analyze the effectiveness of the proposed
method in capturing the uncertainty, diversity, and density
of batch samples selected from the unlabeled data pool.

Related Work

Recent active learning methods can be grouped into three
categories: uncertainty-based, distribution-based, and hybrid
methods combining uncertainty and distribution of query
samples. Uncertainty-based methods estimate the uncertain-
ties of samples and acquire the top-K most informative sam-
ples. BALD (Houlsby et al. 2011) and BatchBALD (Kirsch,
Van Amersfoort, and Gal 2019) measure the mutual in-
formation between model parameters and the model pre-
dictions. Gal, Islam, and Ghahramani (2017) present the
Monte Carlo dropout methods to combine Bayesian neural
networks with BALD. In non-bayesian methods, Yoo and
Kweon (2019) uses a loss prediction module to predict the
loss of the task module, and then top-K predicted losses
are selected as uncertain samples. Although the uncertainty-
based methods perform well on various tasks, they cannot
fully reflect data diversity. Also, the sampling performance
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tends to decrease as the number of target labels increases.

Distribution-based methods choose uncertain samples
based on the distribution of extracted model features. Chitta
etal. (2019) use an ensemble active learning to build a train-
ing subset based on data distribution. He et al. (2019) em-
ploy multiple views from hidden layers of CNN and mea-
sure the uncertainty. The Core-set approach constructs a core
subset representing the remaining unlabeled data samples
(Sener and Savarese 2018). However, the pipeline of the tar-
get task cannot be considered in distribution-based methods.

To combine uncertainty and diversity, BADGE exploits
gradient embedding and K-means++ seeding algorithm (Ash
et al. 2019). However, BADGE is significantly dependent on
the confidence scores of task models, which do not imply the
informativeness of samples. VAAL learns the uncertainty
and distribution of data using VAE and adversarial networks
(Sinha, Ebrahimi, and Darrell 2019), but those VAAL-based
methods require VAE frameworks (Sinha, Ebrahimi, and
Darrell 2019; Kim et al. 2020; Zhang et al. 2020). ALPS
utilizes self-supervised loss derived from a pre-trained lan-
guage model to classify uncertain samples (Yuan, Lin, and
Boyd-Graber 2020). Since ALPS employs the masked lan-
guage model loss generated by a small percentage of ran-
domly masked tokens, ALPS only captures atypical sen-
tences which are challenging for a pre-trained language
model to understand. Moreover, although ALPS applies k-
means clustering to get the diversity of batch samples, ALPS
suffers from distinguishing outliers since it only extracts un-
certain samples close to the cluster’s center.

Preliminaries
Pre-trained Language Model Encoder

The pre-trained language models are trained on millions
or billions of unsupervised data to capture generic lin-
guistic features. They use language modeling objectives
and demonstrate strong performance in various downstream
tasks. Their input is a sequence of word tokens, x =
(21,29, -+ ,x;) with sequence length [. The pre-trained
language model encoder computes sentence representation



s(x, 6°) using the hidden state representations with weight
parameters 6°.

Task Classifier

A pre-trained language model is fine-tuned on the down-
stream task. The task classifier predicts the label with a sen-
tence representation s obtained by the pre-trained language
model. The distribution over target labels is defined as fol-
lows:

f(z,0°) = softmaz(hc - We + be), e

where given the sequence x and weight parameter ¢ =
(W, b), f(x,0°) is a probability vector of scores assigned
to candidate labels, and h¢ is the hidden representation of
classifier’s final layer. Then, the predicted label ¢ is defined
as follows:

§ = argmaz,ey f(x,0°),. b

During training, we want to minimize the target task loss
Liqrget between target label y and predicted label . When
initializing the classifier with the labeled dataset, there is no
problem in obtaining the exact target loss because we know
both the target label y and predicted label . However, since
we do not have the target label y for samples in the unlabeled
dataset, we only use the loss of predicted label as the target
loss during the active learning phase.

Method
Active Learning Scenario

We first describe the general active learning scenario. The
key to active learning is to find the most informative un-
labeled samples that improve the model performance when
labeled and added to the labeled data pool for training. We
denote the unlabeled data pool by D* and the labeled pool
by D!. Initially, the pre-trained language model encoder and
task classifier are trained on the initial labeled dataset D}. A
batch of informative samples is selected at each iteration us-
ing an acquisition function, and unlabeled and labeled data
pools are updated. The model is then updated with labeled
data until the labeling budget is exhausted or a more prin-
cipled criterion is met, such as in (Bloodgood and Vijay-
Shanker 2009).

