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Abstract
The problem of single-channel audio source separation is to
recover (separate) multiple audio sources that are mixed in
a single-channel audio signal (e.g. people talking over each
other). Some of the best performing single-channel source
separation methods utilize downsampling to either make the
separation process faster or make the neural networks big-
ger and increase accuracy. The problem concerning down-
sampling is that it usually results in information loss. In this
paper, we tackle this problem by introducing SFSRNet which
contains a super-resolution (SR) network. The SR network is
trained to reconstruct the missing information in the upper
frequencies of the audio signal by operating on the spectro-
grams of the output audio source estimations and the input
audio mixture. Any separation method where the length of the
sequence is a bottleneck in speed and memory can be made
faster or more accurate by using the SR network.
Based on the WSJ0-2mix benchmark where estimations of
the audio signal of two speakers need to be extracted from the
mixture, in our experiments our proposed SFSRNet reaches a
scale-invariant signal-to-noise-ratio improvement (SI-SNRi)
of 24.0 dB outperforming the state-of-the-art solution Sep-
Former which reaches an SI-SNRi of 22.3 dB.

Introduction
In real-world environments, audio often contains parts
where multiple speakers talk over each other. This is known
as the cocktail party problem (Bronkhorst 2000; Haykin
and Chen 2005). Being able to accurately separate multi-
ple speakers from a single-channel mixture is of interest to a
number of speech processing tasks (Narayanan and Wang
2014). One example of such a task is automatic speech
recognition (ASR). If the input audio consists of multiple
people speaking over each other, ASR methods typically
perform significantly worse (Lam et al. 2019; Luo, Chen,
and Yoshioka 2020). Therefore, to improve the accuracy
of ASR methods, it is advisable to separate the individual
speakers in mixed audio signals before applying ASR meth-
ods on each individual speaker audio signal.

Problem Definition
The problem of single-channel audio source separation is to
separate (recover) the C audio sources s1, . . . , sc that over-
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Figure 1: Single-channel audio source separation.

lay in a given audio mixture x, s.t.

~x =
C∑
i=1

~si (1)

where the mixture and sources can be expressed as vectors
~x ∈ RD×1 and ~si ∈ RD×1, respectively, with D being the
sequence length. Figure 1 illustrates the problem. The audio
source separation system takes the given audio mixture as its
input and outputs C estimations of the audio sources. Note,
in the reminder we will call the estimations of the recovered
audio sources simply estimations.

Basic Idea
Latest solutions of audio separation systems have suggested
to downsample the input before the audio source separation
(Tzinis, Wang, and Smaragdis 2020; Subakan et al. 2021).
Downsampling has the advantages of speeding up and low-
ering the memory usage of the separation process. However,
the issue with downsampling the input signal is that the later
required upsampling process to get the original audio sig-
nal frequencies is unable to fully restore the information
that gets lost during the downsampling process. To solve
this problem, we propose a separate super-resolution (SR)
network to achieve better upsampling results. The proposed
SR network is different from common upsampling tasks as
follows. Since the goal of the upsampling in this case is to
return to the original audio signal frequency, it is not nec-
essary to generate any new information. Instead, aside from
the downsampled estimations, the input audio mixture in its
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original sampling rate is used as an additional input to im-
prove the upsampling process.

The state-of-the-art approach proposed in (Subakan et al.
2021) applies downsampling by a factor of 8 suggesting that
the separation can be sped up while staying highly accurate
even without the full resolution audio. In combination with
an SR network, the separation can be made even more accu-
rate, which makes SR a natural fit for source separation. Let
us note that our SR network can be added to most existing
separation methods to speed them up and make them more
accurate.

Increasing the downsampling factor will speed up the sep-
aration, while adding the SR network will compensate the
loss in accuracy that would occur without SR. Since the
proposed SR network only consists of a few convolutional
layers, it is highly parallelized and its computational cost is
fairly minor compared to the overall cost of the separation.
In addition, we can increase accuracy by adding more lay-
ers to the separation network to improve the separation since
the downsampling process does not only save speed, but also
memory.

