
Post-OCR Document Correction with Large Ensembles of Character
Sequence-to-Sequence Models

Juan Ramirez-Orta1*, Eduardo Xamena2, Ana Maguitman3, 4, Evangelos Milios1, Axel J. Soto3, 4

1Department of Computer Science, Dalhousie University
2Institute of Research in Social Sciences and Humanities (ICSOH), Universidad Nacional de Salta - CONICET

3 Department of Computer Science and Engineering, Universidad Nacional del Sur
4 Institute for Computer Science and Engineering, UNS–CONICET

Abstract

In this paper, we propose a novel method to extend sequence-
to-sequence models to accurately process sequences much
longer than the ones used during training while being sample-
and resource-efficient, supported by thorough experimentation.
To investigate the effectiveness of our method, we apply it to
the task of correcting documents already processed with Opti-
cal Character Recognition (OCR) systems using sequence-to-
sequence models based on characters. We test our method on
nine languages of the ICDAR 2019 competition on post-OCR
text correction and achieve a new state-of-the-art performance
in five of them. The strategy with the best performance in-
volves splitting the input document in character n-grams and
combining their individual corrections into the final output
using a voting scheme that is equivalent to an ensemble of a
large number of sequence models. We further investigate how
to weigh the contributions from each one of the members of
this ensemble. Our code for post-OCR correction is shared at
https://github.com/jarobyte91/post ocr correction.

Introduction
Since its inception in the early sixties, OCR has been a
promising and active area of research. Nowadays, systems
like Tesseract (Smith 1987) obtain accuracies above 90%
on documents from 19th- and early 20th-century newspaper
pages (Rice, R., and Nartker 1995), but the accurate recog-
nition of older, historical texts remains an open challenge
due to their vocabulary, page layout, and typography. This
is why successful OCR systems are language-specific and
focus only on resource-rich languages, like English.

As a consequence of these difficulties, the task of automat-
ically detecting and correcting errors in documents has been
studied for several decades (Kukich 1992), ranging from
techniques based on statistical language modelling (Tong
and Evans 1996), dictionary-based translation models (Ko-
lak and Resnik 2002) or large collections of terms and word
sequences (Bassil and Alwani 2012).

With the advent of methods based on neural networks, and
more specifically, sequence models such as (Cho et al. 2014;

*Corresponding author. Please send correspondence to
juan.ramirez.orta@dal.ca
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Sutskever, Vinyals, and Le 2014; Vaswani et al. 2017), the au-
tomatic correction of texts using sequence models witnessed
considerable progress in the form of neural sequence models
based on characters or words (Rijhwani, Anastasopoulos, and
Neubig 2020; Schnober et al. 2016).

Character-based sequence models offer good generaliza-
tion due to the flexibility of their vocabulary, but they are
challenging to train and inefficient at inference time, as gener-
ating a document one character at a time requires thousands
of steps. On the other hand, word-based sequence models
are efficient at inference time and more sample-efficient than
character-based sequence models, but they lack generaliza-
tion, a problem that has been partially solved with systems
like WordPiece (Wu et al. 2016) or Byte-Pair Encodings
(Gage 1994), that learn useful sub-word units to represent
text from the data they are trained on.

In this work, we propose a novel method to correct docu-
ments of arbitrary length based on character sequence mod-
els. The novelty of our method lies in training a character
sequence model on short windows both to detect the mistakes
and to generate the candidate corrections at the same time,
instead of first finding the mistakes and then use a dictionary
or language model to correct them, as is usual with post-OCR
text correction systems.

The first main idea behind our method is to use the se-
quence model to correct n-grams of the document instead of
the whole document as a single sequence. In this way, the
document can be processed efficiently because the n-grams
are corrected in parallel. The other key idea of the method
is the combination of all the n-gram corrections into a sin-
gle output, a process that adds robustness to the technique
and is equivalent to using an ensemble of a large number of
sequence models, where each one acts on a different segment.

