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Abstract

In recent years, joint text-image embeddings have signifi-
cantly improved thanks to the development of transformer-
based Vision-Language models. Despite these advances, we
still need to better understand the representations produced by
those models. In this paper, we compare pre-trained and fine-
tuned representations at a vision, language and multimodal
level. To that end, we use a set of probing tasks to evaluate
the performance of state-of-the-art Vision-Language models
and introduce new datasets specifically for multimodal prob-
ing. These datasets are carefully designed to address a range
of multimodal capabilities while minimizing the potential for
models to rely on bias. Although the results confirm the abil-
ity of Vision-Language models to understand color at a multi-
modal level, the models seem to prefer relying on bias in text
data for object position and size. On semantically adversarial
examples, we find that those models are able to pinpoint fine-
grained multimodal differences. Finally, we also notice that
fine-tuning a Vision-Language model on multimodal tasks
does not necessarily improve its multimodal ability. We make
all datasets and code available to replicate experiments.

Introduction
Vision-Language (VL) tasks consist in jointly processing a
picture and a text related to the picture. VL tasks, such as
visual question answering, cross modal retrieval or gener-
ation, are notoriously difficult because of the necessity for
models to build sensible multimodal representations that can
relate fine-grained elements of the text and the picture. Fol-
lowing the success of pre-trained transformers for language
modeling such as BERT (Devlin et al. 2018), the community
has proposed various transformer-based models, such as Vil-
BERT (Lu et al. 2019), LXMERT (Tan and Bansal 2019),
VLBERT (Su et al. 2019), UNITER (Chen et al. 2020), OS-
CAR (Li et al. 2020b), VinVL (Zhang et al. 2021), ViLT
(Kim, Son, and Kim 2021) or ERNIE-VIL (Yu et al. 2021),
that combine representations from both the text and image
modalities to reach state-of-the-art results in several multi-
modal tasks. Similar models have been developed in the field
of video-language pre-training, such as ClipBERT (Lei et al.
2021) and HERO (Li et al. 2020a).
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While the results are impressive, it is important to under-
stand how multimodal information is encoded in the repre-
sentations learned by those models, and how affected they
are by various bias and properties of their training data.
A few studies have been conducted to better understand
those models and their representations. (Cao et al. 2020)
have probed attention heads at various layers of the mod-
els, showing that textual modality is more important than
visual modality for model decisions. This prevalence of
language over vision in multimodal models is not specific
to transformer-based representation models, as noticed by
(Goyal et al. 2017a). (Li, Gan, and Liu 2020) have looked
into the robustness of the representations to manipulations
of the input, compared to more traditional models. (Hen-
dricks and Nematzadeh 2021) relied on probing tasks to
study verb understanding in pre-trained transformer-based
models and determined that models learn less multimodal
concepts associated to verbs than to subjects and objects.
While these studies have shed light on some particular as-
pects of transformer-based VL models, they lack a more sys-
tematic analysis of monomodal biases that impede the nature
of the learned representations.

In that light, we are interested in studying the multimodal
capacity of VL representations, and in exploring what in-
formation is learned and forgotten between pre-training and
fine-tuning, as we think this could show the current limits
of the pre-training process. Inspired by probing tasks de-
veloped in the Natural Language Processing field, we probe
three VL models: UNITER, LXMERT and ViLT to answer
those questions. We probe both pre-trained and fine-tuned
models. We propose probing tasks and collect associated
datasets to evaluate the monomodal and multimodal capa-
bilities of those models over a range of concepts. We find
that UNITER reaches better overall results on the language
modality, while ViLT reaches better results on the vision
modality. Finally, we notice that while the models show their
ability to identify colors, they do not yet have multimodal
capacity to distinguish object size and position. We make
the set of monomodal and multimodal probing tasks, as well
as all software developed for this study, available for further
research1.

1https://github.com/ejsalin/vlm-probing
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Related Work
Vision-Language models Transformer-based VL models
are typically trained from image/caption pairs. The text is
tokenized and projected to an embedding space with addi-
tive position encoding, similar to BERT. The image is usu-
ally encoded using a Faster RCNN (Anderson et al. 2018)
to extract a sequence of object-region representations with
additive position and shape embeddings. However some re-
cent models, such as ViLT and SOHO (Huang et al. 2021)
swap the object-based representations for grid-based repre-
sentations trained from scratch.

After encoding, the representations from each modality
are passed through a transformer following one of two ar-
chitectures. The single-stream architecture, used in UNITER
and ViLT, relies on a single transformer spanning inputs
from both modalities. The dual-stream architecture, used in
LXMERT, inputs each modality in its own transformer, the
outputs of which are fed to a cross-modal transformer.