Main Contributions
In this paper we propose the SFSRNet approach containing a
super-resolution (SR) network to address the single-channel
audio source separation problem. Our approach adopts the
downsampling usage of the existing SepFormer architecture
(Subakan et al. 2021). Our main contributions are
1. Improving the existing SepFormer architecture by calcu-

lating intermediate estimations after each block and vary-
ing the resolution of the sources these estimations are
compared to.

2. Introducing the super-resolution (SR) network which can
be used to improve most existing separation architec-
tures.

3. Experimental evaluation of our SFSRNet showing sig-
nificant improvement over state-of-the-art based on the
WSJ0-2mix benchmark with 24.0 dB SI-SNRi, on the
clean Libri2Mix with 21.7 dB SI-SNRi and on the noisy
Libri2Mix with 16.4 dB SI-SNRi.

Outline
The remainder of the paper is organized as follows: First we
will briefly summarize related work followed by the dual-
path model section introducing the basic architecture, which
most recent source separation models, including the SFS-
RNet, are based on. Section SFSRNet Model goes more in-
depth on our proposed approach introducing the new separa-
tion architecture in detail and our super resolution network.
In the experiments section we empirically evaluate the per-
formance of SFSRNet in detail and show how the SR net-
work can also be used in combination with other architec-
tures to speed them up. Finally, we conclude the paper by
summarizing the advances and limitations of our SFSRNet.

Related Work
The task of single-channel source separation has seen a lot
of progress, recently, using deep learning techniques. Early

neural network based source separation systems (Wang and
Chen 2018; Hershey et al. 2016; Bahmaninezhad et al. 2019)
use the short-time Fourier transform (STFT) of the mixture,
take the magnitude as the input of the neural network and
calculate a mask for each source. This mask is then mul-
tiplied with the magnitude of the mixture and the result-
ing magnitude combined with the phase of the mixture is
brought back into the time-domain using the inverse STFT
(iSTFT).

Later, it is shown that better results can be achieved
when staying in the time-domain by replacing the STFT
and iSTFT steps with a convolutional encoder and decoder
(Bahmaninezhad et al. 2019; Luo and Mesgarani 2018). The
neural network is able to operate on the waveform directly
which means that magnitude and phase information are no
longer decoupled.

One of the main challenges of audio source separation is
that the sequences the neural network needs to process are
very long. The dual-path recurrent neural network (DPRNN)
as proposed in (Luo, Chen, and Yoshioka 2020) turns the se-
quence into overlapping chunks and treats both the neigh-
bouring samples inside the chunks and the neighbouring
chunks themselves, as two sequences. Since both these se-
quences are much shorter than the original sequence, it al-
lows for a more extensive neural network for the separation
task.

More recently it has been shown that Transformers
(Vaswani et al. 2017) instead of recurrent neural networks
(RNN) or temporal convolutional networks (TCN) (Lea
et al. 2016) achieve the best separation results (Subakan
et al. 2021). Unlike RNNs, Transformers consume consider-
ably more memory when sequence length is increased. This
is why most of these approaches either try to limit the num-
ber of Transformers by also using RNNs (Chen, Mao, and
Liu 2020; Lam et al. 2021), or they downsample the input
(Subakan et al. 2021; Lam et al. 2021). In our approach,
we build on the recently introduced downsampling solution
while addressing its problem of information loss.

Dual-Path Model
The general concept of the dual-path model shown in Figure
2 is based on the TasNet (Luo and Mesgarani 2018). Note
that we only show one chunking and one overlapping step
while some dual-path models use two chunking and over-
lap steps (Luo, Chen, and Yoshioka 2020; Lam et al. 2021).
The entire separation process remains in the time-domain, in
contrast to former STFT solutions. A convolutional layer is
used to encode the mixture and later decode the estimations.
The TasNet as well as the dual-path model is based on mask
estimation.

~esti = Decoder(~mi � ~enc) (2)

For each source si a mask ~mi ∈ RD×N is calculated
and multiplied with the encoded mixture ~enc ∈ RD×N with
N being the channel size of the encoder. The Decoder pro-
cesses the result to return the waveform ~esti ∈ RD×1.
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Figure 2: Basic dual-path model. With sequence length D, encoder filter size N , chunk size L, number of chunks H and number
of sources C.