The features that set apart the method proposed in this
paper from previous methods for post-OCR text correction
are the following:
• It can handle documents of great length and difficulty

while being character-based, which means that it can deal
with out-of-vocabulary sequences gracefully and be easily
applied to various languages.

• It is sample- and resource-efficient, requiring only a cou-
ple of hundred corrected documents in some cases to pro-
duce good improvements in the quality of the text while

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

11192

needing very modest hardware to train and to perform
inference.

• It is robust because it integrates a set of strategies to com-
bine the output of a large ensemble of character sequence
models, each one focusing on a different context.

• It sets a new state-of-the-art performance on the ICDAR
2019 competition for post-OCR text correction. The sys-
tem hereby proposed obtained major improvements in
Spanish, German, Dutch, Bulgarian and Czech, while
remaining competitive in the remaining languages.

Related Work
The state of the art in OCR post-processing is reflected in
the two editions of the ICDAR competition on Post-OCR
text correction (Chiron et al. 2017; Rigaud et al. 2019). This
competition is divided into two tasks: the detection of OCR
errors and their correction.

The best performing error detector method during the first
edition of the challenge was WFST-PostOCR (Nguyen et al.
2019), while the best correction method was Char-SMT/NMT
(Amrhein and Clematide 2018). WFST-PostOCR relies on
compiling probabilistic character error models into weighted
finite-state edit transducers, while a language model finds the
best token sequence. On the other hand, Char-SMT/NMT is
based on ensembles of character-based Machine Translation
models, each one trained on texts from different periods of
time to translate each token within a window of two preceding
and one succeeding tokens.

In the second edition of the challenge, the best method
for both error detection and correction was Context-based
Character Correction (CCC). This method is a fine-tuning of
multilingual BERT (Devlin et al. 2018) that applies a machine
translation technique based on a character sequence model
with an attention mechanism.

The most recent extension to the CCC method also applies
BERT and character-level machine translation (Nguyen et al.
2020), but it also includes static word embeddings and charac-
ter embeddings used in a Neural Machine Translation system,
and a candidate filter. The method proposed in (Schaefer and
Neudecker 2020) argues that applying a two-step approach
to automatic OCR post-correction reduces both the Character
Error Rate (CER) and the proportion of correct characters
that were falsely changed. The resulting model consists of
a bidirectional LSTM-based detector and a standard LSTM-
based sequence-to-sequence translation model.

Unlike CCC, our method does not rely on pretrained lan-
guage models, which makes it applicable to low-resource
settings without sacrificing performance.

Methodology
The main idea of our method is to train a sequence model on
sequences of characters and then use it to correct complete
documents. However, using this approach directly is com-
putationally unfeasible because documents are sequences of
thousands of characters, and training a model like this would
need an immense amount of both memory and corrected doc-
uments. To overcome these limitations, we propose a method
composed of three steps, as shown in Fig. 1.

Raw document

Split into windows

Correct each
window separately

Combine the output
of all the windows

Corrected
document

Figure 1: Overview of the proposed method. In the first step,
the document is split into either disjoint windows or n-grams.
In the second step, the windows are corrected in parallel using
the sequence model. In the third step, the partial corrections
obtained in the previous step are combined to obtain the
final output: by a simple concatenation when using disjoint
windows or a voting scheme when using n-grams. After the
merging step, the final output can be compared with the
correct transcription using Character Error Rate.

The Sequence Model
The core of our system is a standard sequence-to-sequence
model that can correct sequences of characters. In our im-
plementation, we used a Transformer (Vaswani et al. 2017)
as the sequence model, which takes as input a segment of
characters from the document to correct, and the output is
the corrected segment. To train this sequence model, it is nec-
essary to align the raw documents with their corresponding
correct transcriptions, which is not always straightforward.

Since the output is not necessarily of the same length as the
input (because of possible insertions or deletions of charac-
ters), a decoding method like Greedy Search or Beam Search
is needed to produce the most likely corrected sequence ac-
cording to the model.

