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Abstract

As the labeling cost for different modules in task-oriented
dialog (ToD) systems is high, a major challenge is to learn
different tasks with the least amount of labeled data. Re-
cently, pre-trained language models (PLMs) have shown
promising results for few-shot learning in ToD. To better uti-
lize the power of PLMs, this paper proposes Comprehen-
sive Instruction (CINS) that exploits PLMs with extra task-
specific instructions. We design a schema (definition, con-
straint, prompt) of instructions and their customized realiza-
tions for three important downstream tasks in ToD, ie. in-
tent classification, dialog state tracking, and natural language
generation. A sequence-to-sequence model (T5) is adopted to
solve these three tasks in a unified framework. Extensive ex-
periments are conducted on these ToD tasks in realistic few-
shot learning scenarios with small validation data. Empirical
results demonstrate that the proposed CINS approach consis-
tently improves techniques that finetune PLMs with raw input
or short prompt.

1 Introduction

Large-scale pre-trained language models (PLMs), such as
BERT (Devlin et al. 2019), UniLM (Dong et al. 2019), GPT-
2 (Radford et al. 2019), T5 (Raffel et al. 2020) and GPT-3
(Brown et al. 2020), have shown tremendous success in var-
ious NLP applications, especially in few-shot or zero-shot
learning scenarios. In task-oriented dialog (ToD) systems,
the labeling cost is very high such that the size of well-
labeled data is often small. Therefore, few-shot learning in
ToD is especially important and valuable in many practical
applications.

Many attempts have been proposed to leverage PLMs
to improve few-shot learning in ToD. For example, Chen,
Zhuo, and Wang (2019); Chao and Lane (2019); Kale and
Rastogi (2020b) directly finetune a PLM on downstream
ToD tasks. However, the general objectives and tasks during
the model pre-training phase are often very different from
the formulation of specific downstream ToD tasks. To bridge
this gap, Kale and Rastogi (2020a); Lin et al. (2021) pro-
pose to slightly transform the input of downstream ToD tasks
to better-matched tasks that PLMs have seen during pre-
training. Such perspective is similar to a recent line of meth-
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ods, called Prompting or Prompt Engineering (Schick and

Schiitze 2021a,b; Gao, Fisch, and Chen 2021; Schick and

Schiitze 2020; Liu et al. 2021b), to better exploit the capa-

bilities of PLMs.

In Prompting, the input is modified using a “template” to
form a “prompt” to feed to a PLM. By defining new tem-
plates, it unifies the task, objective, and formulation between
downstream tasks and pre-training, and Prompting shows
strong performance in several few-shot or even zero-shot
learning scenarios. However, one limitation of Prompting is
that the “prompts” are often short and concise (Schick and
Schiitze 2021b; Gao, Fisch, and Chen 2021). We conjecture
that the massive amount of information stored in large PLMs
might not be adequately exploited with short prompts only.
Therefore, we are going to study: can extra instructions fur-
ther improves short prompts to exploit the few-shot capabil-
ity of PLMs for ToD?

To this end, we propose “Comprehensive Instruction
(CINs)”. Besides a short and concise prompt, we addition-
ally include task-specific Definition and Constraint. Task
Definition provides a high-level natural language defini-
tion and nature of the task itself. Tausk Constraint addition-
ally gives fine-grained task-specific constraint w.r.t output
space (e.g. candidate labels, label descriptions, etc.) gener-
ated by the PLM. We formulated the overall schema and
task-specific realization of CINS for three downstream tasks
(intent classification, dialog state tracking, and natural lan-
guage generation) in ToD. Furthermore, we adopt a Seq2Seq
PLM (T5) as a unified framework to solve these three tasks.
In our experiments, we adopt a “realistic few-shot learning”
setting that only uses small validation data with the same
size as the few-shot training data. We contend that this is a
more reasonable few-shot setting compared to existing few-
shot ToD studies (Mi et al. 2019; Peng et al. 2020b; Kale and
Rastogi 2020a; Lin et al. 2021) that use full-size validation
data.

The main contribution of this paper is three-fold:

* This is the first attempt to systematically study the ef-
fect of add extra task-specific instructions to better ex-
ploit pre-trained models for ToD.

* We propose “Comprehensive Instruction (CINS)” with a
unified schema and task-specific realizations for different
ToD tasks. CINS serves as a complement of Prompting to
better guide the behavior of powerful PLMs.