The idea is that the encoder expands the mixture in a way
which allows the masks to better estimate, how involved
each source is at each timestep.

The Dual-Path separation approach was first proposed in
(Luo, Chen, and Yoshioka 2020). The main idea of this ap-
proach is to split the sequence into overlapping chunks, thus
effectively turning one long sequence into two shorter se-
quences and then to operate on the two shorter sequences.
This is useful as operating on long sequences is usually very
resource intensive, both in time and memory.

Encoder
The encoder takes the mixture of multiple speakers as its
input and is usually a convolutional layer. The encoder adds
a second dimension to the one dimensional sequence. The
idea behind this step, initially introduced in TasNet (Luo and
Mesgarani 2018), is to mimic a similar function as the STFT.

Chunking
The chunking is one of the core contributions of the DPRNN
(Luo, Chen, and Yoshioka 2020) in its application for source
separation. The basic idea is to split up one long sequence
into a number of shorter sequences and then stack them on
top of each other. It should be noted, that these shorter se-
quences, or chunks, overlap each other. If the chunks would
not overlap, then contextual information of the sequence be-
tween each chunk would get lost. Since the chunks overlap,
the total size of the tensor actually increases due to the over-
lap.

Mask Estimation
The mask estimation process includes all the steps after
the chunking and before the decoder as illustrated in Fig-
ure 2. The idea of the chunking step is to create two se-
quences. First, there is the sequence of neighboring sam-
ples inside each chunk, which were also neighboring sam-
ples in the original sequence. Working on this sequence is
called intra-processing. Second, there is the sequence of the
chunks themselves. In reference to the original sequence,
neighboring values here have a space of the chunk size mi-
nus the overlapping bits between them. Working on this se-
quence is called inter-processing. The basic concept is that
the intra-processing step captures local patterns, while the
inter-processing step is able to capture long term patterns.

In the DPRNN paper (Luo, Chen and Yoshioka 2019)
bidirectional RNNs were used for the intra- and inter-
processing. However, as the dual-path approach was used
in many other papers, other methods than the bidirectional
RNNs have been tried. RNNs (Luo, Chen, and Yoshioka
2020), Transformers (Subakan et al. 2021), or both (Chen,
Mao, and Liu 2020; Lam et al. 2021) have all been used in
dual-path models for the intra- and inter-processing. Basi-
cally, any method suitable for capturing sequential patterns
could be used for intra- and inter-processing.

The intra- and inter-processing steps usually repeat them-
selves in an alternating pattern.

After all the intra- and inter-processing blocks are done,
the encoder dimension size is increased by C using a linear
layer. To reverse the chunking step, the chunks are sequen-
tially assembled with the overlapping parts being added to
each other. With this, the original sequence length is recon-
structed. Next, the tensor is split among the encoder dimen-
sion into C parts. These parts make up the mask estimation
tensors for each source. They are then multiplied with the
encoded mixture from the encoder step.

Decoder
The decoder fulfills the opposite function of the encoder.
The dimension added through the encoder is removed for
each source in order to return to a waveform which is usu-
ally done through a transposed convolutional layer.

SFSRNet Model
Our SFSRNet architecture is based on the dual-path model
SepFormer (Subakan et al. 2021) using an encoder - mask
estimator - decoder pipeline as introduced in the previ-
ous section. Instead of using RNNs, the SepFormer model
uses Transformers based on Multi-Head Attention (MHA)
(Vaswani et al. 2017) for the intra- and interprocessing. In
the SepFormer model, downsampling is used during the en-
coding and upsampling during the decoding.

Figure 3 shows the differences between the SepFormer
and SFSRNet architectures. The first difference is calculat-
ing intermediate estimations after each block of intra- and
interprocessing and including these estimations for the loss
calculation. The second difference is the additional step of
SR.
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Figure 3: Comparison with previous SOTA (A) and the SFSRNet architecture (B).

Separation Blocks and Multi-Loss
After the encoding and the chunking, the separation process
begins. Both Transformer blocks are repeated P times. The
entire SepFormer block is repeated K times with the out-
put of the last InterTransformer being the input for the next
SepFormer block.

