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Abstract

Enabling computers to comprehend the intent of human ac-
tions by processing language is one of the fundamental goals
of Natural Language Understanding. An emerging task in this
context is that of free-form event process typing, which aims
at understanding the overall goal of a protagonist in terms of
an action and an object, given a sequence of events. This task
was initially treated as a learning-to-rank problem by exploit-
ing the similarity between processes and action/object tex-
tual definitions. However, this approach appears to be overly
complex, binds the output types to a fixed inventory for pos-
sible word definitions and, moreover, leaves space for further
enhancements as regards performance. In this paper, we ad-
vance the field by reformulating the free-form event process
typing task as a sequence generation problem and put forward
STEPS, an end-to-end approach for producing user intent in
terms of actions and objects only, dispensing with the need
for their definitions. In addition to this, we eliminate several
dataset constraints set by previous works, while at the same
time significantly outperforming them. We release the data
and software at https://github.com/SapienzaNLP/steps.

Introduction
Event understanding is a core process of the human percep-
tual system, which, while conceiving event processes, makes
continuous predictions about what will happen next. In fact,
cognitive studies state that the perception of events is highly
correlated with the prior knowledge about the event parts
and the inference of performer’s intent and plans (Zacks
et al. 2007). In the context of Natural Language Process-
ing (NLP), the Multi-axis Event Process Typing task aims at
automatically understanding the overall goal of a performer
relying on a set of systematically connected events (Chen
et al. 2020). More formally, given a sequence of events,
i.e., partially ordered events that are centered around com-
mon protagonists (Chambers and Jurafsky 2008), event pro-
cess typing is defined as a free-form labeling task along two
axes: the type of action the event process seeks to com-
plete, and the type of object which is affected by the action
of the performer. For instance, if a performer takes the fol-
lowing steps, 1. boil the water, 2. add salt, 3. add pasta,
4. leave for 12 minutes, 5. drain the water, 6. add sauce as

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

per preference, the overall intent is that of COOKING PASTA,
where COOK is the action and PASTA is the object. While
this might be easy to deduce for humans, it is a challenging
task for machines as, for instance, the action and object types
may not appear in the event sequence. Event understanding,
and especially intent inference, can potentially benefit sev-
eral downstream applications of Natural Language Under-
standing (NLU), from commonsense reasoning to dialogue
systems. Indeed, successful NLP applications that rely on
event understanding include story comprehension for narra-
tive prediction (Chaturvedi, Peng, and Roth 2017), machine
reading comprehension for information extraction in biolog-
ical processes (Berant et al. 2014), and more recently video
segmentation (Zhukov et al. 2019; Fried et al. 2020). How-
ever, despite the wide range of NLP applications benefiting
from event processes understanding, the recent task of event
process typing is still understudied, and the currently exist-
ing approach to it (Chen et al. 2020) suffers from three main
shortcomings: i) it relies on indirect supervision from ac-
tion/object glosses1 to rank their types based on the simi-
larity with input events, thus requiring a third-party Word
Sense Disambiguation (WSD) system to assign a gloss to
each action and object, ii) it requires a fixed sense inventory
to define the possible action and object types, a binding not
in line with the free-form nature of the classes, and finally,
iii) it breaks the procedural flow of events by filtering out
different steps due to harsh dataset filtering, thus harming
their sequential nature. With the aim of overcoming these
problems, this paper makes the following contributions:
1. we reformulate the Multi-axis Event Process Typing task

as a sequence generation problem which maintains and
benefits from the free-form nature of the types;

2. we present STEPS, a sequence-to-sequence model that
accepts a sequence of events and produces the overall
human intent in terms of actions and objects only, thus
eliminating the need for their glosses;

3. we do away with various constraints set on the existing
dataset and provide an extensive study about the effect
these constraints have on the overall performance of the
models;