Batch Acquisition with Triplet Loss (BATL)

We introduce a task-independent batch acquisition method
with triplet loss that (1) considers both pre-trained linguis-
tic features and task-related features and (2) explores uncer-
tainty and diversity in the unlabeled dataset.

Our acquisition function takes a sentence representation
and a task-related feature as inputs. A sentence representa-
tion s(z, 0¢) is learned from the pre-trained language model,
while the task-related feature is extracted from the task clas-
sifier. Specifically, our method utilizes the hidden state rep-
resentation h¢ of the classifier’s final layer as a task-related
feature. Our method concatenates sentence representation
and task-related features and puts them in a fully connected

Algorithm 1: Active learning with BATL

Input: unlabeled dataset D*, labeled dataset D!, initial task
classifier ' with pre-trained language model encoder FE,
batch size k, iteration number T~

Initialize: train an initial model F and E on D'

1: while 7; in 7 do
2:  For all samples x in D*:
3:  compute sentence representation s(x, 65) from F
4:  compute task-related feature f(z,6¢) from F’
5. concatenate s(x,05) and f(z, 6¢)
6 compute target 10SS Liqpger and triplet 10sS Liyspies
7 select k£ samples in order of high final loss L ¢;y,4; and
query for labels
8:  receive newly labeled data D%
9:  fine-tune parameters of & and I using D"
10: D'« DlyD"ew DU < DU\ Dev
11: end while

layer to obtain an integrated data sample feature. The task
classifier is not trained on enough labeled datasets at the
early stage in active learning. Thus, a target 1oss Liqrget 1S
yet an unreliable indicator to measure the amount of infor-
mation of samples. Moreover, if we directly use the cross-
entropy loss with the predicted label y inferred by the task
classifier, it will mislead the optimization of the task model.

There are some previous studies to optimize the task
model without ground-truth labels. Yoo and Kweon (2019)
use the pairwise loss between two losses predicted by the
loss prediction module. The pairwise loss is usually helpful
for maximizing the distance between different samples in a
high-dimensional space. However, the pairwise loss faces a
significant shortcoming when minimizing the distance be-
tween similar samples. In other words, the diversity of batch
samples is not considered well. A simple clustering algo-
rithm may be applied to catch diversity of batch samples
(Ash et al. 2019; Yuan, Lin, and Boyd-Graber 2020). Still,
it is not easy to process outliers closed to several clusters si-
multaneously because those methods merely extract samples
close to the center of clusters.

To overcome the above challenges, the proposed method
uses the triplet loss (Schroff, Kalenichenko, and Philbin
2015) to find informative batch samples elaborately, taking
the sample diversity into account. The triplet consists of an
anchor, positive and negative samples. An anchor sample of
a specific label is closer to the positive sample than the neg-
ative sample in the embedding space. A positive sample has
the same label as the anchor, while a negative sample has a
different label. The triplet constraint is defined as follows:

D(zt,xt) +m < D(xl, xt) (3)

a’¥p a’¥n
where z¢ is the anchor sample, xi ig the positive sample
which has the same label as z7,, and ), is the negative sam-
ple which has different label from 2%,. Since we do not have

the label information for candidate samples in the unlabeled
dataset, we use predicted label of the task classifier. All sam-



Dataset Target Task Train Test # Labels
NYT-10 Relation Extraction 522,611 172,448 53

Wiki-KBP Relation Extraction 23,884 289 13
AG News  Sentence Classification 110,000 7,600 4
PubMed Sentence Classification 180,040 30,135 5

Table 1: Dataset used in the experiments.

ples here are represented in the embedding space. D(-) is the
Euclidian distance, and m is the margin.

