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Abstract

Current state-of-the-art cross-lingual summarization models
employ multi-task learning paradigm, which works on a
shared vocabulary module and relies on the self-attention
mechanism to attend among tokens in two languages. How-
ever, correlation learned by self-attention is often loose and
implicit, inefficient in capturing crucial cross-lingual repre-
sentations between languages. The matter worsens when per-
forming on languages with separate morphological or struc-
tural features, making the cross-lingual alignment more chal-
lenging, resulting in the performance drop. To overcome this
problem, we propose a novel Knowledge-Distillation-based
framework for Cross-Lingual Summarization, seeking to ex-
plicitly construct cross-lingual correlation by distilling the
knowledge of the monolingual summarization teacher into
the cross-lingual summarization student. Since the represen-
tations of the teacher and the student lie on two different vec-
tor spaces, we further propose a Knowledge Distillation loss
using Sinkhorn Divergence, an Optimal-Transport distance,
to estimate the discrepancy between those teacher and stu-
dent representations. Due to the intuitively geometric nature
of Sinkhorn Divergence, the student model can productively
learn to align its produced cross-lingual hidden states with
monolingual hidden states, hence leading to a strong correla-
tion between distant languages. Experiments on cross-lingual
summarization datasets in pairs of distant languages demon-
strate that our method outperforms state-of-the-art models
under both high and low-resourced settings.

Introduction
Cross-Lingual Summarization (CLS) is the task of con-
densing a document of one language into its shorter form
in the target language. Most of contemporary works can
be classified into two categories, i.e. low-resourced and
high-resourced CLS approaches. In high-resourced scenar-
ios, models are provided with an enormous number of doc-
ument /summary pairs on which they can be trained (Zhu
et al. 2019; Cao, Liu, and Wan 2020; Zhu et al. 2020). On
the other hand, in low-resourced settings, those documen-
t/summary pairs are scarce, which restrains the amount of
information that a model can learn. While high-resourced
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settings are preferred, in reality it is difficult to attain a suffi-
cient amount of data, especially for less prevalent languages.

Most previous works resolving the issue of little train-
ing data concentrate on multi-task learning framework by
utilizing the relationship of Cross-Lingual Summarization
(CLS) with Monolingual Summarization (MLS) or Neural
Machine Translation (NMT). Their approach can be further
divided into two groups. The first group equips their mod-
ule with two independent decoders, one of them targets the
auxiliary task (MLS or NMT). Nevertheless, since two de-
coders do not share their parameters, this approach under-
mines the model’s ability to align between two tasks (Bai,
Gao, and Huang 2021), making the ancillary and the main
task less relied upon each other. Hence, the trained model
might produce output that does not match up the topic, or
miss important spans of text.

The second group decides to employ a single decoder
dealing with both CLS and MLS tasks. To this end, the
method concatenates the monolingual to cross-lingual sum-
mary and designate the model to sequentially generate
the monolingual summary, and then the cross-lingual one.
Unfortunately, notwithstanding lessening the computational
overhead during training by using solely one decoder, this
method is not efficacious in capturing the connection be-
tween two languages in the output, consequently producing
representations that do not take into account language rela-
tionships (Luo et al. 2021). In that case, the correlation of
cross-lingual representations will be tremendously impacted
by the structural and morphological similarity of those lan-
guages (Bjerva et al. 2019). As a result, in case of summa-
rizing the document from one language to another that pos-
sesses distinct morphology and structure properties, such as
from Chinese to English, the decoder might be prone to un-
derperformance, due to the dearth of language correlation
between two sets of hidden representations in the bilingual
vector space (Luo et al. 2021).