Processing Full Documents with the Sequence
Model at Inference Time
Assuming that the sequence model is already trained, the
next step is to use it to correct texts of arbitrary length. This
can be done by splitting the document into windows with a
length similar to the ones on which the model was trained
and combining them with the strategies we describe next.

Disjoint Windows Correcting a document by splitting it
into disjoint windows is the most basic way to use the se-
quence model to process a string that is longer than the max-
imum sequence it allows. In the splitting step, the string to
correct is split into disjoint windows of a fixed length n.
In the correction step, each window is corrected in parallel
using the sequence model. In the merging step, the final out-
put is produced by concatenating the corrected output from
each window. To evaluate the method, the final output can be
compared with the correct transcription using CER.

It is important to note that this approach can be effective if
the sequence model is well trained, but if this is not the case,
it can be prone to a “boundary effect”, where the characters at
the ends of the windows do not have the appropriate context.
An example of this approach is shown in Fig. 2.

N-Grams To counter the “boundary effect”, it is possible
to add robustness to the output by using all the n-grams of

11193

Figure 2: An example of correcting a document using disjoint
windows of length 5.

the input. In the splitting step, the string to correct is split
into character n-grams. In the correction step, each window is
corrected in parallel using the sequence model. The merging
step produces the final output by combining the output from
the windows, taking advantage of the overlapping between
them and a voting scheme influenced by a weighting function
described below. To evaluate the method, the final output
is compared with the correct transcription using CER. An
example of this method is depicted in Fig. 3.

Figure 3: An example of correcting a document using n-
grams of length 5.

An essential part of the n-grams variation is how the partial
outputs are combined. Since the partial corrections have an
offset of one, the outputs can be combined by aligning them
and performing a vote to obtain the most likely character for
every position. This vote is equivalent to processing the whole
input with an ensemble of n models, each one operating on
segments of offset 1, where n is the order of the n-grams.

Since a character corrected in the middle of an n-gram has
more context than a character in the edges, it is reasonable
to think that they should have different weights in the vote.
To express this difference, we used three different weighting
functions, given by the following formulae:

bell(p, w) = exp

(
−
(
1− p

m

)2
)
,

triangle(p, w) = 1− |m− p|
2m

,

uniform(p, w) = 1,

where p is the character position in the window, w is the
window length, and m = dw2 e.

The weight of the character vote in position p in an n-
gram of length w is given by f(p, w), where f is one of the
weighting functions. An example of this is shown in Fig. 4.

Figure 4: An example of correcting a text with 5-grams and
the triangle weighting function. The number under every
character in the top part is the weight of that character in
its position for every window. The mid-bottom table shows
the sum of the weights for every candidate character on each
position of the output. To generate the final output (at the
bottom), the candidate character with the maximum sum on
every position is selected.

Experimental Setup
Data
The dataset of the ICDAR2019 Competition on Post-OCR
Text Correction is made of 14,309 documents scanned with
OCR along with their corresponding correct transcription
in 10 languages: Bulgarian (bg), Czech (cz), German (de),
English (en), Spanish (es), Finnish (fi), French (fr), Dutch
(nl), Polish (pl) and Slovak (sl). In this work, we used all
the languages except Finnish because the files required are
distributed separately due to copyright reasons. The details
of the datasets used are shown in Table 1.

Lang Total µ length µ CER σ CER Train Best %
docs docs improv.

bg 198 2,332 16.65 16.30 149 9.0
cz 195 1,650 5.99 12.98 149 6.0
de 10,080 1,546 24.57 5.86 8,052 24.0
en 196 1,389 22.76 23.81 148 11.0
es 197 2,876 31.52 22.65 147 11.0
fr 2,849 1,521 8.79 12.15 2,257 26.0
nl 198 4,289 28.11 25.00 149 12.0
pl 199 1,688 36.68 20.50 149 17.0
sl 197 1,538 12.50 19.85 149 14.0

Table 1: The ICDAR datasets. µ length is the average docu-
ment length measured in characters. µ CER and µ CER are
the mean and standard deviation of the Character Error Rate
between every document and its correct transcription. Best %
improvement is the percentage of improvement in the CER
from the best method reported in (Rigaud et al. 2019).