VL models are pre-trained using text-oriented, image-
oriented and cross modal losses. While the text-oriented
loss reflects that of language models (Masked Language
Modeling, i.e. MLM), the image loss varies from feature
regression tasks, to object class prediction tasks such as
for VilBERT (Lu et al. 2019). Most models, like ViLT,
UNITER and LXMERT adopt the Image Text Matching
(ITM) task for cross-modal pre-training. Some models add
other pre-training tasks to complete their multimodal knowl-
edge. In addition, some models rely on other specific pre-
training tasks such as Visual Question Answering (VQA) in
LXMERT, word-region alignment in UNITER, scene graphs
in ERNIE-VIL (Yu et al. 2021) or object semantics in OS-
CAR (Li et al. 2020b).

In order to reach state-of-the-art performances on down-
stream multimodal tasks such as VQA (Goyal et al. 2017b)
and NLVR2 (Suhr et al. 2018), those models need fine-tuned
on the target task.

Model probing Probing tasks have been first developed to
analyse language models through benchmarks such as Sen-
tEval (Conneau and Kiela 2018). For example, (Hewitt and
Manning 2019) showed that syntactic parse trees can be in-
ferred from ELMO and BERT representations.

Although explainability has been largely explored in vi-
sion models, the use of probing tasks is more limited. Re-
cently, Basaj et al. (2021) have developed a visual prob-
ing framework by constructing visual equivalents to words
based on superpixels. It then translated language probing
tasks such as sentence length and semantic odd man out to
the vision modality.

Cao et al. (2020) study how the transformer architec-
ture impacts the learning process of single-stream and dual
stream models. They observe the role of each layer as
well as the fusion of the vision and language modalities
across layers. They in particular notice the prevalence of
the language modality over the visual modality, which we
study further in our work, by evaluating the multimodal
nature of representations. Lindström et al. (2021) explore
the use multimodal probing tasks such as object counting,
and object identification to study Visual Semantic embed-

dings. They also notice the importance of linguistic infor-
mation in multimodal tasks. However, they do not analyse
VL transformer-based models in their study. Hendricks and
Nematzadeh (2021) rely on probes to study verb understand-
ing in pre-trained transformer-based models. They deter-
mine that models learn less multimodal concepts associated
to verbs than to subjects and objects. Similar to our study,
Shekhar et al. (2017) build a dataset to evaluate if the text
and image information in VL models are both deeply inte-
grated. Contrary to this dataset, we do not study the ability
of a model to differentiate between objects from the same
super-categories, but focus on multimodal concepts such as
color, size and position.

Methodology
Framework In this paper, we aim at evaluating VL mod-
els at a language, vision and multimodal level through their
text-image representations. We write V LMpre a pre-trained
transformer-based VL model, such as UNITER, LXMERT
or ViLT. This model can be fine-tuned on a task T , for ex-
ample VQA or NLVR2. Fine-tuning tasks are used to em-
bed new knowledge in the model, and to evaluate more ded-
icated semantics or abilities related to a specific task. We
write V LMfine(T ) the VL model fine-tuned on task T .

We use probing to study the representations of V LMpre

and V LMfine(T ) models. To evaluate the representations of
VL models on a probing task p, we build a training dataset
Sp = {(Xj , Yj)}

np

j=1, drawn i.i.d. from Dp
X×Y where X and

Y relate to the datasets needed to probe the models.
The first step of our method is to compute the final layer

representations V LMpre(X) or V LMfine(T )(X) of an in-
stance Xj = (ximage

j , xcaption
j ) of Sp through the VL

transformer-based model. If the probing task p studies the
instance at a global level, we use the representation of the
classification token [CLS] as input for p. If p studies the
representations of each word, the representation of WORD
tokens are used as input for p.

The second step of our method is to use the represen-
tations Rj of the [CLS] or WORD tokens as input of a
linear probing model PMp trained using the {(Rj , Yj)}

np

j=1
dataset. As V LMpre or V LMfine(T ) are not trained on the
probing task, the probing model PMp can only rely on lin-
early separable information the model has already learned
to extract during pre-training or fine-tuning. As a result, the
performance of PMp will reflect the capability of V LMpre

and V LMfine(T ) models to extract the information needed
for the probing task p.

The models V LM and the set of probing tasks P are
described in the following sections. Figure 1 illustrates the
methodology on the object counting task V-ObjCount of P .