* We conduct extensive experiments on three ToD down-
stream tasks, including intent classification, dialog state
tracking, and natural language generation. A realistic
few-shot learning setting is adopted by only utilizing
small validation data. Empirical results demonstrate that
CINS consistently and notably improves state-of-the-art
methods (with or without Prompting) in realistic few-shot
learning scenarios.

2 Related Work
2.1 Prompting Pre-trained Language Models

PLMs have shown great success in a number of NLP appli-
cations, yet pre-training objectives are often different from
downstream tasks. To bridge this gap. Prompting or Prompt
Engineering (Liu et al. 2021b) has been recently studied. In
this paper, we focus on “discrete prompting” where inputs
are wrapped by discrete tokens. Explorations w.r.t “continu-
ous prompting” (Li and Liang 2021; Liu et al. 2021c; Lester,
Al-Rfou, and Constant 2021) or how to ensemble multiple
prompts (Schick and Schiitze 2021a,b; Jiang et al. 2020;
Qin and Eisner 2021) are beyond the focus of this paper. An
overview of related topics can be found at Liu et al. (2021b).

Discrete prompting (Schick and Schiitze 2021a,b; Tam
et al. 2021; Gao, Fisch, and Chen 2021; Schick and Schiitze
2020; Liu et al. 2021a; Hu et al. 2021) transforms the input
to a discrete textual string as a “prompt” to feed to a PLM.
For classification tasks, a verbalizer is often used to map
the PLM’s output to task labels. The verbalizer can also be
learned for classification tasks (Gao, Fisch, and Chen 2021;
Hu et al. 2021). By defining templates with human intelli-
gence, the few-shot or even zero-shot power of PLMs can
be better exploited. As “prompts” are often short and con-
cise, Mishra et al. (2021) proposed to encode extra task-
specific instructions to generalize to new tasks. Our paper
is motivated by such idea, while our focus is to study more
fine-grained formulations for ToD tasks in realistic few-shot
learning settings.

2.2 Pre-trained Language Models for ToD

Several large-scale PLMs have been applied to ToD. GPT-
2 is applied by Budzianowski and Vulic (2019); Mi et al.
(2020) to train a response generation model. Ham et al.
(2020); Hosseini-Asl et al. (2020); Peng et al. (2020a) pro-
posed to train GPT-2 on different sub-tasks (dialog state
tracking, dialog act prediction, and response generation) as
a sequence prediction problem. BERT is recently applied to
different classfication tasks of ToD by Wu et al. (2020); Cai
et al. (2021); Mi et al. (2021). T5 is also recently applied
to ToD by Lin et al. (2021) for dialog state tracking and by
Kale and Rastogi (2020a,b) for natural language generation.
As GPT-style auto-regressive models are not strong for lan-
guage understanding tasks, and BERT-style models are not
suitable for generation tasks, we adopt Seq2Seq style PLMs,
such as TS5 or BART (Lewis et al. 2019), as a unified frame-
work to solve different ToD tasks.

Several studies have also confirmed that PLMs are good
few-shot learners for ToD. Peng et al. (2020a) demonstrated
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few-shot end-to-end response generation from dialog con-
texts with GPT-2. Peng et al. (2020b) validated GPT-2
for few-shot natural language generation. Wu et al. (2020)
showed the effectiveness of BERT for several few-shot clas-
sification tasks in ToD. The few-shot capability of T5 was
validated for dialog state tracking (Lin et al. 2021) as well
as natural language (Kale and Rastogi 2020a,b). The idea of
Lin et al. (2021); Kale and Rastogi (2020a) bears similar-
ity to Prompting as the input is transformed to better match
the pre-trained knowledge of PLMs, and we compared these
methods in our paper.

3 Methodology

In §3.1, we first explain the Seq2Seq (T5) model and how
it can unify three downstream tasks (intent classification, di-
alog state tracking, natural language generation) in ToD. In
§3.2, we explain the unified schema of instructions and how
to customize them for different ToD tasks.

3.1 Seq2Seq (T5) for ToD Tasks

We first provide an overview of Seq2Seq model followed by
its applications in three tasks in ToD. As recently proposed
by Lewis et al. (2019); Raffel et al. (2020), sequence-to-
sequence models unify a variety of natural language process-
ing task, including both classification and generation tasks
as:

y = Seq2Seq(x) = Dec(Enc(z)), (1)

where both x and y are token sequences. Input z first goes
through a sequence encoder followed by another sequence
decoder to produce the output y. The model is trained
used the standard maximum likelihood objective, i.e. using
teacher forcing (Williams and Zipser 1989) and a standard
cross-entropy loss. This formulation unifies different ToD
tasks, and we elaborate on them later.