11194

Obtaining Sequence Pairs for the Sequence Model

To obtain the character sequences to train the sequence model,
the format of the ICDAR datasets was crucial. The alignment
process we followed is described in Fig. 5.

Figure 5: An example of the process to train the sequence
model using the ICDAR datasets with windows of length 5.
In the first step, the correct transcription of the document
(GS aligned) is split into n-grams, and for each one, the
corresponding part of the aligned input (OCR aligned) is
retrieved. In the second step, the character “@” is deleted
only from the aligned input to obtain a set of segments from
the document (OCR toInput) paired with their correction.

To create a development set for each language, we sam-
pled five documents from each training set and then split
the ground truth of every document into n-grams of length
100 to create the input-correction pairs to train and develop
the sequence models. We chose this number of documents
to be able to evaluate the models frequently and this length
because this was the largest one that fitted in our hardware
with the largest architectures we tried. The datasets used to
train our models are described in Table 2.

Lang Train Development
µ length µ CER Pairs µ length µ CER Pairs

bg 1,872 16.14 278.3 1,708 9.39 8.7
cz 1,638 6.02 238.3 2,017 10.56 10.1
de 1,547 24.52 12,779.5 1,531 22.84 7.7
en 1,419 23.83 217.9 1,295 45.62 7.3
es 2,967 30.84 466.2 2,110 43.40 11.4
fr 1,534 8.63 3,553.8 1,643 5.53 4.9
nl 4,293 28.38 666.6 3,762 32.62 21.5
pl 1,666 40.08 259.6 1,463 29.95 7.8
sl 1,383 11.24 208.2 1,457 1.25 7.3

Table 2: Datasets used to train the sequence models. µ length
is the average character length of the documents. µ CER is
the average Character Error Rate between each document
and its correct transcription. Pairs is the number in thousands
of segment-correction pairs obtained.

Training the Sequence Models
The process of training the models is the standard sequence-
to-sequence pipeline that uses cross entropy loss to make
the model generate the right token at every step, as it was
proposed in (Cho et al. 2014; Sutskever, Vinyals, and Le
2014). All the models were trained using 4 CPU cores, 4
GB of RAM, and a single GPU NVIDIA V100 with 16
GB of memory. Overall, training the sequence models was
difficult because of the differences between the training and
development sets, but the models obtained were good enough
to produce improvements in all the languages, as shown in
Table 3.

Lang Best Total Dev Train Params. Train
epoch epochs loss loss hours

bg 19 42 0.278 0.251 1.94 2.19
cz 2 50 0.255 0.095 15.05 3.65
de 7 7 0.330 0.406 2.00 1.93
en 25 50 1.010 0.455 3.84 1.52
es 19 24 1.077 0.688 3.86 1.61
fr 10 12 0.318 0.288 1.48 1.88
nl 8 16 0.583 0.468 7.54 2.97
pl 10 47 0.594 0.578 7.56 3.41
sl 15 57 0.035 0.157 3.82 1.78

Table 3: Training of the models. “Best epoch” is the epoch
with the lowest dev loss. “Dev loss” is the lowest loss on the
dev set. “Train loss” is the loss on the train set in the best
epoch. “Params” is the model parameters in millions.

To tune the hyperparameters of the sequence models, we
performed a Random Search (Bergstra and Bengio 2012).
We set the embedding dimension to be 128, 256, or 512,
with the number of hidden units in the feedforward layers
always four times the embedding dimension. We tried from
two to four layers, with the same number of layers for both
the encoder and the decoder. We varied the dropout rate from
0.1 to 0.5 in steps of 0.1 and the λ of the weight decay L2

penalization to be 10−1, 10−2, 10−3 or 10−4. All the models
were trained with Adam and a learning rate of 10−4. The best
hyperparameters found are shown in Table 4.