Studying the impact of each modality We also want to
study how much VL models rely on the language and vision
modalities when building text-image representations. As a
result, for each task p build on Sp, we create another corre-
sponding task p♣ with mismatched image and caption pairs.
The dataset Sp♣ is build using Sp by associating the label
with the image (resp. caption) and selecting at random a
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Figure 1: Probing methodology: The first step is to compute the final layer representations of the image/caption input using the
chosen Vision Language Model. Then, we use the final layer [CLS] or word token representations Rj to train a linear probing
model on the probing task. This example illustrates the methodology using the visual probing task V-ObjCount and an image
from MS-COCO. This task consists in counting the number of objects in an image using (ximage

j , xcaption
j ) as input and Yj as

target. The notation ♣ indicates the corresponding task (V-ObjCount) with mismatched instances (i.e. a caption that does not
match the image and label), which uses (ximage

j , xcaption
k ) as input and serves as a baseline.

mismatched caption (resp. image). For better comparison,
all models use the same mismatched datasets.

If p is a language-oriented task, each instance of p♣ will
be (ximage

k , xcaption
j , Yj), with the caption corresponding to

the label and a wrong image. If the performance of PMp

is similar to the performance of PMp♣ , we can deduce that
the representations R♣

j given by V LM are not affected by
visual “bias”.

Similarly, when p is a vision-oriented task, each instance
of p♣ will be (ximage

j , xcaption
k , Yj), with the image cor-

responding to the label and a wrong caption. If the perfor-
mance of PMp is similar to the performance of PMp♣ , we
can deduce the representations R♣

j given by V LM are not
affected by linguistic “bias”.

For a multimodal probing task p, as we want to study the
presumed prevalence of language over vision in model de-
cisions, each instance of p♣ will be (ximage

k , xcaption
j , Yj),

with the caption corresponding to the label and a mis-
matched image. If V LM extracts multimodal information
rather than only linguistic information, PMp should reach
better performance than PMp♣ . This is a way to control if
PMp♣ only uses textual information or if it also uses multi-
modal information.

Probing Tasks
The set of probing tasks P , summarized in Table 1, is com-
posed of language-oriented tasks L, vision-oriented tasks V ,
and multimodal tasks M . Each task of the set is built to eval-
uate the mono-modal or multi-modal performance of V LM
on a specific capability. The tasks consist of regression, bi-
nary or multiclass classification problems. For each of them,
a linear layer is trained as in (Hewitt and Manning 2019).

Ideally, one would probe VL models on all properties that
have an impact on down-stream tasks or that help under-
stand their behavior. However, in this paper we restrain our-
selves to a few representative language, vision and multi-
modal properties. We choose and build tasks that are easy
to implement on new datasets. For the language and vision
properties, we use tasks well understood in past work. For
multimodal properties, we create new tasks assessing mul-
timodal properties we think are especially relevant for VL
models. We explain the tasks and their choice in the follow-
ing section.

Language Probing Tasks: L
For language-oriented probing tasks, we choose already ex-
isting language probing tasks and adapt them to a subset
of 3,000 instances from Flickr30k (Young et al. 2014). We
choose tasks appropriate for the relatively simple structure
of captioning datasets, and easy to transfer to a new dataset.

• Part of Speech Tagging (L-Tagging): Part of Speech
Tagging consists in associating a word with its corre-
sponding part of speech label, such as verb. There are 34
categories. This task evaluates the syntactic knowledge
present in the representation of individual word tokens.
As a result, we train a linear classifier PML-Tagging us-
ing word token representations given by V LM . To create
a gold standard for this task, we annotate the Flickr30k
dataset using the en core web sm SpaCy tagger (Honni-
bal and Johnson 2015), which performs at 97% accuracy
on Ontonotes.

• Bigram Shift (L-BShift): Bigram Shift (Conneau and
Kiela 2018) consists in determining whether two consec-
utive words in a sentence have been swapped. For exam-
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Input Total Test Maj.
Task Description Repr. Type (Metric) Dataset Instances Size (%)
L-Tagging Part-of-speech tagging Word Multiclass (acc.) Flickr 3,000 1000 24.06
L-BShift Bigram shift detection [CLS] Binary (acc.) Flickr 3,000 1,000 50.20
V-Flower Fine-grained classification [CLS] Multiclass (acc.) Flower-102 7,169 1,020 0.98
V-ObjCount Object counting [CLS] Regression (MSE) MS-COCO 2,424 624 -
M-Col Color prediction [MASK] Multiclass (acc.) Flickr 3,000 1,000 25.30
M-Size Size corruption detection [CLS] Binary (acc.) Flickr 2,552 752 50.67
M-Pos Position corruption detection [CLS] Binary (acc.) Flickr 2,626 826 53.75
M-Adv Adversarial captions [CLS] Binary (acc.) MS-COCO 700 200 50.00

Table 1: List of probing tasks. Repr. is the representation vector used as input of the probing task. Instances indicates the number
of image/caption instances used for the probing task. Maj. is the majority baseline.

ple, in the sentence “People at relaxing the park.”, tokens
from the bigram (“relaxing”, “at”) have been swapped to
create a negative example caption. As this evaluates the
global correctness of a sentence, we use the [CLS] token
representation given by V LM .