To solve the aforementioned problem, we propose a novel
Knowledge-Distillation framework for Cross-Lingual Sum-
marization task. Particularly, our framework consists of a
teacher model targetting Monolingual Summarization, and
a student for Cross-Lingual Summarization. We initiate our
procedure by finetuning the teacher model on monolin-
gual document/summary pairs. Subsequently, we continue
to distill summarization knowledge of the trained teacher
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into the student model. Because the hidden vectors of the
teacher and student lie upon two disparate monolingual and
cross-lingual spaces, respectively, we propose a Sinkhorn-
Divergence-based Knowledge Distillation loss, for the dis-
tillation process. Whereas multiple distances such as Cosine
Distance or Euclidean Distance demand two sets share the
sample size and are sensitive to outliers (Zimek, Schubert,
and Kriegel 2012), Sinkhorn divergence does not enforce
any requirement that relates to the number of samples and
is also robust to noise (Séjourné et al. 2019). Furthermore,
compared with other types of divergences such as KL diver-
gence, the computation of Sinkhorn divergence does not re-
quire two distributions to lie on the same probability space.
This is important because two languages might possess dis-
tinct features that cannot be projected one-to-one, such as
the vocabulary set. Consequently, employing divergences
different from Sinkhorn would need additional constraint to
the distillation loss. Lastly, Sinkhorn divergence is able to
capture geometric nature (Feydy et al. 2019) which has been
shown to benefit myriad cross-lingual and multilingual rep-
resentation learning settings (Huang et al. 2021). We will
empirically prove the superiority of Sinkhorn divergence in
the Experiment section.

Since the proposed module perpetuates the one-decoder
employment, our framework is able to explicitly correlate
representations from two languages, thus resolving the is-
sue of two distant languages without demanding any addi-
tional computation overhead. To evaluate the efficacy of our
framework, we proceed to conduct the experiments on myr-
iad datasets containing document /summary pairs of cou-
ples of distant languages, for example, English-to-Chinese,
English-to-Arabic, Japanese-to-English, etc. The empirical
results demonstrate that our model outperforms previous
state-of-the-art Cross-Lingual Summarization approaches.
In sum, our contributions are three-fold:

• We propose a Knowledge Distillation framework for
Cross-Lingual Summarization task, which seeks to en-
hance the summarization performance on distant lan-
guages by aligning the cross-lingual with monolin-
gual summarization, through distilling the knowledge of
monolingual teacher into cross-lingual student model.

• We propose a novel Knowledge Distillation loss using
Optimal-Transport distance, i.e. Sinkhorn Diveregence,
with a view to coping with the spatial discrepancy formed
by the hidden representations produced by teacher and
student model.

• We conducted extensive experiments in both high and
low-resourced settings on multiple Cross-Lingual Sum-
marization datasets that belong to pairs of morphologi-
cally and structurally distant languages, and found that
our method significantly outperforms other baselines in
both automatic metrics and by human evaluation.

Related Work
Neural Cross-Lingual Summarization
Due to the advent of Transformer architecture with its self-
attention mechanism, Text Generation has received ample

attention from researchers (Tuan, Shah, and Barzilay 2020;
Lyu et al. 2021; Zhang et al. 2021), especially Document
Summarization (Zhang et al. 2020; Nguyen et al. 2021).
In addition to Monolingual Summarization, Neural Cross-
Lingual Summarization has been receiving a tremendous
amount of interest, likely due to the burgeoning need in
cross-lingual information processing.

Conventional approaches designate a pipeline in two man-
ners. The first one is translate-then-summarize, which copes
with the task by initially translating the document into
the target language and then performing the summarization
(Wan, Li, and Xiao 2010; Ouyang, Song, and McKeown
2019; Wan 2011; Zhang, Zhou, and Zong 2016). The second
approach is summarize-then-translate, which firstly summa-
rizes the document and then creates its translated version
in the target language (Lim, Kang, and Lee 2004; Orǎsan
and Chiorean 2008; Wan, Li, and Xiao 2010). Nonetheless,
both of these approaches are vulnerable to error propagation
caused by undertaking multiple steps (Zhu et al. 2019).

Recent works apply a general architecture combined with
large-scale training to conduct Cross-Lingual Summariza-
tion. The main approach is to utilize the multi-task frame-
work, in which CLS task benefits from the process of
making use of other tasks such as Monolingual Summa-
rization or Machine Translation (Zhu et al. 2019). Further
approaches design ancillary mechanisms such as pointer-
generator to exploit the translation scheme in the cross-
lingual summary (Zhu et al. 2020). Other work uses a pair of
encoders and decoders to co-operate the cross-lingual align-
ment with summarization (Cao, Liu, and Wan 2020).