The IntraTransformer operates on the sequence of neigh-
boring samples inside each chunk, while the InterTrans-
former operates on the sequence of neighboring chunks. The
IntraTransformer and InterTransformer both have the same
architecture. First, positional encoding is added to the input.
The result is fed through a layer normalization and MHA
with a residual connection at the end of it. Next is another
layer normalization, a linear layer, and a two dimensional
convolutional layer with another residual connection. Us-
ing a two dimensional convolutional layer instead of a linear
layer is the first difference to the original SepFormer block.
The second and more significant difference is the use of a
multi-loss system, similar to what was used in (Nachmani,
Adi, and Wolf 2020).

After each SepFormer block, intermittent results are cal-
culated. This is done by increasing the channel size to match
the encoded channel size multiplied by C by using a lin-
ear layer with a rectified linear activation, overlapping and
adding the chunks, multiplying the resulting masks with the
encoded representation and feeding it into the decoder. This
is shown in Figure 3, as the process of calculating estima-
tions only happens once in the original SepFormer, while it
happens K times in the SFSRNet. Additionally, the sources
these intermittent results are compared to are increasing in
resolution, meaning the first output is compared to the orig-

inal source at a low sampling rate, while the last output is
compared to the original source at the full sampling rate.

Super-Resolution
The SR step is added after the decoder. Unlike most SR
problems, there is no need to generate any new informa-
tion. All the necessary information is contained within the
mixture. Some of this information gets lost in the separation
process since downsampling is used, however, this can be
reversed by taking the mixture as an input for the SR pro-
cess.

Unlike the separation, the SR process operates in the
frequency-domain. Using the estimations for each source
and the original mixture as the input, STFTs are calculated
for each of them.

The phase information of the estimations are set aside for
later, while the magnitude is operated on in order to restore
the detail which was lost during the separation.

First, heuristics are used in an attempt to correct the mag-
nitude of the higher frequencies. To calculate the corrected
magnitude for each source, the magnitude spectrograms of
the mixture and estimations are split into two parts, result-
ing in a matrix holding the low frequencies and a matrix
holding the high frequencies. For both the low and high fre-
quency matrices, all the frequency bins at each timestep are
added together. This results in a sequence for the low and
high frequencies. By dividing the low frequency sequence
mixture by the low frequency sequence of each estimation,
it can be estimated, which estimation is contributing to the
mixture at each timestep. After dividing the two sequences,
the next step is to take the resulting sequences and multi-
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ply them with the higher frequency matrix of the mixture.
This is how the higher frequency of the corrected magni-
tudes of each estimation is calculated. The corrected magni-
tudes of the higher frequencies for each estimation consist
of the combination of the lower frequency matrix of the es-
timation and the multiplication of the high frequency matrix
of the mixture with the sequence previously calculated.

The idea is to compare the lower frequencies of the esti-
mations with the lower frequencies of the mixture and figure
out, how much each estimation is contributing. This infor-
mation is then extrapolated to the high frequencies of the
mixture, since it is likely that the amount a source is con-
tributing to a mixture is similar in the low and high frequen-
cies and we assume that the estimations are more accurate
in the low frequencies due to downsampling.

The input to the SR network is four dimensional. The
magnitude spectrograms of the mixture, the estimations and
the corrected estimations through the heuristic are concate-
nated in the channel dimension. This serves as the input to
the network. The network itself consists of four two dimen-
sional convolutional layers with rectified linear activations
and group normalizations between each of them. The last
layer has a filter size equal to C. Next, this output is split for
each estimation and added to the original magnitude spec-
trogram of the estimations. Using the new magnitude and
the original phase information of the estimations, the STFTs
of the estimations are recalculated and with the iSTFT, each
estimation is returned to the time-domain.