Language Embedding Feedforward Layers Dropout
dimension dimension

bg 128 512 4 0.2
cz 512 2,048 2 0.1
de 128 512 4 0.3
en 256 1,024 2 0.5
es 256 1,024 2 0.4
fr 128 512 3 0.5
nl 256 1,024 4 0.2
pl 256 1,024 4 0.3
sl 256 1,024 2 0.2

Table 4: Hyperparameters of the sequence models. All the
models were trained with Adam and a learning rate of 10−4

with a weight decay L2 penalization of 10−4.

11195

Language Window Window Decoding Weighting Inference µ CER µ CER % Improvement % Baseline
type size method minutes before after

bg n-grams 80 beam uniform 198.08 18.23 15.27 16.27 9.0
cz n-grams 40 beam uniform 37.90 5.90 4.52 23.36 6.0
de n-grams 100 beam triangle 4,340.23 24.77 15.62 36.94 24.0
en n-grams 20 beam uniform 10.37 19.47 18.00 7.52 11.0
es n-grams 60 beam triangle 70.58 33.54 29.41 12.30 11.0
fr n-grams 90 beam triangle 889.27 9.40 7.88 16.18 26.0
nl n-grams 80 greedy uniform 47.35 27.30 22.41 17.94 12.0
pl n-grams 10 greedy uniform 1.68 26.56 23.19 12.69 17.0
sl n-grams 90 beam uniform 85.73 16.42 14.64 10.83 14.0

Average 20.17 16.77 17.11 14.4

Table 5: Best approach found for every language on the ICDAR test sets. “µ CER before” and “µ CER after” is the average
Character Error Rate between every document and its correct transcription, before and after using our method. “% Improvement”
is the average percentage of improvement in CER. “% Baseline” is the average percentage of improvement in CER from the best
method in (Rigaud et al. 2019). The percentage of improvement is bolded when it is larger than the baseline.

Experimental Results
To investigate the effect of the different hyperparameters in
our method, we performed a Grid Search varying the window
size from 10 to 100 in steps of 10, processing the documents
with disjoint windows or n-grams with all the weighting
functions using both Greedy Search and Beam Search.

The best model found for each language is shown in Table
5. The effect of each one of the hyperparameters (window
type, decoding method, weighting function and window size)
in the average improvement in CER is shown in Tables 6, 7,
8 and 9. The best improvement in CER obtained for every
combination of language and window size is shown in Table
10. The average percentage of improvement in CER for every
combination of language, window type, decoding method,
and weighting function is shown in Table 11. The average
inference time in minutes for every combination of language,
window type, decoding method, and weighting function is
shown in Table 12.

Window Mean Std Min 25% 50% 75% Max
type

disjoint -6.83 65.48 -422.21 -2.21 4.12 11.63 36.12
n-grams 0.11 67.31 -423.77 6.10 10.82 16.67 36.94

Table 6: Descriptive statistics of the average percentage of
improvement in CER on the ICDAR test sets grouped by
window type.

Decoding Mean Std Min 25% 50% 75% Max
method

beam -6.33 79.12 -423.77 3.69 9.74 16.07 36.94
greedy 3.09 51.51 -403.78 5.48 9.03 16.06 35.20

Table 7: Descriptive statistics of the average percentage of
improvement in CER on the ICDAR test sets grouped by
decoding method.

Weighting Mean Std Min 25% 50% 75% Max

bell -0.10 67.47 -423.76 5.94 10.43 16.36 36.89
triangle 0.03 67.50 -423.77 6.06 10.56 16.58 36.94
uniform 0.41 67.32 -423.76 6.38 10.92 16.77 36.83

Table 8: Descriptive statistics of the average percentage of
improvement in CER on the ICDAR test sets grouped by
weighting function.