Vision Probing Tasks: V
In order to probe the vision capability of the models, we
selected two tasks: an object counting task to assess if infor-
mation on the general structure of an image is present in the
representation, and a fine-grained object classification task
to evaluate whether the representations also retain informa-
tion on fine details of objects.

• Flower identification (V-Flower): This is a fine-grained
object classification task which consists in classifying
flower pictures into 102 categories. We use the 102-
Flower dataset (Nilsback and Zisserman 2008). As there
is no caption available for this task, we use an empty cap-
tion. The linear classifier PMV-Flower uses the representa-
tion of the [CLS] token.

• Object Counting (V-ObjCount): We build this object
counting task on a subset of 3,000 instances of the MS-
COCO dataset (Lin et al. 2014). The labels are created
by counting the number of objects in its manual annota-
tions. The linear regression model PMV-ObjCount also uses
the [CLS] token representation. As there can be clues in
the caption indicating how many objects are in the image,
some multimodal information present in the representa-
tion can be used for this task, which makes the use of a
baseline important.

Multimodal Probing Tasks: M
To evaluate the multimodal information present in V LM
representations, we focus on concepts which are used to de-
scribe objects, as those are inherently multimodal. However,
as evaluating all those properties can be time-consuming, we
restrain ourselves to a few important attributes that matter in
many downstream applications: color, size and position. We
create datasets to evaluate those attributes.

As we cannot evaluate all multimodal properties, we also
assess the general multimodal competency of models, not
linked to a specific property. To that aim, in addition to the
three attribute-specific tasks, we create a task that assesses

Task Text Input
M-Col Two men standing behind a tall [MASK] fence.
M-Size Two men standing behind a short black fence.
M-Pos Two men standing in front of a tall black fence.
M-Adv Two men running behind a tall black fence.

Figure 2: Example of modified captions for the multimodal
probing tasks, using the caption “Two men standing behind
a tall black fence” as original (Flickr30k).

how well the model captures linguistically likely differences
in multimodal concepts.

The creation of the four tasks consists in altering the cap-
tion of half of the instances to create negative examples and
evaluating the performance of a model in distinguishing be-
tween positive and negative examples. The probing datasets
are carefully designed to avoid textual bias. Figure 2 lists
altered captions for the multimodal tasks with an example
picture.

We leave as future work the evaluation through other mul-
timodal tasks such as specific object properties as shape or
texture, and global image properties such as focus, quality
or emotion.

• Color Identification (M-Col): This task aims at evalu-
ating precise color understanding, at a multimodal level.
To this end, we select 8 common colors that are un-
likely to be ambiguous: blue, red, black, white, yellow,
orange, green, purple. A subset of 3,000 instances from
Flickr30k that contain those colors is used for evaluation.
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Figure 3: Colors distribution for task M-Col

We do not control for text bias, and use the text-only and
mismatched baselines to analyse the results. For each in-
stance, a color word is masked with [MASK] in the cap-
tion. The representation of this token by V LM is used as
input of the linear classifier PMM-Col in order to predict
the missing color as in the MLM pre-training task. The
goal is to check whether V LM representations associate
text and visual features to determine the masked color.
Figure 3 represents the color distribution for the M-Col
task.

• Size Identification (M-Size): This task aims at assessing
if object size is a multimodal concept included in V LM
representations. We want to force the probing model to
use multimodal cues instead of textual bias for this task,
so we build the dataset to minimize the possibility of us-
ing only linguistic cues. Instances are selected if their
caption contain size adjectives (large, big, long, tall or
small, little, short, narrow). Then, we select among those
captions 56 concrete object categories that are present
in the test set with opposite size adjectives (i.e. large
vs small) subject to a relatively balanced prior. To en-
sure this balance, the least frequent variant represents at
least 10% of the occurrences in the subset. For example,
there are no examples in the dataset describing a rock
as “small” while more than 100 describe one as “large”,
leading this category to be left out. By comparison, if
we compare “small” and “large” dogs, 37% of dogs are
“large”. This ensures that the model has limited ability
to exploit the object category bias to determine its size.
We then manually create negative instances by switching
the adjective with its opposite. The resulting dataset is a
subset of 2,552 instances of Flickr30k. A linear binary
classifier PMM-Size is trained to determine if the caption
has been modified, using the [CLS] token representation.