4. we advance the state of the art by a large margin, even
when switching in low-data and few-shot settings.
1We use the terms gloss and definition interchangeably.
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Related Work
Researchers have tried to understand events from a vari-
ety of different angles. Previous work has attempted to de-
fine several formalisms for inferring protagonists, roles, and
other attributes related to events (Baker, Fillmore, and Lowe
1998; Kipper Schuler, Korhonen, and Brown 2009; Das et al.
2014). In addition, particular interest has also been attracted
by the event understanding and prediction tasks towards i)
event completion (Chambers and Jurafsky 2008; Radinsky
and Horvitz 2013), which seeks to predict the missing events
in a sequence, ii) membership prediction (Zhang et al. 2020),
which produces the whole sequence of events, iii) salience
prediction, which determines the importance of each event
in a process, and finally, iv) intention prediction (Rashkin
et al. 2018; Chen et al. 2020), which is defined as the task
of understanding the overall goal of event processes. This
latter direction is the most closely related to how we try to
understand events in our work. In pursuing this direction,
whereas Rashkin et al. (2018) rely on a sequence genera-
tion approach to produce the most likely intents and reac-
tions of a participant, given a single-cause free-form event
description, Chen et al. (2020), instead, focus on processes
made up of multiple event descriptions. Indeed, Chen et al.
(2020) present the Multi-axis Event Process Typing task and
put forward a large dataset in the English language com-
prising of ultra fine-grained typing instances on two axes,
i.e., the action and object types, with vast label vocabular-
ies. To support the introduced task, they propose a learning-
to-rank approach, which assigns a sorted list of action and
object types to a given sequence of events. This ranking is
performed by leveraging dense representations of both the
input events and a set of action and object descriptions com-
ing from a predefined meaning inventory.2 Differently from
Chen et al. (2020), in this work, we reformulate the Multi-
axis Event Process Typing task as a sequence-to-sequence
problem, where a system, starting from the list of events
that constitute a process, has to generate a sequence of to-
kens from which we can easily extract both the predicted
action and object types. With a view to achieving this, we
propose STEPS, which, differently from the learning-to-rank
approach of Chen et al. (2020), is based on an encoder-
decoder model to autoregressively produce the required se-
quence of tokens. Compared to the sequence generation
models of Rashkin et al. (2018) instead, despite the equiva-
lence with their encoder-decoder architecture, STEPS draws
its predictions from the full English vocabulary rather than
predicting the unigrams of the type vocabulary directly.

On another line of research, increasing attention to event
understanding has been gained by downstream applica-
tions based on events. A non-exhaustive list includes, inter
alia, Tomai and Forbus (2010); Mostafazadeh et al. (2017);
Chaturvedi, Peng, and Roth (2017) for narrative prediction,
Berant et al. (2014) for machine comprehension, Zhukov
et al. (2019); Fried et al. (2020) for video segmentation. By
means of STEPS, we provide a simple general-purpose ar-
chitecture for event understanding which, besides its high

2Chen et al. (2020) use the WordNet (Miller 1995) meaning
inventory.

performances achieved in intent prediction, can also be eas-
ily integrated into the aforementioned applications and those
requiring commonsense reasoning based on chains of activ-
ities, thus potentially advancing the state of the art.

Methodology
In this Section, we first introduce the Multi-axis Event Pro-
cess Typing task formally, and then describe our sequence-
to-sequence reformulation and autoregressive approach to
solving it.

Multi-axis Event Process Typing
Given a process p̂, composed of a sequence of n events
Ep̂ = ep̂1, . . . , e

p̂
n, the Multi-axis Event Process Typing task

aims at classifying p̂ along two different axes: the type of
action involved in the process (ap̂) and the type of object
the process seeks to affect (op̂). Following the original for-
mulation by Chen et al. (2020), we treat both the action and
object types as free-form labels. Finally, leveraging this for-
malism, we can describe any system performing the Multi-
axis Event Process Typing task as a function f such that
f(Ep̂) → (ap̂, op̂).

Sequence-to-Sequence Formulation
While Chen et al. (2020) tackle the Multi-axis Event Pro-
cess Typing as a learning-to-rank problem that assigns to Ep̂

a sorted list of action and object types, we put forward a
new formulation as a sequence generation problem. In this
formulation, we require a model to generate a sequence of
tokens from which we can extract the action and object types
when it is provided with a sequence of events as input. More
formally, the model is fed a sequence of events m defined
as:

m = <e1>, t1
ep̂1
, . . . , ti

ep̂1
, . . . tk

ep̂1
, </e1>,

. . . ,

<eh>, t1
ep̂h
, . . . , tj

ep̂h
, . . . tl

ep̂h
, </eh>,

. . . ,

<en>, t1
ep̂n
, . . . , tg

ep̂n
, . . . to

ep̂n
, </en>.