Experiments
Datasets
We evaluated our system on the two-speaker speech separa-
tion problem using the WSJ0-2mix dataset (Hershey et al.
2016) which is based on the WSJ0 corpus (Garofolo, John
S. et al. 1993). This dataset contains 30 hours of training,
10 hours of validation data and 5 hours of evaluation data.
The speech mixtures are generated by selecting utterances
from the 49 male and 51 female speakers in the Wall Street
Journal (WSJ0) training set si tr s, and mixing them at ran-
dom signal-to-noise ratios (SNR) between 0 dB and 5 dB.
The 5 hour long evaluation set is generated in the same way,
using utterances from 16 unseen speakers from si dt 05 and
si et 05 in the WSJ0 dataset.

Aside from the WSJ02-Mix, the clean and noisy
Libri2Mix datasets (Cosentino et al. 2020) are also used to
evaluate the SFSRNet. The Libri2Mix datasets are based on
the LibriSpeech ASR corpus (Panayotov et al. 2015). Simi-
larly to to the WSJ02-Mix, the Libri2Mix datasets take two
utterances and mix them together. In the noisy Libri2Mix
dataset, background noise is added on top of the two utter-
ances. The Libri2Mix datasets consist of 212 hours of train-
ing, 11 hours of validation and 11 hours of evaluation data.
For all datasets we use the 8 kHz versions.

Data Augmentation
For data augmentation, we use dynamic mixing (DM) which
was introduced in (Zeghidour and Grangier 2020). This
method keeps randomly selecting utterances of the training

set at runtime and mixes them at random SNRs between
0 dB and 5 dB, which is how the mixtures in the WSJ0-
2Mix dataset were created. Like in (Subakan et al. 2021),
we also change the speed of the utterances randomly be-
tween 95% and 105%. This helps with generalization. As
was proposed in (Lam et al. 2021), we include utterances of
the same speaker for dynamic mixing in order to improve
separation accuracy of mixtures with similar voices.

Experiment Configurations
The encoder has a channel size of 256, a kernel size of 16
and a stride factor of 8. The chunk size is 50 with an over-
lap of 50%. We use K = 8 SepFormer blocks with P = 2
Intra- and InterTransformers each. The kernel size of the
two dimensional convolutional layers of the Transformers
is 3. The linear layer preceding the two dimensional con-
volutional layers has a 512 hidden units. The MHAs use 8
parallel heads.

For the SR, we use a frame length of 256 and a frame step
of 64 for the STFTs. The convolutional layers have chan-
nel sizes of 128, 256, 128 and C, respectively. Their kernel
sizes are 5, 9, 11 and 11, respectively. The group size of the
group normalization is set to 1. The SR itself is trained sepa-
rately from the separation process. The utterances are down-
sampled by the same amount as the encoder downsamples
them for the separation and then the utterances are upsam-
pled back to the original sampling rate using bilinear inter-
polation. Just like in the separation process, the utterances
are added together to simulate a mixture as this mixture is
used as an input for the SR process. The other utterance is
slightly mixed into each utterance to simulate the outcome
of the separation. To summarize, we use slightly noisy ut-
terances and a mixture of the overlapping utterances as the
input of the SR network training.

The training objective for both the separation and SR is
scale-invariant signal-to-noise-ratio (SI-SNR) (Roux et al.
2018), which is defined as

~g :=
〈 ~est, ~s〉~s
‖~s‖2

(3)

SI-SNR := 10 log10
‖~g‖2∥∥( ~est− ~g)

∥∥2 (4)

where ~est ∈ RD×1 is the estimation of the source and
~s ∈ RD×1 is the clean source. Both ~est and ~s are normal-
ized to zero-mean in order to ensure scale-invariance. For
the separation, utterance-level permutation invariant training
(uPIT) (Yu et al. 2017; Kolbaek et al. 2017) is used to max-
imise the SI-SNR. For the SR, we also maximise SI-SNR,
however uPIT is not necessary.

Since 8 SepFormer blocks are used, there are 8 estima-
tions for which the losses are calculated for. The sources
with which the estimations are compared to are downsam-
pled for the first 6 blocks to 500 Hz, 1 kHz, 2 kHz, 3 kHz,
4 kHz and 5 kHz, respectively. The remaining estimations
use the original 8 kHz sources. After these 8 uPIT SI-SNRs
are calculated, the average of the 8 losses is calculated and
added to the SR loss.