Since generating all possible triplets would not improve
the quality of batch samples in active learning, it is crucial
to select useful triplets to train the model. In other words,
we need to find a triplet that violates the triplet constraint.
Such a hard sample consists of a hard positive sample satis-
fying that argmaz,: D(xf, x},), and a hard negative sample
satisfying that argmin,: D(x),,x},). The proposed method
computes the hard samples within a mini-batch on the fly to
mine these useful triplets. The proposed method uses each
sample in the batch as an anchor. It selects the hard pos-
itive sample that is the most distant to the anchor and the
semi-hard negative sample since the hard negative sample
can result in local optima with the online triplet generation.
The semi-hard negative sample z, is such that:

D(xg,xy) < D(xg, 7)) “)
Semi-hard negative samples are far away from the anchor
than the positive samples, but lie inside the margin m

The triplet loss function is defined as follows:

k
Liripiet = Z m + max D(z!, x;) —min D(2%, z%),

i=1
(%)

where N is the triplet batch size.
By combining the target task loss and triplet loss for active
learning, our final loss function is as follows:

Lfinal = Lta'r‘get +A- Lt'riplet7 (6)

where ) is a scaling parameter. The overall active learning
process is described in Algorithm 1.

Experiments
Experiment Setup

Target task: Our approach is not restricted to specific task
models. We evaluated our approach on two tasks. The first
task is relation extraction, which aims to find a relational fact
between an entity pair in the sentence. Current methods usu-
ally depend on the distantly supervised data containing noisy
sentences that do not represent the relational fact between
an entity pair, making relation extraction one of the most
challenging NLP tasks. We also evaluated different methods
on sentence classification, which aims to find the label of a
given sentence.

Datasets: For relation extraction, we used two publicly ac-
cessible dataset, NYT-10 (Riedel, Yao, and McCallum 2010)
and Wiki-KBP (Ellis et al. 2013). The NYT-10 dataset in-
cludes the Freebase relations extracted from the New York
Times corpus. We used the preprocessed NYT-10 dataset
introduced in Lin et al. (2016). The Wiki-KBP consists of
23,884 training sentences sampled from Wikipedia articles.
We use the preprocessed Wiki-KBP dataset introduced in
Ren et al. (2017). We used the Precision@N, which mea-
sures precision scores for the top N extracted relation in-
stances. Since the test data was generated via distant super-
vision, we provide an approximate performance measure.
For sentence classification, we used two benchmark
datasets, AG News (Zhang, Zhao, and LeCun 2015) and
PubMed (Dernoncourt and Lee 2017). AG News contains
news sentences of 4 class labels. PubMed is constructed
from the medical abstracts and has 5 class labels. We eval-
uated the classification accuracy with the micro-F1 score.
Table 1 summarizes the datasets used in the experiments.

Training model: For relation extraction, we utilized the
relation extraction model DISTRE proposed in Alt, Hiibner,
and Hennig (2019). DISTRE utilizes GPT (Radford et al.
2018) as a pre-trained language model encoder and the rela-
tion classifier. The input sequence is an ordered sequence to
avoid task-specific changes to the architecture. It starts with
the head and tail entity, separated by delimiters, followed by
the sentence containing the entity pair. For sentence classi-
fication, we followed the same setup as in Yuan, Lin, and
Boyd-Graber (2020), in which BERT and SCIBERT were
used as a pre-trained language model for the AG News and
PubMed, respectively.

Baselines: We compared the proposed method with the
following sample acquisition methods.

* RAND (random sampling): selects random samples

* CONF (least confidence sampling): selects least confi-
dent samples (Wang and Shang 2014)

* ENTROPY : selects samples with highest Shannon en-
tropy (Wang and Shang 2014)

* D-AL: selects samples making the labeled set indistin-
guishable from the unlabeled pool (Gissin and Shalev-
Shwartz 2019)

* BatchBALD: selects samples based on mutual informa-
tion between model parameters and predictions (Kirsch,
Van Amersfoort, and Gal 2019)

* CORESET : selects samples using core subset selection
with a greedy furthest-first traversal on labeled samples
(Sener and Savarese 2018)

* BADGE: selects samples based on the gradient loss of
classifier and k-means++ clustering (Ash et al. 2019)

* ALPS: selects samples based on masked language model
loss of pre-trained language model and k-means cluster-
ing (Yuan, Lin, and Boyd-Graber 2020)

Implementation details: We fine-tuned the pre-trained
language model and task classifier from scratch in a given
iteration. For each experiment, we repeated it five times
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Figure 2: Active learning results of relation extraction over the NYT-10 dataset for varying batch size k = {500, 2000}.