• Position Identification (M-Pos): This task aims at as-
sessing if object position is a multimodal concept present
in V LM representations. For this task, we also minimize
the possibility of exploiting linguistic bias. Captions are
selected based on their use of positional expressions (bot-
tom, top, inside, outside, left, right, up, down, towards,
away from, over, under, behind, in front of). Then, we se-
lect among those captions 16 different contexts where an
expression and its opposite are both present in the dataset
in similar proportions. For example, the top/bottom pair
is unbalanced since there are 2,362 occurrences of top
and 161 occurrences bottom in the dataset, while there

are 177 occurrences of “at the top” and 78 occurrences
of “at the bottom” which is more balanced. To ensure
relative balance, we select expressions where the least
frequent variant represents at least 30% of the occur-
rences in the subset. The negative instances are created
by switching an expression with its opposite. The result-
ing dataset is a subset of 2,626 instances from Flickr30k.
We train a linear binary classifier PMM-Size to determine
if the caption has been modified, using the [CLS] token
representation.

• Adversarial Captions (M-Adv): This task evaluates the
general multimodal information present in V LM repre-
sentations. It consists in determining if a caption matches
an image, except that the examples are crafted in or-
der to be challenging. For each caption from an MS-
COCO subset, we select words corresponding to visu-
ally relevant grammatical categories (nouns, verbs, ad-
jectives, numbers). For each target word, a likely replace-
ment is selected from the top of the distribution output by
the text-only BERT model. This means that the created
captions, although wrong, are believable for a language
model, which minimizes the possibility for multimodal
models to rely on text bias. The adversarial instances are
manually screened for semantic and syntactic correctness
prior to inclusion. As a result, the words replaced in the
test set are mainly object related, either related to people
(15%), or from the 79 other MS-COCO categories (35%)
or referring to other objects (26%), as well as noun and
adjectives qualifying objects (10%), verbs (6%), words
expressing quantity (6%) and others (2%). Contrary to
the other tasks, as BERT is used to generate the adversar-
ial captions, the multimodal concepts that are evaluated
are diverse. We train a linear binary classifier PMM-Adv
to determine if the caption has been altered, using the
[CLS] token representation.

Experimental Setup
We choose three state-of-the-art VL models that dif-
fer in transformer architecture and pre-training tasks:
UNITER (single-stream with Faster RCNN visual features),
LXMERT (dual-stream with Faster RCNN visual features),
and ViLT (single-stream which does not use Faster RCNN
visual features). Although there are alternatives, we choose
those models as they are representative of different types of
architectures. We list the pre-training tasks of all three mod-
els in Table 2. The training protocol of those models vary,
and they are not pre-trained on the same datasets.

UNITER LXMERT ViLT
Language task Masked Language Modeling

Vision tasks Region Classification n/aFeature Regression

Multimodal tasks Image-Text Matching
WRA VQA n/a

Table 2: Pre-training tasks used by UNITER, LXMERT and
ViLT. Abbreviations are Word-Region Alignment (WRA)
and Visual Question Answering (VQA).
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Each V LM is studied as a pre-trained model and as
a fine-tuned model on fine-tuning tasks T = V QA and
T = NLV R. We choose these tasks as they differ from the
tasks used for pre-training and therefore require non-trivial
model fine-tuning. They are also very popular when evaluat-
ing VL models and necessitate fine-grained multimodal un-
derstanding. VQA is a visual question answering task while
NLVR2 consists in determining whether a sentence is cor-
rect using a pair of images as input. Our goal is to explore
the effect of the tasks T on probing task performances.

In addition, we compare the performance of V LM to
monomodal baselines BERT, ResNet (He et al. 2016) and
ViT (Dosovitskiy et al. 2020) for a better understanding of
the performance that can be reached using a single modality.

For all three models, we use the available check-
points for V LMpre. For UNITER and LXMERT, we fine-
tune the models using authors’ instructions, to obtain
V LMfine(V QA) and V LMfine(NLV R). For ViLT, we use
the available checkpoints. For the BERT and ViT baselines,
we follow the same instructions as the V LM models for the
representations, which are of dimension 768. For the ResNet
baseline, we use the whole final layer representation, which
is of dimension 2048. We use the pre-trained models from
Pytorch (Paszke et al. 2019) and Hugging Face (Wolf et al.
2020) for the experiments.