There are four common tasks in the ToD pipeline: natural
language understanding (NLU), dialog state tracking (DST),
dialog management (DM), and natural language generation
(NLG). DM in practice highly depends on business logic to
determine suitable system actions. Therefore, we focus on
NLU, DST, and NLG tasks in this paper.

Intent Classification (IC) Intent classification is an essen-
tial task of NLU in ToD. It predicts the intent label of the
user’s utterance. For example, the model needs to predict
the intent of an utterance “I want to book a 5-star hotel” as
“book hotel”. For IC, the input x to TS is a user utterance
Uy, and the output y of T5 is the intent label.

Dialog State Tracking (DST) Given a dialog history, the
task of DST is to predict the value of slots predefined by an
ontology. Following Lin et al. (2021), the model predicts the
value for each (domain, slot) pair. A dialog history at turn ¢ is
a set of alternating utterances between user (U) and system
(S), denoted as Cy = {Uy, 51, ..., St—1,U; }. To predict the
value of a slot 7, the dialog history C} is concatenated with
the name of description s; of slot ¢. Then the concatenated
sequence {C}, s; } is fed to the encoder of T5 for the decoder
to generate the value v; of this slot.
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Figure 1: The unified framework of applying Comprehensive Instruction to different ToD downstream tasks. For each task in a
row, the input is concatenated with the customized instruction (definition, constraint, prompt) before feeding to a T5 model to
generate different types of output. An example instruction for NLU (intent classification) is given in the upper dashed box, and

more details for different tasks are elaborated in Table 1.

Natural Language Generation (NLG) The natural lan-
guage generation task is to produce a natural language utter-
ance for a semantic representation called dialog action pro-
duced by the system. Following Peng et al. (2020b); Kale
and Rastogi (2020b), the “Naive” canonical representation
A= Zf‘:l a;(s; = v;) is the set of actions produced by the
system, where A is the total number of actions for this turn.
Each action consists of a single intent a; representing the
semantics of the action, along with optional slot and value
pairs (s; = v;). For example,

A = [Inform(name=Rosewood), Inform(star=>5)| .

However, A is different from the plain text seen in the pre-
trained phase. To overcome the semantic limitation of A,
Kale and Rastogi (2020a) propose to first transform A to
natural language A’ using human-written templates. For ex-
ample:

A’ = The hotel is called [Rosewood]. It is [5] star.

The representation of A’ is called Template Guided Text
Generation (“T2G2”, Kale and Rastogi (2020a)), and it
achieves strong few-shot NLG performance. The Naive rep-
resentation A or T2G2 A’ is feed to the encoder of T3, and
the decoder generates a natural language utterance as a re-
sponse.

Examples of TS for IC, DST, and NLG tasks are illus-
trated in Figure 1 without looking at the middle column
(“Comprehensive Instruction”).

3.2 Comprehensive Instruction for ToD

This section first explains two existing types (Standard,
Prompt Engineering) of input to Seq2Seq. Then, we explain
how to formulate the proposed method (Comprehensive In-
struction), and how to design it for different downstream
tasks in ToD.

Standard (STD) The standard input to Seq2Seq models
is the raw set of input tokens. We explained different kinds
of standard input to TS in §3.1. For example, the raw token
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Figure 2: Formulation comparison for Standard input,
Prompt Engineering, and Comprehensive Instruction.
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sequence “I want to book a 5-star hotel” serves as the input
for intent classification to predict the label “book hotel”.

Prompt Engineering (PE) To better utilize the capabil-
ity of PLMs, PE constructs task-specific prompts around
the raw input before feeding to PLMs. For example, “‘I
want to book a 5-star hotel” What does the previous query

ask about?”. Underlined tokens in blue are human-designed

prompt tokens to help the PLM understand the task. The idea
of PE is to find a proper prompt for the task to bridge the gap
between the downstream task and the PLM’s capability. PE
shows promising results in various few-shot learning appli-
cations.

Schema of Comprehensive Instruction However,
prompts in PE are often concise. To fully exploit the ca-
pability of PLMs, we propose to construct Comprehensive
Instructions (CINS) on top of PE. The idea is to provide
extra task-specific instructions for PLMs to understand
critical abilities to solve the task. Besides the short prompts,
we propose to add task definition and task constraints as
instructions. An abstract configuration of CINS compared
to PE and STD can be visualized in Figure 2. The goal of
these two additional components are elaborated below:

* Task Definition: it provides a high-level natural language
definition of the task itself. It describes the nature of the
task, such as what types of input and output that the PLM
is dealing with.