P@1000 F1

RAND 0.360 0.248
CONF 0.466 0.289
ENTROPY 0.480 0.320
D-AL 0.504 0.322
BatchBALD 0.518 0.337
CORESET 0.499 0.324
BADGE 0.520 0.345
ALPS 0.524 0.334
BATL 0.535 0.352
FULL 0.602 0.376

Table 2: P@1000 and F1 score (NYT-10, £ = 500).

with random initialization. We evaluated sampling strate-
gies on the relation extraction with varying batch size K =
{500, 2000} for NYT-10, and K = {50,200} for Wiki-
KBP. We set the batch size K = 100 for sentence classi-
fication. The learning rate is 2e — 5, and scaling parameter
A = 1. The experiments are performed on GeForce RTX
2080 Ti and AMD Ryzen 7 3700X CPUs.

Results

Relation Extraction We first investigate the effectiveness
of the proposed batch sample acquisition method (BATL) on
the relation extraction task. Figure 2 reports the experimen-
tal results of relation extraction over the NYT-10 dataset. As
we expected, traditional sampling methods are outperformed
by state-of-the-art methods. Random sampling records the
lowest precision at every experimental setting, and it clearly
shows that the appropriate sampling method is required in
active learning.

The proposed method consistently shows the best per-
formance at every iteration of the active learning process
among state-of-the-art methods. At k 500, the train-
ing model updated by the proposed method has about a
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3% higher precision score than recent methods after the
four iterations. We observe that hybrid approaches such as
BADGE and ALPS slightly perform better than uncertainty-
based and distribution-based methods. Also, it is impres-
sive that there is not much difference in performance be-
tween uncertainty-based and distribution-based methods. It
means that the informativeness of samples relying solely on
uncertainty or diversity is lower than those selected by the
hybrid sampling method, including the proposed method.
Compared to the proposed method, ALPS chooses samples
relying on the self-supervision of the pre-trained language
model, and it is likely to ignore the unlabeled samples con-
taining crucial features for the task model at the later learn-
ing iterations. Although BADGE tries to find task-related
uncertain samples using gradient loss, a simple clustering al-
gorithm limited the diversity of batch samples. We verified
that the proposed method acquires more diverse batch sam-
ples with different relation labels than the other baselines.

From the experimental results, it can be seen that the pa-
rameters of the training model converge when a sufficient
amount of batch samples is secured. The relation labels
of the NYT-10 dataset are relatively large and imbalanced.
Since most of the sentences are labeled with NA, it reduces
learning efficiency and makes convergence difficult with a
small amount of data. At the convergence, state-of-the-art
methods approach the precision score of the fully trained
model, while traditional methods do not. Table 2 shows the
P@1000 and F1-score on the NYT-10 dataset with & = 500.

We further compared the performance of batch acqui-
sition methods on the Wiki-KBP dataset. The Wiki-KBP
dataset has lower relation labels than the NYT-10 dataset
but has more diverse entity labels and sentences. We can
observe that all methods record lower precision scores on
the Wiki-KBP dataset than on the NYT-10 dataset. Mean-
while, the proposed method still shows the best performance
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Figure 3: Active learning results of relation extraction over the Wiki-KBP dataset for varying batch size k = {50, 200}.
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Figure 4: Active learning results of sentence classification
over AG News and PubMed for batch size £ = 100.

at every iteration of the active learning process. Compared
to the experimental results on the NYT-10 dataset, the train-
ing model updated by the proposed method on the Wiki-
KBP dataset shows more performance gain than the other
models. At convergence, the proposed method shows about
4% higher precision scores than state-of-the-art methods.
Since the Wiki-KBP dataset has fewer relation labels than
the NYT-10 dataset, the unlabeled data samples in the Wiki-
KBP dataset are likely to have similar features. We con-
firmed that the proposed method is valid for distinguishing
such hard samples in the unlabeled data from the experimen-
tal results.

Sentence Classification We now investigate the effective-
ness of the proposed batch sample acquisition method on the
sentence classification task. Figure 4 shows the performance
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Figure 5: Evaluation on diversity, uncertainty, and density.

of different active learning methods over two-sentence clas-
sification datasets, AG NEWS and PubMed. Figure 4(a)
shows that the proposed method has almost the same ac-
curacy as BADGE and ALPS in the experiment on the AG
News dataset. The results demonstrate no significant differ-
ence in performance among state-of-the-art sampling strate-
gies in the experiment on the AG News dataset. The AG
News dataset is relatively simple than the relation extrac-
tion datasets, and the number of target labels is quite small.
We found that most sampling strategies show similar perfor-
mance gains at convergence.