The probing model PM is a linear model trained over
30 epochs for M, V and L-BShift tasks and 50 epochs for
L-Tagging, with a learning rate of 0.001. We used MSE loss
to train PMV-ObjCount and report RMSE as a metric to eval-
uate V-ObjCount, and the cross entropy loss for all other
probing tasks, with accuracy as metric. The results of each
probing task are averaged over 5 runs. We trained the models
on a cuda75-capable GPU.

Results
This section is organized according to the model analysed
and to the modality of the probing task.

Pre-trained Models
Language (pre-trained) Table 3 shows the results of the
V LMpre representations for L probing tasks: part-of-speech
tagging (L-Tagging) and bigram shift (L-BShift). Results for
the L-Tagging task are close for all models. For L-BShift,
BERT reaches the best results with an accuracy of 86.33, and
UNITER has a higher performance than the others V LMs.
We notice that using wrong images as input for these tasks
impacts negatively UNITER.

UNITER LXMERT ViLT BERT
L-Tagging 94.66 95.13 96.27 95.57
L-Tagging♣ 90.86 95.36 96.16 -
L-BShift 80.89 70.65 72.08 86.33
L-BShift♣ 76.25 72.22 71.05 -

Table 3: Language probing: Accuracy of the pre-trained VL
models. ♣ indicates mismatched instances.

UNITER LXMERT ViLT ResNet VIT
V-Flower 71.82 75.56 91.34 86.83 99.66

Table 4: Vision probing: Accuracy of pre-trained VL models
for the fine-grained classification task (V-Flower).

Vision (pre-trained) Tables 4 and 5 show the results of
V LMpre representations for V probing tasks: fine-grained
classification (V-Flower) and object counting (V-ObjCount).
We notice that the ViLT reaches significantly better re-
sults than both UNITER and LXMERT models. V-Flower
is an image-only task, so we use an empty caption. On the
V-Flower task, ViLT is better than the ResNet baseline.

On the V-ObjCount task, the metric symbolises the aver-
age object count error for different models. The results show
that using the associated caption significantly improves the
object counting results. It shows that V LMpre models use
linguistic cues for V-ObjCount. The performance of ViLT
drops using when using mismatched captions, but it re-
mains better than the vision-only baseline VIT. UNITER and
LXMERT, however, barely reach this performance using the
right caption.

Multimodality (pre-trained) Table 6 shows the results
for the multimodal probing tasks.

On the color prediction (M-Col) and adversarial examples
(M-Adv) tasks, VL models reach much higher results than
the monomodal baselines. UNITER and ViLT have better
performance than LXMERT for M-Col, with an accuracy of
86.27 and 85.97, while LXMERT reaches 71.21. UNITER
also has significantly better results than the other two mod-
els for the M-Adv task. We notice that LXMERT has better
results when using the wrong image, on the M-Adv♣ and
M-Col♣ tasks. It means that the LXMERT performances
are both lower and more dependent on linguistic cues than
UNITER and ViLT, which extract more visual information.

For the M-Size and M-Pos tasks, UNITER and LXMERT
yield similar results while ViLT shows the worst results on
those tasks. However, all results are close to the monomodal
baselines. It seems to show that VL models have a hard time
extracting visual information related to size and position. On
these tasks, it seems that bias in text data is linked to the
performances of the models. Thus, the concepts of size and
position seem to not be very well understood at a multimodal
level by V LMpre models.

Fine-tuned Models
Language (fine-tuned) Table 7 shows the results of the
V LMfine(V QA) and V LMfine(NLV R) representations for
L probing tasks.

We notice that fine-tuning negatively impacts
model performance on L-BShift, and especially for
LXMERT. For L-Tagging, all fine-tuned models ex-
cept LXMERTfine(NLV R) have similar performances to
pre-trained models.

The performance of UNITER for using wrong images are
the only ones which show an improvement, reaching the
level of the their respective “normal” task. It seems to show

11253



UNITER LXMERT ViLT BERT ResNet VIT
V-ObjCount 5.49 5.49 4.90 6.27 4.96 5.67
V-ObjCount♣ 7.20 7.31 5.44 - 4.96 5.67

Table 5: Vision probing: Square Root of the Mean Square Error (RMSE) for pre-trained VL models on the V-ObjCount task
(lower is better). ♣ indicates mismatched instances.