Optimal Transport in Natural Language
Processing

Introduced in 19th century as a method to find the optimal
solution to transport a mass from one place to another des-
tination, researchers have found its use in a wide variety of
scientific fields, such as computational fluid mechanics (Be-
namou and Brenier 2000), economics (Carlier, Oberman,
and Oudet 2015), physics (Cole et al. 2021), and notably
machine learning (Peyré, Cuturi et al. 2019; Cuturi 2013;
Courty et al. 2016; Danila et al. 2006).

Recently, beside Contrastive Learning framework
(Nguyen and Luu 2021; Pan et al. 2021a,b), Optimal
Transport has been omnivorously employed in Natural
Language Processing field, as used through Optimal
Transport distance, for instance Word Mover’s Distance
(Werner and Laber 2019), to estimate the necessary quantity
of alignment. Its application includes text classification
(Kusner et al. 2015), capturing spatial alignment in word
embedding (Alvarez-Melis and Jaakkola 2018), machine
translation (Chen et al. 2019), abstractive summarization
(Chen et al. 2019), etc. Nevertheless, the adaptation of Op-
timal Transport distance, especially Sinkhorn divergence,
for Neural Cross-Lingual Summarization task has been
attracting limited amount of research effort.
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Background
Neural Cross-Lingual Summarization
Given a document XL1 = {x1, x2, . . . , xN}, a monolin-
gual summarization model’s task is to create a summary
Y L1 = {yL1

1 , yL1
2 , . . . , yL1

M1
}, where both XL1 and Y L1 are

in language L1. On the contrary, a cross-lingual summariza-
tion model will produce a cross-lingual summary Y L2 =
{yL2

1 , yL2
2 , . . . , yL2

M2
} that is in language L2. It is worth not-

ing here that M1 < N and M2 < N .
Analogous to monolingual summarization, current state-

of-the-art cross-lingual summarization methods employ the
Transformer-based architecture. Relying mainly on self-
attention mechanism, Transformer-based architecture con-
sists of an encoder and a decoder. The bidirectional self-
attention in the encoder will extract contextualized represen-
tations of the input, which will be fed to the decoder to gen-
erate the output. Due to its generation nature, the decoder
will use unidirectional self-attention to learn the context of
previously generated tokens. During training procedure, the
whole framework is updated based upon the cross-entropy
loss as follows

LCLS = −
M2∑
t=1

logP (yL2
t |y

L2
<t , X

L1) (1)

Knowledge Distillation (KD)
Proposed by (Hinton, Vinyals, and Dean 2015), knowledge
distillation is a method to train a model, called the student,
by leveraging valuable information provided by soft targets
output by another model, called the teacher. In particular,
the framework initially trains a model on one designated
task to extract useful features. Subsequently, given a dataset
D = {(X1, Y1), (X2, Y2), . . . (X|D|, Y|D|)}, where |D| is
the size of the dataset, the teacher model will generate the
output HT

i = {hT
1 ,h

T
2 , . . . ,h

T
LT
} for each input Xi. De-

pendent on the researchers’ decision, the output might be
hidden representations or final logits. As a consequence, in
order to train the student model, the framework will use a
KD loss that discriminates the output of the student model
HS

i = {hS
1 ,h

S
2 , . . . ,h

S
LS
} given input Xi from the teacher

output HT
i . Eventually, the KD loss for input Xi will pos-

sess the form as follows

LKD = dist(HT
i , H

S
i ) (2)

where dist is a distance function to estimate the discrepancy
of teacher and student outputs.