where tj
ep̂h

represents the j-th token of the hth event of the

process p̂ and the special tokens (<eh>,</eh>) are the
delimiters for the tokens of the h-th event. Next, a model is
required to produce any target sequence ŝ, from which one
can extract the action and object types without supervision.
For instance, a valid output sequence to predict the action
type COOK and the object type PASTA can be: “how to <a>
cook </a> <o> pasta </o>”, since the sequence contains
the action and the object types and both can be extracted by
leveraging the special markers [<a>, </a>, <o>, </o>].

With this formulation, we can train any sequence-to-
sequence model to learn the factorized probability:

p(ŝ|m) =

|ŝ|∏
j=2

p(ŝj |ŝ1:j−1,m) (1)
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by minimizing the cross-entropy loss with respect to ŝ.
Posing Multi-axis Event Process Typing as a sequence-to-

sequence task brings several advantages:

• The models do not depend on any external inventory for
the action and object types, a counter-intuitive binding
when considering free-form labels.

• There is no need to store possibly large dense represen-
tations for all the entities in the inventory as is necessary
in Chen et al. (2020).

• The models benefit more from comparable pretrained
language models – as we will show later in this paper
– than when using a ranking objective.

Experimental Setup
In this Section we detail the experimental setting in which
we train and evaluate our approach for Multi-axis Event Pro-
cess Typing. In addition, we also describe the dataset we
used, the sequence-to-sequence model we proposed along-
side its training hyperparameters, and finally, our main com-
parison systems along with several STEPS variants.

Dataset
To support the Multi-axis Event Process Typing task, Chen
et al. (2020) constructed an automatic dataset by scraping
the how-to guides from wikiHow.3 Each page in wikiHow
corresponds to a complete guide divided into multiple steps
on how to do something (e.g., the page “How to Cook Pasta”
discusses the steps required to prepare pasta). Thus, to create
a dataset instance, they used the guide steps as the sequence
of events and leverage a Semantic Role Labeling (SRL) sys-
tem to extract the principal action and object types from the
title of the wikiHow article. Following this approach, the au-
thors collected 62,277 different event processes with 1,336
action types and 10,441 object types. Interestingly, most of
the dataset is composed of action and object types as few-
shot cases. Indeed, 68.3% of action types and 88.2% of ob-
ject types occur fewer than 10 times across all the processes.
Moreover, Chen et al. (2020) applied several heuristics to
filter out both single events and entire processes to refine
the whole dataset.4 In order to assess the capabilities of our
model to handle noisy data and extract meaningful informa-
tion from them, we also train and evaluate STEPS on the
raw wikiHow data where no processing steps have been ap-
plied. This results in a larger dataset of 108,027 instances
with longer processes, i.e., containing more steps.5 Finally,
the only modification that we apply to the dataset is in the
output sequences that we wish to predict. Indeed, following
our formulation, we have to produce a sequence containing
both the action and the object types from which they can
be extracted. To this end, our output sequence follows the
title format of the wikiHow guides (e.g., the page “How to

3https://www.wikihow.com
4We want to highlight that Chen et al. (2020) do not present

trials with the raw dataset; therefore, it is unclear whether the pre-
processing performed was essential.

5There are on average 2 steps in the preprocessed dataset and 5
steps in the raw one.

Cook Pasta”), with the addition of the special characters to
highlight the action and object types (e.g., ”How to <a>
Cook </a><o> Pasta </o>”), using the extracted types by
Chen et al. (2020). Finally, following Chen et al. (2020), we
train all the models on a split containing 80% of the whole
dataset, and use as validation and test sets two equally sized
partitions which include the remainder of the data.

STEPS Model
STEPS builds on top of BART (Lewis et al. 2020), a
sequence-to-sequence architecture pretrained with denois-
ing objectives. In fact, BART has been trained on a large
amount of English text, composed of corpora with vary-
ing sizes and domains, containing books, stories, news, Web
content, and Wikipedia articles. This provides a wealth of
information that could be helpful in our case due to the nu-
merous few-shot types in the dataset. We analyze our train-
ing strategies when fine-tuning both BART Base (139M pa-
rameters) and Large (406M parameters).6 We train STEPS
with Adagrad (John, Elad, and Yoram 2011) for a maximum
of 300,000 steps with a learning rate of 2×10−5, batches of
800 tokens and a gradient accumulation of 10 steps. Finally,
we evaluate STEPS performances every 2,000 updates, and
we interrupt the training if no improvements are observed in
the validation set for 3 consecutive evaluations. At predic-
tion time we use beam decoding with a beam size of 5. The
experiments are carried out using an Nvidia GeForce RTX
2080ti.