On the other hand, for the PubMed dataset, the proposed
method shows the best test accuracy, which is about 1.5%
higher than BADGE, and 3% higher than CORESET and
ALPS, as shown in Figure 4(b). We reconfirmed that the pro-
posed method finds informative samples better than state-
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of-the-art baselines. Since the PubMed dataset is more im-
balanced than the AG News, traditional sampling methods
show poor performance than state-of-the-art methods. Af-
ter several iterations of the active learning process, random
sampling shows the worst performance. The least confidence
sampling shows about 10% lower test accuracy than the pro-
posed method at convergence.

Overall, the experimental results of comparing sampling
methods on relation extraction and sentence classification
demonstrate that as the task difficulty increases, the pro-
posed method is more effective than other baselines.

Analysis

Uncertainty, diversity and density: We estimated active
learning strategies’ uncertainty, diversity, and density to ana-
lyze their advantages and disadvantages. In this experiment,
each method selects 5,000 samples at one iteration after ini-
tializing with the same unlabeled dataset of PubMed.

The training model prefers a batch with high diversity to
avoid containing similar and redundant samples. To measure
diversity, we follow the definition of diversity introduced in
(Zhdanov 2019):

1 _ -t
Gagi = <|D“ xEZDu glé%D(xi,xj)) , @)

where x; is the feature representation of the data sample ob-
tained from the encoder and classifier, D() is the Euclidean
distance, and S is the set of selected samples.

Following (Yuan, Lin, and Boyd-Graber 2020), we com-
pute the uncertainty using the task classifier f(x, 05) trained
on the full training dataset. It assumes that the fully trained
task classifier guarantees reliable inference performance. A
selected sample is evaluated by entropy over labels inferred
by f(z,6S). Then, the average predictive entropy over se-
lected batch samples is calculated as follo

1

N
Drew] 2 D @ )in(f(0)7", @

reDnew =1

Gun =
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where N is the number of class labels.

For density, we use the KNN-density measure proposed
in (Zhu et al. 2008). The sample density is evaluated by the
average distance between the query sample and & most sim-
ilar samples. We use the Euclidean distance with £ = 10,
following (Dor et al. 2020):

2ziez C08(T, 2i)
K 9

., 2k, } are most similar samples of the

Gde = &)
where Z = {z1, 22, ..
sample x.

Figure 5 shows that BATL considerably outperforms other
methods in terms of diversity. It indicates that the triplet loss
better reflects the data distribution than the naive clustering
algorithm adopted for BADGE and ALPS. We can see that
CORESET, a distribution-based method, also shows a simi-
lar diversity score to other state-of-the-art methods. For un-
certainty, BADGE shows slightly better performance than
ALPS. It implies that although the self-supervision of ALPS
may provide sufficient information at early iterations of the
active learning process, we still need to consider the task-
related context to catch the uncertainty of samples. The pro-
posed method also shows the highest score in density. The
result shows that the optimization goal of our method is valid
for minimizing the distance between similar samples.

Impact of scaling parameter: We further investigated the
impact of the scaling parameter of the proposed batch ac-
quisition loss. We recorded the values of diversity, uncer-
tainty, and density with batch size k& = 2000 and varying
scaling parameter A = 0.5,1,2 during ten active learning
iterations (Figure 6). In this experiment, we updated the
training model from the previous iteration. As the training
progresses, the diversity and density slightly decrease while
the uncertainty significantly decreases. It is notable that the
proposed method consistently selects diverse batch samples
even after several training iterations. However, the proposed
method shows the difficulty of elaborately capturing the un-
certainty at later active learning iterations. As the value of A
increases, batch samples tend to be more diverse and denser
but less uncertain.

Conclusion and Future Work

In this paper, we proposed a task-independent active learn-
ing method applied to various NLP tasks. The proposed
method finds informative batch samples using a pre-trained
language model and task-related features extracted from a
task classifier. We adopt triplet loss to distinguish hard sam-
ples in an unlabeled data pool that have similar features but
are difficult to be used to identify labels. We demonstrated
the effectiveness of our method on two downstream tasks,
relation extraction and sentence classification. We confirmed
the validity of the proposed approach through comparative
experiments and analysis. In the future, we plan to study a
method for efficiently catching the diversity and density of
imbalanced data with many labels, since current active learn-
ing approaches have difficulty understanding imbalanced
data,
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