The explicated Knowledge Distillation framework has
shown its efficiency in a tremendous number of tasks, such
as Neural Machine Translation (Tan et al. 2019; Wang et al.
2021; Li and Li 2021; Sun et al. 2020), Question Answer-
ing (Hu et al. 2018; Arora, Khapra, and Ramaswamy 2019;
Yang et al. 2020b), Image Classification (Yang et al. 2020a;
Chen, Chang, and Lee 2018; Fu et al. 2020), etc. Nonethe-
less, its application for Neural Cross-Lingual Summariza-
tion has received little interest.

Methodology
To resolve the issue of distant languages, the output repre-
sentations from two vector spaces denoting two languages
should be indistinguishable, or easily transported from one
space to another. In order to accomplish that goal, we seek
to relate the cross-lingual output of the student model to
the monolingual output of the teacher model, via utiliz-
ing Knowledge Distillation framework and Sinkhorn Diver-
gence calculation. The complete framework is illustrated in
Figure 1.

Knowledge Distillation Framework for
Cross-Lingual Summarization
We inherit the architecture of Transformer model for our
module. In particular, both the teacher and student model
uses the encoder-architecture paradigm combined with two
fundamental mechanisms. Firstly, the self-attention mecha-
nism will attempt to learn the context of the tokens by at-
tending tokens among each other in the input and output
document. Secondly, there is a cross-attention mechanism
to correlate the contextualized representations of the output
tokens to ones of the input tokens.

In our KD framework, we initiate the process by train-
ing the teacher model on monolingual summarization task.
In detail, given an input XL1 = {x1, x2, . . . , xN}, the
teacher model will aim to generate its monolingual summary
Y L1 = {yL1

1 , yL1
2 , . . . , yL1

M1
}. Similar to previous monolin-

gual summarization schemes, our model is trained by maxi-
mizing the likelihood of the groundtruth tokens, which takes
the cross-entropy form as follows

LMLS = −
M1∑
t=1

logP (yL1
t |y

L1
<t , X

L1) (3)

After finetuning the teacher model, we progress to
train the student model, which also employs the Trans-
former architecture. Contrary to the teacher, the student
model’s task is to generate the cross-lingual output Y L2 =
{yL2

1 , yL2
2 , . . . , yL2

M2
} in language L2, given the input docu-

ment XL1 in language L1. We update the parameters of the
student model by minimizing the objective function that is
formulated as follows

LCLS = −
M2∑
t=1

logP (yL2
t |y

L2
<t , X

L1) (4)

With a view to pulling the cross-lingual and monolingual
representations nearer, we implement a KD loss to penal-
ize the large distance of two vector spaces. Particularly, let
HT = {hT

1 ,h
T
2 , . . . ,h

T
LT
} denote the contextualized rep-

resentations produced by the decoder of the teacher model,
and HS = {hS

1 ,h
S
2 , . . . ,h

S
LS
} denote the representations

from the decoder of the student model, we define our KD
loss as follows

LKD = dist(HT , HS) (5)

where dist is the Optimal-Transport distance to evaluate
the difference of two representations, which we will delin-
eate in the following section.
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Figure 1: Diagram of Knowledge Distillation Framework for Cross-Lingual Summarization

Sinkhorn Divergence for Knowledge Distillation
Loss
Due to the dilemma that the hidden representations of the
teacher and student model stay upon two disparate vector
spaces (as they represent two different languages), we will
consider the distance of the two spaces as the distance of
two probability measures. To elaborate, we choose to adapt
Sinkhorn divergence, a variant of Optimal Transport dis-
tance, to calculate the aforementioned spatial discrepancy.
Let HT , HS denote the representations of the teacher de-
coder and the student decoder, we encode the sample mea-
sures of them

α =

LT∑
i=1

αiδhT
i
, β =

LS∑
j=1

βjδhS
j

(6)

where α and β are probability distributions that satisfy∑LT

i=1 αi = 1 and
∑LS

j=1 βj = 1.
Inspired by (Feydy et al. 2019), we estimate the difference

of the representations through determining the Sinkhorn di-
vergence between them

dist(HT , HS) = OT(α, β)− 1

2
OT(α, α)− 1

2
OT(β, β) (7)

where

OT(α, β) =
N∑
i=1

αifi +
M∑
j=1

βjgj (8)

in which fi, gj are estimated by Sinkhorn loop. We thor-
ougly delineate the loop in Algorithm 1.