Comparison Systems
In order to assess the capabilities of our sequence-to-
sequence formulation, we compare STEPS models against
several systems. We consider in our comparison:
• S2L: the sequence-to-label generators (Rashkin et al.

2018) initialized with different encoders, introduced as
baselines in Chen et al. (2020). S2L models are architec-
turally equivalent to encoder-decoder networks, but they
are trained to directly predict unigrams of the types vo-
cabulary. We compare with three different encoder ini-
tializations using: RoBERTa (S2L-RoBERTa), a BiGRU
RNN (S2L-BiGRU), and a mean-pooling encoder (S2L-
mean-pool).

• P2GT: the best-performing systems under the Process
Typing with Gloss Knowledge (P2GT) framework pro-
posed in Chen et al. (2020). We include in the evalu-
ation both the systems trained on the glosses assigned
via the Most Frequent Sense (MFS) and the glosses pre-
dicted by the external WSD model they use. Further-
more, we report the performances of their systems both
when the action types and the object types are learned
jointly and separately. We compare with a total of four
different models: Single P2GT-MFS (Single training +
MFS), Single P2GT-WSD (Single training + Dedicated
WSD system), Joint P2GT-MFS (Joint training of actions
and objects + MFS), and Joint P2GT-WSD (Joint training
of actions and objects + Dedicated WSD system).
6We use the pretrained weights of both models made available

by the Transformers library (Wolf et al. 2020)
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Action Typing Object Typing

Model MRR recall@1 recall@10 MRR recall@1 recall@10
S

2L
S2L-mean-pool 3.72 1.96 5.95 1.01 0.80 1.66
S2L-BiGRU 7.94 4.40 12.71 4.20 2.72 6.19
S2L-RoBERTa 8.36 5.31 14.69 4.88 3.24 8.10

P
2G

T

Single P2GT-MFS 24.10 19.67 32.40 13.71 8.86 23.09
Single P2GT-WSD 25.83 19.93 37.50 14.19 9.32 24.84
Joint P2GT-MFS 28.57 20.63 43.14 15.26 10.62 25.01
Joint P2GT-WSD 29.11 21.21 42.84 15.70 11.07 25.51

S
T

E
P

S
B

B

Original glosses 40.54 31.27 59.87 18.73 13.42 29.15
ESC glosses 41.03 31.92 64.02 20.57 15.23 30.09
No glosses 39.73 30.68 60.56 20.19 15.11 30.11
Raw data and ESC glosses 49.39 38.22 72.16 32.58 24.24 49.86
Raw data without glosses 50.49 39.43 72.87 33.01 24.41 49.93

S
T

E
P

S
B

L

Original glosses 40.76 31.54 61.05 19.89 14.29 31.23
ESC glosses 42.09 33.04 61.91 19.74 14.18 31.33
No glosses 41.22 31.97 62.27 21.11 15.51 31.42
Raw data and ESC glosses 50.17 38.92 73.08 33.14 25.12 53.86
Raw data without glosses 51.55 40.38 74.34 35.84 26.28 54.14

Table 1: Results in the test set in terms of MRR, recall@1, and recall@10. S2L denotes the sequence-to-label models of Rashkin
et al. (2018), P2GT denotes the models of Chen et al. (2020), STEPSBB and STEPSBL denote our system based on BART Base
and BART Large, respectively. We report the performance of S2L and P2GT as calculated by Chen et al. (2020). The best
scores per row block are underlined while the best across the board are shown in bold.