UNITER LXMERT ViLT BERT ViT
M-Col 86.27 71.21 85.97 37.02 41.19
M-Col♣ 34.80 39.33 35.69 - 41.19
M-Size 57.15 58.43 55.45 55.66 51.76
M-Size♣ 56.06 55.05 52.10 - 51.76
M-Pos 55.92 54.62 48.95 56.52 52.78
M-Pos♣ 54.06 54.68 52.37 - 52.78
M-Adv 79.71 72.60 73.4 53.46 -
M-Adv♣ 51.92 61.25 56.4 - -

Table 6: Multimodal probing: Accuracy of pre-trained VL
models. ♣ indicates mismatched instances.

UNITER LXMERT ViLT

VQA

L-Tagging 93.84 94.14 94.79
L-Tagging♣ 93.80 94.73 94.89
L-BShift 79.48 65.40 69.43
L-BShift♣ 76.92 62.74 68.32

NLVR

L-Tagging 94.37 88.44 95.60
L-Tagging♣ 94.38 88.49 95.50
L-BShift 72.74 57.10 67.18
L-BShift♣ 72.34 57.82 67.10

Table 7: Language probing: Accuracy of the fine-tuned VL
models. ♣ indicates mismatched instances, gray cells show
better performance than their V LMpre counterpart.

that the gap in performance of UNITERpre for mismatched
instances is due to a specificity of its the pre-training proto-
col.

The lower performances for the NLVR fine-tuned models
could be due to the fact that the NLVR task is used to hav-
ing two images as input, contrary to pre-training and probing
tasks. The lower performance of fine-tuned LXMERT mod-
els could show that LXMERT forgets more easily than other
models the linguistic knowledge it has learned through pre-
training.

Vision (fine-tuned) Tables 8 and 9 show the results of
V LMfine(V QA) and V LMfine(NLV R) for the V probing
tasks. For the V-Flower task, we notice an improvement
of the fine-tuned UNITER models compared to the pre-
trained models. ViLT performances were already high, and
decreased slightly. However, LXMERT only improves with
VQA fine-tuning.

On the V-ObjCount task, UNITER and LXMERT also
show improvements. UNITER fine-tuned models reach
the performance of the ResNet baseline with 4.98 for
UNITERfine(V QA). However, LXMERTfine(NLV R) is also
worse than the pre-trained model for this task. Additionally,

UNITER LXMERT ViLT

V-Flower VQA 82.91 78.80 93.11
NLVR 82.78 74.23 91.23

Table 8: Vision probing: Accuracy of fine-tuned VL models
for the V-Flower task. Gray cells show better performance
than their V LMpre counterpart.

UNITER LXMERT ViLT

VQA V-ObjCount 4.98 5.13 5.20
V-ObjCount♣ 6.49 6.85 5.87

NLVR V-ObjCount 4.95 5.65 4.92
V-ObjCount♣ 6.22 6.94 5.50

Table 9: Vision probing: RMSE for fine-tuned VL models
on the V-ObjCount task. ♣ indicates mismatched instances,
gray cells show better performance than their V LMpre

counterpart.

the results using the wrong caption also improve, showing
that the increase in performance relies partly on a better ex-
traction of visual information.

Fine-tuning improves the vision performance of UNITER
and, to a lesser extent, LXMERT. This seems to show that
VQA and NLVR rely on visual information that is not lin-
early accessible within the pre-trained models. On the the
other hand, it seems that fine-tuning does not improve the
visual capacity of ViLT, which was already similar in term
of performance to the visual baselines for the pre-trained
model. It shows that the vision performances of UNITER
and LXMERT pre-trained models seem to be lacking, which
could point out that the visual pre-training of the those mod-
els is a limiting factor. Our hypothesis is that it is easier to
extract information from the textual input than the Faster
RCNN features, making UNITER and LXMERT rely more
on text than image.

Multimodality (fine-tuned) Table 10 shows the re-
sults for the multimodal probing tasks. On the color
(M-Col) and adversarial (M-Adv) tasks, we notice that
fine-tuned UNITER and ViLT models have slightly lower
performances than their pre-trained counterpart, while
LXMERT shows generally an increase in performance, ex-
cept LXMERTfine(NLV R) for the M-Adv task. Indeed, for
LXMERT especially, VQA fine-tuning leads to better per-
formances than NLVR fine-tuning. UNITER remains the
overall best model for those tasks, despite the improvement
of LXMERT.