Training Objective
We amalgamate the Cross-Lingual Summarization and
Knowledge Distillation objective to obtain the ultimate ob-
jective function. Mathematically, for each input, our training

Algorithm 1: Sinkhorn loop

Input: Probability distributions α, β, regularization hyper-
parameter ε, number of iterations NI , log-sum-entropy
function LSEN

k=1(zk) = log
∑N

k=1 exp (zk), distance
function C(x,y) = ||x− y||2

1: for i = 1 to NI do
2: Compute fi = ε · LSELS

k=1[log(βk) + 1
εgk −

1
εC(h

T
i ,h

S
k )]

3: Compute gj = ε · LSELT

k=1[log(αk) + 1
εfk −

1
εC(h

T
k ,h

S
j )]

4: end for

loss is computed as follows

L = LCLS + λ · LKD (9)
where λ is the hyperparameter that controls the influence of
the cross-lingual alignment of two vector spaces.

Experiments
Datasets
We evaluate the effectiveness of our methods on En2Zh and
Zh2En datasets processed by (Bai, Gao, and Huang 2021).
We also inherit their minimum, medium, and maximum set-
tings in order to verify the effectiveness of our method un-
der limited-resourced settings. The sample size under each
setting is depicted in Table 2. Furthermore, to further evalu-
ate the performance of our method in various languages, we
also preprocess datasets of Wikilingua (Ladhak et al. 2020)
in the manner that every sample is converted to a triple of
document, MLS summary, and CLS summary. We choose 4
variants of Wikilingua to proceed our evaluation, i.e. English
to Arabic (En2Ar), English to Japanese (En2Ja), Japanese
to English (Ja2En), and English to Vietnamese (En2Vi). It

11106



should be noted here that (En, Ja), (En, Ar), (En, Zh), and
(En, Vi) are all couples of languages that are distant in terms
of structure or morphology. The statistics of the datasets is
demonstrated in Table 1.

Dataset lInput lCLS lMLS
Zh2En 105 19 19
En2Zh 912 97 69
En2Ar 1589 227 133
En2Ja 1463 212 133
Ja2En 2103 133 212
En2Vi 1657 175 135

Table 1: Statistics of Cross-Lingual Summarization datasets.

Scenarios Minimum Medium Maximum Full-dataset
Zh2En 5,000 25,000 50,000 1,693,713
En2Zh 1,500 7,500 15,000 364,687

Table 2: Dataset sizes of multiple low-resource scenarios for
CLS datasets.

Implementation Details
We initialize the encoder with multilingual BERT (Devlin
et al. 2018), whereas the decoder with Xavier intialization
(Glorot and Bengio 2010). The dimensions of our encoder
and decoder hidden states are both 768. We use two seperate
Adam optimizers for encoder and decoder, and the learn-
ing rate for encoder and decoder is 0.002 and 0.2, respec-
tively. The model is trained with the warmup phase of 25000
steps. We train the model on one Nvidia GeForce A100 GPU
that accumulates gradient every 5 steps. Moreover, we ap-
ply Dropout probability of 0.1 to all fully-connected layers
in the model. The teacher and student model shares the ar-
chitecture and scale of parameters in our Knowledge Distil-
lation framework. To estimate the Sinkhorn divergence, we
employ the entropic regularization rate ε of 0.0025 and the
iteration lengthNI of 14. The weight λ of KD Loss in Equa-
tion 9 is set to 1.

Baselines
We compare our proposed architecture against the following
baselines:

• NCLS (Zhu et al. 2019): a Transformer-based model to
conduct CLS.

• NCLS + MS (Zhu et al. 2019): a multi-task framework
that leverages an auxiliary MS decoder to enhance cross-
lingual summarization performance.

• TLTran (Bai, Gao, and Huang 2021): a CLS pipeline
that firstly performs MLS and then utilizes a finetuned
NMT model to translate the monolingual summary into
the target language.