• STEPS: the various models trained with our sequence-
to-sequence formulation obtained by varying: i) the un-
derlying Transformer architecture, namely BART Base
(STEPSBB) and BART Large (STEPSBL); ii) the training
data, i.e., the raw (Raw data) or the preprocessed data by
Chen et al. (2020); and finally, iii) whether the models are
required to produce the action/object definitions or only
the types. In fact, the usage of glosses is crucial for Chen
et al. (2020), therefore here we analyze whether STEPS
might also benefit from this extra information.7 To this
end, we train STEPS to produce the glosses used by Chen
et al. (2020) (Original glosses), those obtained by apply-
ing ESCHER (Barba, Pasini, and Navigli 2021), i.e., the
state-of-the-art model in WSD at the moment of writing
(ESC glosses), and no glosses at all (No glosses).

As regards the evaluation metrics, we follow Chen et al.
(2020) and use three ranking measures: Mean reciprocal
rank (MRR), Recall at 1 (recall@1), and Recall at 10 (re-
call@10). Even with our sequence-to-sequence formulation,
we can easily provide a ranking of the action and the ob-
ject types by producing the top-k most likely sequences for
Equation 1.

7In order to enable the model to produce the definitions, we
just append them in the output sequence along with their respective
action or object type.

Results
In Table 1, we report the performance of all the aforelisted
systems. First, all the sequence-to-label models (S2L row
block) severely underperform in the task when compared to
the other two formulations. This result is, potentially, due to
the ultra-fine-grained classes that, combined with the dataset
distribution, make it difficult to grasp the types by relying
solely on the training data and without any external knowl-
edge (e.g., glosses from an external sense inventory).

Secondly, we can see that all the models under the
STEPSBB row block, i.e., STEPSBB trained under different
scenarios, perform significantly better than even the best
model under the P2GT row block. This is especially inter-
esting because the Joint P2GT-WSD model and STEPSBB
are trained with the same data and glosses from Chen et al.
(2020). Moreover, their underlying pretrained models have a
comparable number of parameters (RoBERTa base 125 mil-
lion and BART Base 139 million parameters). This result
strongly supports the claim that our sequence-to-sequence
formulation benefits more from the pretrained knowledge of
underlying models and, therefore, is particularly suited for
the semantic typing of event processes.

As mentioned earlier in Section , we analyze whether
STEPS models benefit from the additional raw data prior
to the preprocessing of Chen et al. (2020). To this end,
we train the models on the dataset without discarding the
noisy events and processes (Raw data). The results show
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that our models are fully capable of extracting information
from noisy data and taking advantage of it, outperforming
their counterparts by a large margin, i.e., when trained on
the preprocessed data. This is, in fact, a characteristic of
the models that allows them to deal with and benefit from
noisy and raw text while, at the same time, eliminating the
need to rely on any filtering pipeline. Furthermore, we in-
vestigate whether extra definitional information in the tar-
get sequences is beneficial. To this end, we train STEPS to
produce not only the action and the object types, but also
their definitions, using those provided by Chen et al. (2020)
and by applying ESCHER. Interestingly enough, when us-
ing the processed dataset, producing the definitions yields
higher performances than when no glosses are included.
When training on raw data instead, the performances of the
models that leverage the glosses in their output sequences
decrease compared to the models that predict only the types.
This is possibly due to the fact that, when receiving less in-
formation in input, the glosses help in augmenting the out-
put, thus influencing the predicted types; on the other hand,
when the number of events in the input sequence is bigger
and the training instances are augmented, the burden of pro-
ducing longer sequences may negatively affect the search
space of beam decoding, thereby reducing the benefits of in-
cluding more information in the target sequences. Finally,
we repeat all the experiments by replacing BART Base with
BART Large as the underlying pretrained model. Unsur-
prisingly, STEPSBL achieves consistenly higher performance
than STEPSBB, while showing the exact same behaviors in
the different training regimes. Even if the performance gap
is relatively narrow when comparing STEPSBB and STEPSBL
under the standard setting, STEPSBL brings advantages in
more challenging training settings (see Section ).

Analysis and Discussion
Here we perform a thorough evaluation of STEPS in dif-
ferent synthetic training and testing scenarios. Our analy-
sis is mainly motivated by the few-shot nature of the dataset
within which, we recall from Section , 68.3% of action types
and 88.2% of object types occur fewer than 10 times across
all the processes. Moreover, we further enrich our analysis
by evaluating the models in settings where event sequences’
natural order and completeness are compromised. In partic-
ular, we observe the behavior of the models when:
• downsizing the training set while maintaining the origi-

nal distribution,
• subsampling the training set according to a maximum

number of instances for each action or object type, thus
changing the original distribution,

• partitioning the test set as per the actions’ frequency,
• varying the order of events per process at inference, and
• varying the number of events per process at inference.