Window Mean Std Min 25% 50% 75% Max
size

10 -36.93 132.72 -423.73 2.27 5.39 12.48 31.70
20 -25.77 112.54 -423.77 4.74 8.00 14.58 33.22
30 -16.15 96.76 -408.21 4.64 8.64 15.48 33.79
40 3.47 34.78 -156.62 5.36 8.45 16.55 34.59
50 11.37 11.59 -21.38 6.10 10.00 17.08 36.12
60 11.72 11.33 -25.74 6.53 11.96 17.15 36.16
70 12.43 10.97 -21.27 6.68 12.46 16.30 36.19
80 11.89 12.34 -29.57 6.61 11.78 16.82 36.56
90 8.06 15.71 -47.30 -1.39 10.41 15.75 36.63

100 3.70 26.46 -93.51 -7.47 9.01 16.74 36.94

Table 9: Descriptive statistics of the average percentage of
improvement in CER on the ICDAR test sets grouped by
window size.

Discussion
Our method outperformed the state of the art in Bulgarian
(bg), Czech (cz), German (de), Spanish (es), and Dutch (nl),
while exhibiting comparable performance in the remaining
languages, as shown in Table 5. The results obtained are
interesting for several reasons:

• The method was not as effective in French as it was in
German, the other language with abundant training data.

• The choice of weighting function did not have much im-
pact on the performance, although broadly speaking, the
best weighting function was uniform.

• Although the method is stable with respect to changes

11196

Language Window size
10 20 30 40 50 60 70 80 90 100

bg -366.79 -229.28 -63.67 4.40 13.01 14.60 16.02 16.27 15.77 15.42
cz 16.66 20.80 21.81 23.36 22.33 18.49 19.76 21.61 15.84 22.02
de 31.70 33.22 33.79 34.59 36.12 36.16 36.19 36.56 36.63 36.94
en 5.45 7.52 6.88 7.10 6.26 6.13 4.75 2.31 -1.06 -7.03
es 4.82 8.00 9.35 11.00 12.03 12.30 11.91 11.79 10.92 9.14
fr 8.47 10.93 11.50 11.80 13.44 14.68 15.34 15.81 16.18 16.07
nl 14.35 15.94 16.50 17.10 17.45 17.49 17.82 17.94 17.73 17.14
pl 12.69 12.47 10.48 9.45 7.21 7.27 7.39 8.55 8.31 8.62
sl 5.46 6.20 6.44 6.97 7.95 9.84 10.08 10.23 10.83 9.24

Table 10: Best improvement in CER obtained for every language and for every window size on the ICDAR test sets. The best
performance found for every language is bolded.

Language disjoint n-grams
beam greedy beam greedy

bell triangle uniform bell triangle uniform

bg -134.21 -71.40 -129.94 -129.87 -129.26 -61.10 -60.93 -59.86
cz 14.73 13.61 19.50 19.67 19.91 19.17 19.32 19.43
de 33.13 31.21 35.11 35.13 34.97 33.33 33.36 33.20
en -3.06 -3.16 1.81 1.90 2.14 2.96 3.05 3.22
es 3.37 4.58 6.75 6.79 6.90 7.71 7.73 7.75
fr 9.61 2.03 12.68 12.84 13.39 11.14 11.32 11.93
nl 4.54 7.10 13.89 14.02 14.52 15.99 16.10 16.41
pl -26.01 -1.39 -12.21 -11.92 -10.66 8.24 8.51 9.24
sl -2.12 -5.50 7.74 7.92 8.30 5.41 5.53 5.94

Table 11: Average percentage of improvement of CER by language for each variation of our method on the ICDAR test sets.