• MCLAS (Bai, Gao, and Huang 2021): a multi-task
framework that sequentially performs MLS, and CLS
which is based upon the MLS result.

Automatic Evaluation

Full-dataset Scenario The experimental results under the
full-dataset scenario are given in Table 3, 4, 5, 6, 7, and 8.

For Zh2En dataset, our method outperforms MCLAS
model by ROUGE-1 of 1.3 points, ROUGE-2 of 4.0 points,
ROUGE-3 of 0.4 point, and ROUGE-L of 1.2 points. Our
model also improves the performance of NCLS model for
dataset En2Zh, with 0.6 point in ROUGE-1, 1.5 points
in ROUGE-2, 0.1 point in ROUGE-3, and 0.8 point in
ROUGE-L. For Arabic language, our model achieves the
enhancement compared against NCLS model by 0.1 in
ROUGE-1 score, 2.9 in ROUGE-2 score, 1.6 in ROUGE-
3 score, and 5.1 in ROUGE-L score. In En2Ja dataset, we
outperformed previous best method MCLAS by 0.6 point in
ROUGE-1, 0.2 point in ROUGE-2, 0.2 point in ROUGE-3,
and 0.5 point in ROUGE-L.

Additionally, for the reverse dataset Ja2En, our method
significantly achieves higher performance with the improve-
ment of 1.0 point of ROUGE-1, 0.5 point of ROUGE-2, 0.4
point of ROUGE-3, and 0.4 point of ROUGE-L, compared
with MCLAS model. Those results substantiate our hypoth-
esis that our framework is able to enhance the capability of
apprehending and summarizing a document into a summary
of another distant language, since English alphabet does not
have any character in common with Japanese, Arabic, and
Chinese counterparts.

For En2Vi dataset, our method also obtains notable im-
provement over other state-of-the-art methods. As shown in
Table 8, our model outperforms MCLAS model by 0.1 in
ROUGE-1, 2.9 in ROUGE-2, 1.6 in ROUGE-3, and 5.1 in
ROUGE-L. This demonstrates that our method is also ca-
pable of buttressing the model capacity in situations where
two languages are slightly morphologically or structurally
similar, since Vietnamese and English do share a number of
characters in their alphabets.

Model R1 R2 R3 RL
TLTran 33.64 15.58 12.02 29.74
NCLS 35.60 16.78 12.57 30.27

NCLS+MS 34.84 16.05 12.28 29.47
MCLAS 35.65 16.97 12.78 31.14

Our Model 36.93 20.99 13.20 32.33

Table 3: Full-dataset Cross-Lingual Summarization results
in Zh2En dataset

Model R1 R2 R3 RL
TLTran 30.20 12.20 11.79 27.02
NCLS 44.16 24.28 17.13 30.23

NCLS+MS 42.68 23.51 15.62 29.24
MCLAS 42.27 24.60 16.07 30.09

Our Model 44.75 25.76 17.20 31.05

Table 4: Full-dataset Cross-Lingual Summarization results
in En2Zh dataset
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Model R1 R2 R3 RL
NCLS 36.80 17.36 10.79 27.25

NCLS+MS 35.53 17.01 10.33 26.36
MCLAS 36.28 17.27 10.81 27.56

Our Model 36.89 20.28 12.40 32.38

Table 5: Full-dataset Cross-Lingual Summarization results
in En2Ar dataset

Model R1 R2 R3 RL
NCLS 29.55 15.99 10.25 23.03

NCLS+MS 29.42 15.83 10.12 23.00
MCLAS 29.60 16.08 10.14 33.20

Our Model 30.21 16.27 10.46 23.90

Table 6: Full-dataset Cross-Lingual Summarization results
in En2Ja dataset

Model R1 R2 R3 RL
NCLS 32.78 12.66 6.33 26.43

NCLS+MS 32.50 12.02 6.15 26.41
MCLAS 33.20 12.57 6.33 27.27

Our Model 34.21 13.08 6.70 27.63

Table 7: Full-dataset Cross-Lingual Summarization results
in Ja2En dataset

Model R1 R2 R3 RL
NCLS 36.75 16.37 8.04 28.69

NCLS+MS 36.28 16.14 8.03 28.61
MCLAS 36.31 15.91 7.75 28.62

Our Model 37.38 16.20 8.09 28.97

Table 8: Full-dataset Cross-Lingual Summarization results
in En2Vi dataset

Low-resource Scenario We denote results of the experi-
ments conducted under minimum, medium, and maximum
scenarios in Table 9, 10, and 11.