Train Downsizing
We train the best versions of STEPSBB and STEPSBL (see Ta-
ble 1) on samples comprising 10%, 25%, 50% and 75% of
the instances drawn randomly from the original training set

Figure 1: Comparison of STEPSBB and STEPSBL on differ-
ent training splits: Action typing is more affected by train
downsizing than object typing is.

and report their MRR scores on the test set. The results are
visualized in Fig. 1. First of all, we observe two expected
behaviours: i) more data bring higher performance for both
STEPSBB and STEPSBL, with a steeper slope on average up
to the first 50% of the dataset and a smoother one for the re-
maining 50%, and ii) STEPSBL consistently achieves higher
performance than STEPSBB, with a larger gap in the smaller
training splits. Interestingly, action typing is more affected
by the train downsizing than object typing is. This may re-
sult from the fact that the distribution of action types in the
dataset is very skewed towards the most frequent ones, and
hence, downsizing the training dataset leads to sampling an
even lower number of the rare types.

Few-shot Learning
In this Section we perform several experiments mimicking
few-shot training conditions, as well as evaluating STEPS
variants on the test set partitions comprising challenging ex-
amples. First of all, we evaluate STEPS when trained on a
maximum number of instances (k) for each action or object,
separately. The results when varying k in a range 1-10 are
shown in Fig. 2. Firstly, it is worth considering that sam-
pling based on action frequency yields significantly smaller
subsamples due to the remarkably diverse vocabulary sizes
for action and object types.8 Indeed, this is one of the main
reasons behind the low results of the models when applying
few-shot sampling on the action types, which: i) for each k,
yields a MRR score that is, on average, 22 points lower in
action typing and 5 points lower in object typing than when
training on the whole training set, and ii) affects both ac-
tion and object typing performances more than the few-shot
setting according to object types. In fact, the few-shot on ob-

8The size of the training set sampled according to the action
types frequency sampling for each k is only 13-18% of the training
set sampled based on the object frequency for the same k.
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Figure 2: STEPSBL performance on action (upper) and ob-
ject (lower) typing when trained on the few-shot setting on
actions and objects separately: Changing the distribution of
the training data significantly harms the performance.

ject types training affects the action and object typing perfor-
mance by no more than 2 and 3 MRR points, respectively.
The remarkable difference between the action typing perfor-
mance in both settings, despite the training set size dispar-
ity, suggests that even when decreasing per-object examples
in the dataset, the frequency of action types remains large
enough to avoid a large drop in performances. On the other
hand, it may seem surprising that, when considering the ac-
tion predictions and varying the number of instances per ac-
tion type, we have almost a constant score ∀k ∈ [1, 10].
Probably, this is due to the more skewed distribution towards
the most frequent types when considering actions. Indeed,
the top 100 frequent actions constitute roughly 80% of the
total instances in the dataset. This makes the subsampled
datasets particularly out of distribution with respect to the
test set, thus explaining the low performances regardless of
the increase in the dataset size when varying k.

In addition to training set sampling, we also construct
synthetic test sets on which we evaluate STEPS. Follow-
ing Chen et al. (2020), we split the test set according to
action type frequency and compare results by P2GT with
STEPSBB and STEPSBL for the top 100 frequent types, one-
shot types and others. These results are shown in Fig. 3.
Firstly, both STEPSBB and STEPSBL achieve better perfor-
mance than P2GT in all the splits. While our system eas-
ily surpasses the P2GT baseline on the most frequent types,
the superior performance in the less frequent types suggests

Figure 3: Comparison of STEPS models and P2GT on ac-
tion typing on different test splits: Both STEPS models out-
perform P2GT, yet have the similar behaviour across splits.

Figure 4: STEPS models behavior when changing the order
of the events: Event reordering does not significantly affect
the action and object typing performances.

that our sequence-to-sequence formulation allows a system
to benefit more from pretrained language models – of com-
parable sizes – leading to a better generalization. Interest-
ingly, except for the top−100 split, STEPSBB outperforms
STEPSBL in the one-shot and other settings. This indicates
that larger models may be liable to overfit more on the most
common labels during training.