Task Definition

| Task Constraint

| Prompt

Predict the intent of the input query. | Model needs to select the most suitable | What is the intent of the
IC Intent is the main topic or purpose | intent from: {candidate labels + label | given query?
of a query. descriptions}*.
Predict the {slot description}® re- | Select the most suitable value from: | What is / Whether the {slot
DST | quested by User. {candidate values} . If multiple values ap- | description}?
pear, select the latest one.
Verbalize the input representation / | The output should be natural and concise, | How to verbalize the input?
NLGY | Paraphrase the input sentences. and it should preserve the meaning and in- | / What is the paraphrase ut-
formation of the input. terance of the input?

Table 1: * this is the concatenation of all candidate intents with its corresponding descriptions. ® two types of descriptions for
the slot “hotel-stars” can be founded in Table 5. ¢ candidate values for categorical slots (e.g. area, type), and it is left empty
for open non-categorical slots (e.g. time, name). ¥ Two types of task definitions and prompts are used for Naive (A) and T2G2

(A") representations mentioned in Section 3.1 respectively.

» Task Constraint: it gives more fine-grained task-specific
constraint w.r.t output generated by the PLM. For exam-
ple, the candidate labels and the descriptions of each can-
didate label. Task constraints aim to compliments the task
definition to give more instructions about what the should
the PLM output. It is not independent of the task defini-
tion, and it put more emphasis on the constraints w.r.t. the
output space.

Different components of CINS are concatenated using a
[SEP] token, and each component starts with a leading iden-
tifier (“Input:”, “Definition:”, “Constraint:”, “Prompt.”).

CINS for ToD Tasks This section elaborates the realiza-
tion of Comprehensive Instruction for three ToD tasks sum-
marized in Table 1. We formulate the “prompt” using “Ques-
tion” expressions, and the advantage over ‘“Declarative” ex-
pressions will be analyzed in § 4.4. Next, we mainly explain
“task definition” and “task constraint” for different tasks.

CINS for IC For intent classification, the definition ex-
plains the task followed by the meaning of “intent”. To add
constraints w.r.t. the output space, we include candidate in-
tent labels and their corresponding descriptions in the con-
straint component. More specifically, for K candidate in-
tents in a domain, we concatenate all intent names n; with
their descriptions d; as {n; : di,...,ny : dg } to add to the
constraint.

CINS for DST For dialog state tracking, the model pre-
dicts the value of different slots requested by the user from
a dialog context. This task definition is encoded in our task
definition component. “{slot description}” follows Lin et al.
(2021) that encodes the type of a slot. In the task constraint
component, we encode the constraint of candidate values
for slots (e.g. are, type, price-range, etc.) that have cate-
gorical values (Zhang et al. 2020; Rastogi et al. 2020). For
non-categorical slots (name, time) that have open values, no
such constraint is enforced. Furthermore, a slot might be
mentioned multiple times in a dialog history, and the cor-
rect value of interest often needs to be captured in its latest
mention, and we also encode this information in the task
constraint. Lastly, for slots (e.g. has-internet, has-parking)
with “yes/no” values, we formulate the prompt question
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with “Whether”, otherwise, the prompt question starts with
“What”.

CINs for NLG For natural language generation, the task
definition is customized for two types of input represen-
tations (c.f. §3.1). For “Naive” representation, the task is
to verbalize the semantic representation to a natural lan-
guage utterance. For “T2G2” representation, paraphrasing
is a more precise definition. Exact task definitions for these
two cases are given in Table 1. In terms of the constraint,
we tell the model the output utterance should be natural and
concise, and it should also preserve the meaning and infor-
mation of the original input representation for the fidelity
concern.

4 Experiment
4.1 Few-shot Datasets

We evaluate three different ToD downstream tasks with three
different datasets respectively.

OOS For intent classification, we use a benchmark dataset
from Larson et al. (2019). Apart from the single out-of-
scope intent, it contains 150 intents in 15 domains. Each do-
main contains 15 intents with 1,500/300/450 instances for
train/validation/test, and data are balanced across different
intents. Several domains are similar to each other, and we
test on 5 representative domains (Bank, Home, Travel, Util-
ity, and Auto). For few-shot setups, we sample k instances
per intent from the training data, noted as “k-shot”.