For the minimum setting, our model achieves the im-
provement over previous methods. In particular, we out-
performed MCLAS model by 1.3 points of ROUGE-1, 0.5
point of ROUGE-2, 0.2 point of ROUGE-3, and 0.3 point of
ROUGE-L in Zh2En dataset. For En2Zh dataset, we obtain
an increase of 3.6 points in ROUGE-1, 0.6 point in ROUGE-
2, 0.3 point in ROUGE-3, and 1.4 points in ROUGE-L.

Under the medium setting, the performance of our method
is also higher than MCLAS model with 0.1 point in
ROUGE-1, 1.1 points in ROUGE-2, 0.5 point in ROUGE-3,
and 3.0 points in ROUGE-L. The improvement is more crit-
ical for dataset En2Zh with an increase of 3.0 in ROUGE-1,
1.9 in ROUGE-2, 0.6 in ROUGE-3, and 0.5 in ROUGE-L.

Last but not least, in maximum scenario, for dataset
Zh2En, our gains compared against MCLAS model are 0.4
point in ROUGE-1, 0.4 point in ROUGE-2, 0.5 point in
ROUGE-3, and 0.7 point in ROUGE-L. In dataset En2Zh,
our improvements are 2.9 points in ROUGE-1, 0.3 point
in ROUGE-2, 0.4 point in ROUGE-3, and 0.7 point in
ROUGE-L.

Those aforementioned results have shown that our method
is also capable of elevating the Cross-Lingual Summa-
rization performance when the available training dataset is
scarce.

Models Zh2En En2Zh
NCLS 20.93/5.88/2.47/17.58 34.14/12.45/4.38/21.20

NCLS+MS 20.50/5.45/2.22/17.25 33.96/12.38/4.36/21.07
MCLAS 21.03/6.03/2.68/18.16 32.03/13.17/4.28/21.17

Our Model 22.37/6.50/2.91/18.47 35.59/13.77/4.57/22.56

Table 9: Minimum Cross-Lingual Summarization Results

Models Zh2En En2Zh
NCLS 26.42/8.90/4.49/22.05 35.98/15.88/8.97/23.79

NCLS+MS 26.86/9.06/4.58/22.47 38.95/18.09/9.73/25.39
MCLAS 27.84/10.41/4.91/24.12 37.28/18.10/9.48/25.26

Our Model 27.97/11.51/5.37/27.16 40.30/20.01/10.05/25.79

Table 10: Medium Cross-Lingual Summarization Results

Models En2Zh Zh2En
NCLS 29.05/10.88/6.56/24.32 40.18/19.86/10.33/26.52

NCLS+MS 28.63/10.63/6.24/24.00 39.86/19.87/10.23/26.64
MCLAS 30.73/12.26/6.98/26.51 38.35/19.75/10.64/26.41

Our Model 31.08/12.70/7.45/27.16 41.24/20.01/11.00/27.06

Table 11: Maximum Cross-Lingual Summarization Results

Human Evaluation
Because automatic metrics do not completely betray the
quality of the methods, we conduct further human evalua-
tion for more precise assessment. To fulfil our objective, we
design two tests in order to elicit human judgements in two
manners.

In the first experiment, we present summaries generated
by NCLS, MCLAS, our model, and the gold summary, then
asked seven professional English speakers to indicate the
best and worst summaries in terms of informativeness, faith-
fulness, topic coherence, and fluency. We randomly sampled
50 summaries from En2Vi dataset and 50 others from Ja2En
dataset. The score of a model will be estimated as the per-
centage of times it was denoted as the best minus the per-
centage of times it was denoted as the worst.