Compromising Event Processes
Here we analyze the effect of compromising the events at
inference time by i) changing events’ order, and ii) removing
the events from the process sequence. In Fig. 4 we report
the action and object typing performances of STEPSBB and
STEPSBL on the test set when we shuffle or invert the event
steps, along with the performances on the non-compromised
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Figure 5: STEPS models behavior when removing events
from the sequence: Event removal significantly affects ac-
tion and typing performances.

Figure 6: Comparison of STEPS models and P2GT on test
splits according to process length: All systems perform bet-
ter on longer process and STEPSBL trained on Raw data
achieves the highest performances.

test set (Natural). Surprisingly, the performance gap between
the natural ordered processes and the compromised ones is
not significant, even though inverting the steps appears to
be more harmful. This result is probably because the task is
about inferring the overall goal instead of predicting what
happens next, in which case order might be more influential.
For instance, considering our running example composed of
the following steps, 1. boil the water 2. add salt 3. add pasta
. . . 6. add sauce as per preference, a human might infer that
the intent is that of COOKING PASTA even if one adds the
pasta before adding the salt. We believe that further research
in this direction might be interesting for future works.

Furthermore, we analyze how completely removing some
of the steps from the event sequence affects the performance.
This evaluation is particularly interesting as it is similar to
the phenomenon that occurs during the preprocessing of the
dataset by Chen et al. (2020) which, we recall from Sec-
tion , decreases the average length of processes from 5 (raw

dataset) to 2 events. For this test we use the test split from the
raw dataset (Natural), the preprocessed dataset of Chen et al.
(2020) (Preprocessed) and a synthetically constructed test
set in which we filter out steps following a similar distribu-
tion to those of the preprocessed dataset.9 In Fig. 5 we show
the performances of STEPSBB and STEPSBL in these settings.
As we can see, filtering out steps drastically undermines the
performance. Interestingly, removing steps randomly attains
a higher performance than that achieved in the preprocessed
dataset by Chen et al. (2020). This suggests that the heuris-
tics used by the latter are harmful, as they not only remove
more than half of the steps in an event sequence, but also it
is likely that the removed steps are essential for the event un-
derstanding task. Therefore, removing steps from processes
degrades the performance as: i) it provides less information
in the input and thus less context to learn from, and ii) it
breaks the procedural flow of processes.

Finally, continuing on from the previous analysis, we ob-
serve the effect of processes length on the performance. Fol-
lowing Chen et al. (2020), we compare the action typing
performance of STEPS and P2GT in the splits of the test
set comprised of the processes that contain at least or higher
than 5 events. The results are shown in Fig. 6. As expected,
the performance on longer processes is higher than that on
shorter processes for all the models, with STEPSBL model
trained on Raw data performing best across the board.

Conclusion
In this work we presented a novel formulation for the Multi-
axis Event Process Typing task as a sequence generation
problem and put forward STEPS, a sequence-to-sequence
approach that achieves state-of-the-art performances under
different settings and scenarios. Not only does STEPS out-
perform its competitors on the evaluation suite made avail-
able by Chen et al. (2020), but we also demonstrated that
it successfully handles the raw version of the dataset, be-
ing able to extract the core information and improving the
performances by more than 10 points in terms of MRR for
both action and object typing. Furthermore, the experiments
highlight that the models’ performances are affected more
by limiting the number of instances per type than by down-
sizing the training set following the original distribution.
Moreover, we found that the ordering of the events in a pro-
cess does not represent an indispensable item of information
for the models, which are fully capable of correctly predict-
ing both the object and the action types even when the se-
quence of events is shuffled. To the contrary, the models are
sensitive to missing information when tested on a randomly
pruned version of the dataset, with a drop of more than 13
MRR points on action and object typing. As future work,
we would like to first improve the applicability of the task
by extracting object and action types from raw text instead
of from ordered event sequences. Then, we would like to an-
alyze the boost in performances from the perspective of the
downstream tasks, rather than from just the ranking scores.
We release STEPS at https://github.com/SapienzaNLP/steps.

9We sample the fraction of events to drop from a Gaussian dis-
tribution with mean 0.6 and variance 1.
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