Language disjoint n-grams
beam greedy beam greedy

bell triangle uniform bell triangle uniform

bg 3.42 0.84 269.11 270.16 275.63 38.73 38.55 38.11
cz 1.88 0.49 160.87 161.15 160.77 30.49 30.54 30.54
de 61.77 22.78 4,489.84 4,340.23 4,372.81 606.48 602.05 612.37
en 0.93 0.39 66.70 66.29 64.41 10.51 10.53 10.55
es 1.79 0.46 149.66 149.99 148.28 23.23 23.31 23.31
fr 13.38 6.14 1,617.90 934.24 932.64 127.17 127.33 127.40
nl 4.53 1.03 443.59 422.70 424.34 70.29 70.38 69.87
pl 2.03 0.72 175.27 172.24 166.71 28.53 28.50 28.48
sl 1.30 0.42 101.95 102.48 100.76 16.27 16.35 16.30

Table 12: Average inference time in minutes for every language and every variation of our method on the ICDAR test sets.

in the window size, a larger window size does not al-
ways lead to improved performance. It can sometimes
hurt the model’s performance, a behavior that appears
to be language-dependent, as in the case of English and
Polish, according to Table 11.

• Although the best results were consistently obtained with
Beam Search, Greedy Search seems to be a safer choice
than Beam Search. Using Beam Search is between three

and ten times slower than using Greedy Search, but these
extra computations are usually not justified given that
there is no guarantee of increased performance, and even
when the performance does increase, the difference is
small, as shown in Tables 11 and 12.

It is important to note that the datasets come from several
heterogeneous sources with varying levels of quality and
content. In the French dataset, we noticed two important

11197

properties: a large portion of the documents are receipts,
with little to no narrative text, while the longest documents
have very few errors, therefore not allowing much room for
improvement, as shown in Fig. 6.

Figure 6: Distribution of the length in characters against the
Character Error Rate for each document in the German and
French datasets.

After informal manual inspection of the testing sets, we
observed that the French model mostly learned to discard
parts of the document and to correct numbers and dates. On
the other hand, the German model learned to correct the
narrative parts. It is important to also note that most models
in the original competition also performed poorly in French,
while those with the best performance in French used external
resources such as Google Book N-grams (Rigaud et al. 2019).

Conclusions and Future Work
The method proposed in this paper allows processing very
long texts using character sequence-to-sequence models,
which makes it applicable to any language. The method is
simple, resource-efficient and easily parallelizable, obtaining
from modest to very good improvements in documents of
varying length and difficulty.

Although this paper is focused on text and post-OCR cor-
rection, the methods presented here can be transferred to
many other sequence problems that require only local de-
pendencies to be solved successfully, requiring very modest
hardware and just a couple hundred examples in some cases.

For future work, it would be interesting to apply this
method to text from Automated Speech Recognition or Hand-
written Text Recognition systems, but the problem of aligning
the system’s output with the correct transcription remains.

Acknowledgments
We thank Calcul Quebec (https://www.calculquebec.ca/en/),
Compute Canada (www.computecanada.ca), Dalhousie Uni-
versity, CONICET (PUE 22920160100056CO) and CIUNSa
(Project C 2659) for the resources that enabled this research.