11224



Method Model SI-SNRi SDRi
size (db) (db)

Deep Clustering 13.6M 10.8 –
(Hershey et al. 2016)
Conv-TasNet 5.1M 15.3 15.6
(Luo and Mesgarani 2019)
FurcaNeXt (Zhang et al. 2020) 51.4M 18.4 –
DPRNN 2.6M 18.8 19.0
(Luo, Chen, and Yoshioka 2020)
Sandglass (Lam et al. 2021) 2.3M 21.0 21.2
Wavesplit - 21.0 21.2
(Zeghidour and Grangier 2020)
Wavesplit + DM - 22.2 22.3
(Zeghidour and Grangier 2020)
SepFormer (Subakan et al. 2021) 26M 20.4 20.5
SepFormer + DM 26M 22.3 22.4
(Subakan et al. 2021)
SFSRNet 59M 22.0 22.1
SFSRNet + DM 59M 24.0 24.1

Table 1: Model size, SI-SDR and SDR improvements (dB)
on WSJ0-2Mix dataset.

For the optimization, the Adam optimizer (Kingma and
Ba 2017) is utilized with a learning rate of 15e-5. After the
first 100 epochs, the learning rate is halved, once the per-
formance on the validation dataset does not improve for 3
epochs. Gradient clipping is used with a maximum L2-norm
of 5. The network is trained for 200 epochs in total.

WSJ0-2mix Results
Table 1 compares the performance of different source sepa-
ration systems on the WSJ0-2mix task. As shown, our SFS-
RNet outperforms the SOTA baseline.

Furthermore, Figure 4 shows the improvement in the
higher frequencies when compared to the original Sep-
Former and the clean source. Even though the SepFormer
is using a stride factor of 8, it manages to reconstruct the
higher frequencies quite well. This is probably due to hav-
ing a kernel size double that of the stride factor, effectively
preserving the information of the higher frequencies in the
channel dimension.

Method Libri2mix
clean (db) noisy (db)

SI-SNRi SDRi SI-SNRi SDRi
Conv-TasNet 14.7 – 12.0 –
(Cosentino et al. 2020)
IRM (oracle) 12.9 – 12.0 –
(Cosentino et al. 2020)
IBM (oracle) 13.7 – 12.6 –
(Cosentino et al. 2020)
Wavesplit 19.5 20.0 15.1 15.8
(Zeghidour and Grangier 2020)
Wavesplit + DM 20.5 20.9 15.2 15.9
(Zeghidour and Grangier 2020)
SFSRNet 20.4 20.7 15.6 16.1
SFSRNet + DM 21.7 22.0 16.4 16.9

Table 2: SI-SDR and SDR improvements (dB) on clean and
noisy Libri2Mix.

Figure 4: Top: Original, clean source spectrogram. Middle:
Spectrogram of SepFormer output without SR with red el-
lipsis showing incorrect information in higher frequencies.
Bottom: Spectrogram of SepFormer output with SR with red
ellipses showing information that was added by SR.

That being said, adding the SR network to the SepFormer
is a clear improvement in the frequencies above 1 kHz. Since
the SR network utilizes a residual connection and the final
output has a rectified linear activation, it can only add infor-
mation to the magnitudes of the estimations. However, as the
separation and SR networks are trained at the same time, it is
possible that the separation network learned to rely more on
the SR network to reconstruct higher frequencies rather than
the transposed convolutional layer it would normally rely on
without the SR network.

This would explain why the addition of the SR network
also seemingly removes incorrect information in the high
frequencies as shown in Figure 4.

Libri2Mix Results
Our approach also outperforms SOTA results on the clean
and noisy Libri2Mix (Table 2). While one could think that
the SR network could be trained for denoising and super-
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Method SI-SNRi (db)
SepFormer 22.3

+ multi-loss, same sampling rates 23.0
+ multi-loss, changing sampling rates 23.3

+ SR w/o heuristics 22.9
+ SR w/ heuristics 23.3

+ multi-loss and SR w/ heuristics 24.0

Table 3: Ablation on WSJ02-Mix. Dynamic Mixing is used
with all methods.

resolution simultaneously, thus making it particularly good
for the noisy Libri2Mix, in our testing it did not work out
this way. The performance with the noisy Libri2Mix is not
improved when trying to additionally optimize the SR net-
work for denoising. We have provided some audio samples
for the noisy Libri2Mix 1.