MultiWOZ2.0 We evaluate dialog state tracking task us-
ing MultiW0Z2.0 (Budzianowski et al. 2018). It contains
8,420/1,000/1,000 dialogues for train/validation/test span-
ning over 7 domains. Following Wu et al. (2019); Lin et al.
(2021), we adopt attraction, hotel, restaurant, train, and taxi
domains for training, as the test set only contains these 5 do-
mains. In few-shot setups, we experiment with “k% Data”,
i.e. only k% of the training dialogs are used.

FewShotSGD Kale and Rastogi (2020a) is the version of
the schema-guided-dataset (Rastogi et al. 2019) for natural
language generation. The full train/validation/test sets con-
tain 160k/24k/42k utterances. In “k-shot” experiments, k di-



TS-small Average Bank Home Travel Utility Auto T5-base Average Bank Home Travel Utility Auto
STD [35.54+1.9 322 290 250 47.6 43.6 STD [56.0 £ 3.6 56.6 41.6 58.5 62.7 60.5

1-shot | PE |41.7£29 38.0 344 33.6 544 481 1-shot | PE |61.4+3.1 623 487 592 749 62.0
CINS|71.1 £ 4.4 62.6 579 804 842 70.2 CINS|79.2 £2.2 80.8 60.2 87.3 862 81.5
STD[724 +£1.7 66.2 644 745 802 76.5 STD [85.8 2.1 83.3 72.1 91.1 93.8 89.0

5-shot | PE |76.8 £2.5 71.9 658 83.0 84.1 79.5 5-shot | PE |87.0+ 1.3 86.7 722 924 948 89.0
CINS|85.6 = 1.7 824 713 945 933 86.2 CINS|91.1 £2.2 89.1 80.2 97.1 954 93.7

Full |STD| 968 93.6 96.0 98.0 984 98.0

Full |[STd| 974 947 967 98.1 987 985

Table 2: Accuracy in percentage [%] for intent classification task with T5-small (left) and T5-base (right). The “Average”
column reports the average results and the standard deviations of 5 domains.

T5-small Average Attr. Hotel Rest. Taxi Train T5-base Average Attr. Hotel Rest. Taxi Train
STD |33.6 £2.3 25.1 24.4 329 60.0 254 STD |45.5 £3.5 41.5 30.8 36.7 58.4 60.1
1% Data| PE |41.7 +£3.6 36.0 259 33.8 59.9 523 1% Data| PE [46.5 4+ 3.1 41.7 31.3 39.0 59.5 61.2
CINs [43.1 + 1.8 42.0 27.3 32.7 60.4 53.1 CINS 479 £ 2.1 45.6 33.9 40.6 59.7 60.3
STD |55.1 £2.2 543 43.0 50.2 59.0 69.1 STD |58.8 £ 1.7 59.7 445 54.1 62.8 73.2
5% Data| PE |55.7+1.6 57.0 422 51.1 59.2 68.7 5% Data| PE |57.8 +2.9 59.3 43.7 51.9 61.7 72.6
CINS|[57.0 + 1.1 569 434 513 61.8 71.3 CINS|[59.7 £ 24 61.2 46.2 539 63.3 73.8

Full |STD| 720 713 59.5 68.0 81.4 80.0

Full |STD| 728 73.6 60.5 664 819 81.8

Table 3: Joint Goal Accuracy in percentage [%] for few-shot dialog state tracking using T5-small (left) and T5-base (right). The
“Average” column reports the average results and the standard deviations of 5 domains.

alogs from each 14 training domains are sampled from the
training data. We use the same 5/10-shot training split as in
Kale and Rastogi (2020a) because they both contain utter-
ances for every dialog act and slot present in the full training
set.!

To test “realistic few-shot learning” scenarios mentioned
before, we down-sample validation data to be the same size
as the few-shot training data in all our experiments.

4.2 Experiment Settings

We tested TS-small (60M parameters, 6 encoder-decoder
layers) as well as TS5-base (110M parameters, 12 encoder-
decoder layers) using the huggingface repository.> All mod-
els are trained using AdamW (Loshchilov and Hutter, 2018)
optimizer with the initial learning rate of le-4 for DST and
NLG, and 3e-4 for IC. In all experiments, we train the mod-
els with batch size 8 for 30 epochs for IC, 20 epochs for
DST, and 50 epochs for NLG. Early stop according to the
loss on the validation set. In the testing phase, we use greedy
decoding. We use 4 NVIDIA V100 GPUs for all of our ex-
periments.