References
Amrhein, C.; and Clematide, S. 2018. Supervised ocr error
detection and correction using statistical and neural machine
translation methods. Journal for Language Technology and
Computational Linguistics (JLCL), 33(1): 49–76.
Bassil, Y.; and Alwani, M. 2012. OCR Post-Processing Er-
ror Correction Algorithm Using Google’s Online Spelling
Suggestion. Journal of Emerging Trends in Computing and
Information Sciences, 3(1).
Bergstra, J.; and Bengio, Y. 2012. Random Search for Hyper-
Parameter Optimization. Journal of Machine Learning Re-
search, 13(10): 281–305.
Chiron, G.; Doucet, A.; Coustaty, M.; and Moreux, J.-P. 2017.
ICDAR 2017 competition on post-OCR text correction. In
2017 14th IAPR International Conference on Document Anal-
ysis and Recognition (ICDAR), volume 1, 1423–1428. IEEE.
Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
Phrase Representations using RNN Encoder–Decoder for
Statistical Machine Translation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), 1724–1734. Doha, Qatar: Association for
Computational Linguistics.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
BERT: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805.
Gage, P. 1994. A new algorithm for data compression. The
C Users Journal archive, 12: 23–38.
Kolak, O.; and Resnik, P. 2002. OCR Error Correction Us-
ing a Noisy Channel Model. In Proceedings of the Second
International Conference on Human Language Technology
Research, HLT ’02, 257–262. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc.
Kukich, K. 1992. Techniques for Automatically Correcting
Words in Text. ACM Comput. Surv., 24(4): 377–439.
Nguyen, T.-T.-H.; Jatowt, A.; Coustaty, M.; Nguyen, N.-V.;
and Doucet, A. 2019. Post-OCR Error Detection by Generat-
ing Plausible Candidates. In 2019 International Conference
on Document Analysis and Recognition (ICDAR), 876–881.
Nguyen, T. T. H.; Jatowt, A.; Nguyen, N.-V.; Coustaty, M.;
and Doucet, A. 2020. Neural Machine Translation with
BERT for Post-OCR Error Detection and Correction. In
Proceedings of the ACM/IEEE Joint Conference on Digital
Libraries in 2020, 333–336.
Rice, S. V.; R., J. F.; and Nartker, T. A. 1995. The Fourth An-
nual Test of OCR Accuracy. In Technical Report 95-03. Las
Vegas: Information Science Research Institute, University of
Nevada.

11198

Rigaud, C.; Doucet, A.; Coustaty, M.; and Moreux, J.-P. 2019.
ICDAR 2019 competition on post-OCR text correction. In
2019 International Conference on Document Analysis and
Recognition (ICDAR), 1588–1593. IEEE.
Rijhwani, S.; Anastasopoulos, A.; and Neubig, G. 2020. OCR
Post Correction for Endangered Language Texts. In Proceed-
ings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 5931–5942. Online: Associ-
ation for Computational Linguistics.
Schaefer, R.; and Neudecker, C. 2020. A Two-Step Approach
for Automatic OCR Post-Correction. In Proceedings of the
The 4th Joint SIGHUM Workshop on Computational Linguis-
tics for Cultural Heritage, Social Sciences, Humanities and
Literature, 52–57.
Schnober, C.; Eger, S.; Do Dinh, E.-L.; and Gurevych, I. 2016.
Still not there? Comparing Traditional Sequence-to-Sequence
Models to Encoder-Decoder Neural Networks on Monotone
String Translation Tasks. In Proceedings of COLING 2016,
the 26th International Conference on Computational Lin-
guistics: Technical Papers, 1703–1714. Osaka, Japan: The
COLING 2016 Organizing Committee.
Smith, R. W. 1987. The Extraction and Recognition of Text
from Multimedia Document Images. PhD Thesis, University
of Bristol.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
Sequence Learning with Neural Networks. In Proceedings
of the 27th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’14, 3104–3112. Cam-
bridge, MA, USA: MIT Press.
Tong, X.; and Evans, D. A. 1996. A statistical approach
to automatic OCR error correction in context. In Fourth
Workshop on Very Large Corpora.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L. u.; and Polosukhin, I. 2017.
Attention is All you Need. In Guyon, I.; Luxburg, U. V.;
Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; and
Garnett, R., eds., Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc.
Wu, Y.; Schuster, M.; Chen, Z.; Le, Q. V.; Norouzi, M.;
Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.;
Klingner, J.; Shah, A.; Johnson, M.; Liu, X.; Łukasz Kaiser;
Gouws, S.; Kato, Y.; Kudo, T.; Kazawa, H.; Stevens, K.;
Kurian, G.; Patil, N.; Wang, W.; Young, C.; Smith, J.; Riesa,
J.; Rudnick, A.; Vinyals, O.; Corrado, G.; Hughes, M.; and
Dean, J. 2016. Google’s Neural Machine Translation System:
Bridging the Gap between Human and Machine Translation.
CoRR, abs/1609.08144.

11199