For the size (M-Size) and position (M-Pos) tasks, we no-
tice a slight increase in performance for all models. This is
more noticeable for the M-Size task, while M-Pos results re-
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UNITER LXMERT ViLT

VQA

M-Col 83.39 82.60 81.23
M-Col♣ 35.75 37.18 33.49
M-Size 64.23 60.85 58.62
M-Size♣ 55.96 56.60 55.24
M-Pos 57.55 56.25 53.43
M-Pos♣ 55.27 54.51 52.84
M-Adv 78.37 74.90 70.07
M-Adv♣ 49.42 61.06 52.27

NLVR

M-Col 82.52 78.00 83.18
M-Col♣ 36.17 37.02 33.83
M-Size 63.19 59.28 54.20
M-Size♣ 59.28 54.57 53.17
M-Pos 56.99 56.23 52.80
M-Pos♣ 54.42 55.09 53.31
M-Adv 77.50 68.46 68.12
M-Adv♣ 53.17 53.46 57.42

Table 10: Multimodal probing: Accuracy of fine-tuned VL
models. ♣ indicates mismatched instances, gray cells show
better performance than their V LMpre counterpart.

main close to the mismatched image baseline. ViLT has the
worst results on those tasks. The improvement on these tasks
could be due to the fact that fine-tuning datasets are more fo-
cused on the concepts of size and position than pre-training
datasets. These results seem to show that the models, and
UNITER in particular, manage to extract additional visual
information relevant to size, while they keep using linguistic
clues for position.

Discussion
Language-oriented probing seems to show that VL models
have slightly worse syntactic understanding than language-
only models such as BERT. This could be due to the less
varied syntactic structure of the captioning datasets used for
pre-training. UNITER shows overall better performances.

Vision-oriented probing seems to show that visual pre-
training is a limiting factor for VL models based on Faster-
RCNN features as UNITER and LXMERT show signifi-
cantly worse performance than ViLT. We think that the mod-
els rely on textual information because they cannot extract
accurate visual information from the representation. This
limiting factor is consistent with what has been found in
other studies, such as VinVL (Zhang et al. 2021), which
shows that a better object detection model leads to better
downstream tasks results.

Multimodal probing shows that pre-trained VL mod-
els are able to capture some multimodal information, with
UNITER reaching the best performances. While ViLT has
shown better results on vision probing than UNITER, this
has not translated to the multimodal probing tasks. In par-
ticular, the weaker performance in the M-Adv task could be
due to the the absence of object prediction task, which could
limit the semantic understanding of objects for ViLT. How-
ever, concepts related to object size and position are still

not well understood by those models. These are harder to
grasp because they are relatively subjective and depend on
the context and annotator. For those concepts, the models
still almost exclusively rely on linguistic cues, resulting in a
performance drop when they cannot rely on textual bias. In
additional ablation studies, we use non-curated size and po-
sition datasets to see how the models perform when there
are more linguistic clues. We notice that on this dataset,
UNITER pre-trained representations reach an accuracy of
71.66 on the M-Size probing task, and of 65.69 when us-
ing wrong images. For the M-Pos probing task, the model
reaches 73.18 using the right images and 72.68 using the
mismatched images. This shows that using linguistic cues is
helpful on these tasks on less controlled datasets. The per-
formance of the position task seem to show that visual in-
formation regarding this concept is even less accessible in
representations than size-related information. It could show
that the current visual pre-training is not enough to under-
stand the positional relationship between objects at a multi-
modal level. This is especially true for ViLT, which shows
the worst performances on those tasks.

Contrary to our expectations, fine-tuning does not neces-
sarily lead to better cross modal probing performance. The
improvements in performance on probing tasks are specific
and not consistent from one model to another. This seems
to point out that architecture and model pre-training are par-
ticularly important to understand multimodal concepts, and
that concepts that are not well understood by a pre-trained
model will generally not have much improvement with fine-
tuned models.

Finally, our results seem to show that for some con-
cepts, multimodal performance is dependent on the pres-
ence of textual biases in the dataset, which makes creating
controlled datasets especially important. However, the re-
liance of a model on linguistic clues for training does not
always help improve multimodal performance. On the con-
trary, LXMERT models which rely the most on linguistic
clues for the M-Adv task will not necessarily show the best
performance for this task.

Conclusion
We evaluate Vision-Language models: UNITER, LXMERT
and ViLT using probing tasks. We find that although they
extract slightly less syntactic information than language-
only models. Additionally, we find that Faster-RCNN fea-
tures seem to be a limiting factor for visual performances.
As for their multimodal capability, UNITER manages to ex-
tract better multimodal information on some concepts, such
as color. However, all models have trouble understanding
less objective concepts, such as position and size. We notice
for those tasks an over-reliance of VL models on linguis-
tic clues. This highlights the importance of using more con-
trolled datasets to evaluate multimodal performance, with-
out allowing the models to learn linguistic bias for visual in-
formation. For future work, it would be interesting to adapt
VL pre-training for better multimodal performance on fine-
grained multimodal concepts such as position and size. We
make available the datasets for further experiments.
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