Ablation Study
Table 3 shows the results of the base model and how the
results change depending on which part is added. The results
of Table 3 show the importance of the heuristics as well as
changing the sampling rate.

Using Super-Resolution to Speed up Other
Architectures
Although SR has been mostly discussed in combination with
the SepFormer architecture, it can be used with almost any
other audio separation method.

In Table 4 it is shown how the same SR network can be
used to achieve more than double the speed of the DPRNN
without significantly lowering its accuracy. The results sug-
gest, that it is not necessary to work with the full resolution
for the source separation. Instead, it makes more sense to
work with a downsampled representation for the separation
and upsample the separated estimations using SR.

Since the separation is the most resource intensive part of
the network and this resource intensiveness is linked with
the sequence length, our approach also allows us to improve
accuracy instead of speed by extending the separation net-
work since downsampling reduces the sequence length and
thus frees up resources.

Method Stride SI-SNRi Speed Chunk size
(dB) (ms)

DPRNN 1 19.1 65.5 200
DPRNN 8 18.0 25.8 200

DPRNN + SR 8 18.4 31.9 200
DPRNN 8 17.7 25.3 50

DPRNN + SR 8 18.8 31.3 50

Table 4: Speed (ms) and SI-SNRi (dB) of the DPRNN and
the SR network on the WSJ0-2mix during inference. The
speed is how long it takes for an RTX 2070 Super to separate
1 second given a 4 second mixture.

1https://github.com/j-rixen/SFSRNet-Audio-samples

It is also notable that the SR network performs better with
a lower chunk size. This is why we lowered the chunk size
for our implementation to 50 instead of the 250 of the origi-
nal SepFormer.

This behaviour is unexpected since the chunk size is a pa-
rameter that is only relevant to the separation network and
not to the SR network. Table 4 shows, that for the separa-
tion, a lower chunk size actually leads to lower accuracy.
The results suggest, that the SR network seems to be able
to correct mistakes better, when a lower chunk size is used
for the separation even though this lower chunk size leads to
slightly worse estimations.

Although the results in Table 4 show how the SR network
can be used to speed up other architectures, it should be
noted that the heuristics of the SR network were removed
for these experiments. Unlike the concept of the SR network
itself, the heuristics may need adjusting for each architecture
or are simply not needed to make the SR network work to its
full potential in some cases. In order for the SR network to
work with existing architectures, it is necessary to calculate
multiple losses, similar to the multi-loss concept used in the
SFSRNet. There are three mandatory losses. One of them is
for optimizing the SR network and one of them is for op-
timizing the final estimations of the separation process. The
third loss is for optimizing the estimations that are calculated
before the SR network.

It is also necessary to normalize the estimations between
negative 1 and 1 before they are processed by the SR net-
work. This is because the outputs of the separation network
are scaled incorrectly and one of the main reasons the SR
network functions is the reference point the mixture brings.
Therefore, the estimations need to be scaled the same way
the mixture is.

Conclusion

This paper proposes a new neural network for source sepa-
ration which utilizes super-resolution (SR). While the pro-
posed network is exceeding state-of-the-art performance on
the WSJ0-2mix and Libri2Mix tasks, the main contribution
of the paper is the SR process which is able to improve
any separation network. The secondary contribution is the
multi-loss system where the sampling rate of the solutions
increases after each separation block.

SR works well with audio source separation since the sep-
aration usually does not need the full resolution sequence
and returning to the original sampling rate is simplified by
having all the necessary information in the mixture. SR al-
lows to either speed up or increase the accuracy of the net-
work.

A limitation of our SR implementation is operating on
only the magnitude and not the phase. This mirrors early
source separation approaches. Finding a source separation
compatible SR network which operates in the time-domain
like in (Kuleshov, Enam, and Ermon 2017; Lee and Han
2021) or uses phase reconstruction (Hu et al. 2020) would
be a logical next step.
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