For the second experiment, we decide to adapt Question
Answering (QA) paradigm to our framework. For each sam-
ple, we create two independent questions that underscore
the key information from the input document. Participants
would read and answer each question as best as they could.
The score of a system will be equal to the proportion of ques-
tions that the participants answer correctly.

Fleiss’ Karpa scores of our experiments are shown in Ta-
ble 12. It is obvious that the scores prove a strong inter-
agreement among the participants.

The experimental results in Table 13 indicate that our
model generates summaries that are conducive to human
judgements, and have more likelihood to preserve important
content in the original documents than summaries of other
systems.
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Test Fleiss’ Kappa Overall Agreement
Preference 0.57 64.95%

QA 0.64 82.15%

Table 12: Fleiss’ Kappa and Overall Agreement percentage
of each human evaluation test. Higher score indicates better
agreement.

Models Preference Score QA score
NCLS -0.123 51.11

MCLAS 0.169 59.26
Our Model 0.498 71.85

Gold Summary 0.642 95.52

Table 13: Human evaluation

Analysis on Distance Methods

We compare our implemented Sinkhorn Divergence with
other distance methods. Particularly, we perform the mean
or max-pooling of the teacher and student hidden represen-
tations. Subsequently, we evaluate the teacher and student
discrepancy via Cosine Similarity (CS) or Mean Squared Er-
ror (MSE) of two pooled vectors. We show the numerical
results in Table 14. The results demonstrate the superiority
of Sinkhorn Divergence over other approaches. We hypoth-
esize that those approaches do not efficaciously capture the
geometry nature of cross-lingual output representations.

Distance Methods R-1 R-2 R-3 R-L
Mean-CS 44.20 24.54 16.96 30.27
Mean-MSE 44.14 24.27 16.22 30.19
Max-CS 44.29 25.65 17.07 30.82
Max-MSE 44.23 24.61 16.44 30.21
Our Method 44.75 25.76 17.20 31.05

Table 14: Results when applying different distance methods
in En2Zh dataset under full-dataset setting.

Impact of Sinkhorn Divergence on Geometric
Distance of Cross-Lingual Representations

We propose to adapt Sinkhorn Divergence to align the cross-
lingual decoder hidden states of the student model with
monolingual decoder hidden states of the teacher model.
Nevertheless, whether this geometrically brings two sets of
representations nearer remains a quandary. To further verify
the benefit of leveraging Sinkhorn Divergence, we estimate
the distances of those hidden vectors by using other met-
rics, i.e. Cosine Similarity and Mean Squared Error. Particu-
larly, for each input, after getting the decoder to generate the
hidden vectors of the output tokens, we take the average of
those vectors and measure the distance between the mean of
the vectors generated by the CLS model (NCLS, MCLAS,
and Our Model) with the mean of the vectors created by the
MLS model. We denote the expected value and standard de-
viation of each method in Table 15. As it can be obviously
seen, employing Sinkhorn Divergence actually pulls the vec-
tors in the cross-lingual spaces towards one another.

Models Cosine Similarity Mean Squared Error
NCLS 0.165 ± 0.038 19.434 ± 7.252
MCLAS 0.064 ± 0.057 17.207 ± 4.028
Our Model 0.034 ± 0.054 13.517 ± 4.013

Table 15: Results when applying different distance methods
in Zh2En dataset under full-dataset setting.

Conclusion
In this paper, we propose a novel Knowledge Distillation
framework to tackle Neural Cross-Lingual Summarization
for morphologically or structurally distant languages. Our
framework trains a monolingual teacher model, and then
finetunes the cross-lingual student model which is distilled
knowledge from the aforementioned teacher. Since the hid-
den representations of the teacher and student model lie
upon two different lingual spaces, we continually proposed
to adapt Sinkhorn Divergence to efficiently estimate the
cross-lingual discrepancy. Extensive experiments show that
our method significantly outperforms other approaches un-
der both low-resourced and full-dataset settings.
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