For comparison, we consider two baselines, STD and
PE. For prompting based method, both PE and CINS, six
prompts are tested, and we report the results with the best
prompt choice without mentioned specifically. For STD, we
also report a upper bound using all labeled training data and
validation data, referred to as “Full”. For all few-shot experi-
ments, we report mean and standard deviation with three dif-

!1-shot training data is not provided with such property
*https://huggingface.co

ferent random seeds to reduce training/validation data sam-
pling variance.

4.3 Main Experiment Results

Intent Classification Accuracy of few-shot intent classi-
fication on 5 domains over OOS is presented in Table 2. For
both T5-small and T5-base, 1-shot and 5-shot settings are
considered, and the column headed with “Average” averages
results of 5 domains. We see that STD performs the worst
in different configurations and that PE consistently outper-
forms STD. CINS significantly outperforms both STD and
PE in all configurations, especially with fewer label (1-shot).
In 1-shot setting, CINS achieves 29.4% and 17.8% higher
average accuracy than PE for T5-small and T5-base respec-
tively. In 5-shot settings, the above two margins are 8.8%
and 4.1%. These results demonstrate that CINS effectively
boost the few-shot learning capability for intent classifica-
tion.

Dialog State Tracking Results of DST on MultiWw0Z2.0
are presented in Table 3. 1% and 5% labeled data are tested
w.r.t. T5-small and T5-base. The common evaluation met-
rics joint goal accuracy (JGA) (Budzianowski et al. 2018;
Wu et al. 2019) is used, which checks whether the predicted
states (domain, slot, value) match the ground truth states
given a context. PE on average performs better than STD
except for the configuration with 5% labeled data using T5-
base. We see that CINS consistently improves the averaged
JGA over both STD and PE in different configurations. For
example, CINS has 3.1% and 9.5% average JGA improve-
ment over PE and STD respectively when 1% labeled data
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Figure 3: Results of IC (1-shot), DST (1% data), NLG (1-shot) with different types of prompts with T5-small. Different prompts
tested for IC and DST are provided in Table 5. For the same prompt backbone, the version with (D) stands for a Declarative
expression, while the version with (Q) stands for a Question expression. Standard deviations over different random seeds are

also plotted.

T5-small SER | BLEU 1
STD | 102+ 049 173 +0.23
Sshot | PE | 984043 17.1+0.17
CINs | 694025 17.5+0.13
Naive STD | 59+030 19.0+0.18
10-shot | PE | 52+034 19.2+0.26
CINS | 4.6 +£028 19.4 +0.07
Ful | STD | 1.0 263
STD | 3.6 +£0.15 255+0.05
Sshot | PE | 234015 260+ 0.05
CINs | 174007 2634011
T2G2 STD | 35+0.15 259+ 007
10-shot | PE | 1.9+033 264 +0.12
CINs | 134007 267 +0.04
Full | STD | 04 286

Table 4: Performance of few-shot natural language genera-
tion using T5-small as the generation model. Two types of
semantic representations are tested: Naive and T2G2.

are used with T5-small. Smaller margins can be observed for
other configurations.

Natural Language Generation Results of T5-small for
5-shot and 10-shot NLG using two types of semantic rep-
resentations “Naive” and “T2G2” are included in Table 4.
We only report T5-small as it already performs well enough.
Following prior works (Wen et al. 2015; Kale and Rastogi
2020a), we use BLEU (Papineni et al. 2002) and Slot Er-
ror Rate (SER Dusek and Jurcicek (2019)) as metrics. SER
measures the fraction of generated texts where at least one
slot was not correctly copied from the structured data. CINS
outperforms both PE and STD in all configurations and met-
rics with notable margins. Compared to PE, CINS improves
SER of “Naive” by 2.9% and 0.6% in 5-shot and 10-shot
settings respectively. These two margins are 0.6% and 0.6%
for “T2G2”. The improvement margins over STD are larger.
Moreover, when “T2G2” is used as the input representation,
CINS with only 5-shot or 10-shot training samples achieves
comparable performance compared to “Full”.
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Altogether, our experiments on three different down-
stream tasks reveal that:

* Comprehensive Instruction provides complimentary ben-
efits over standard input and prompting. CINS consis-
tently improves both PE and STD in all configurations
of three few-shot ToD tasks. The margin is evident on IC,
indicated by 17-30% average gain over PE with 1-shot
data; 4-9% gain with 5-shot data. The margin is smaller
on two more challenging DST and NLG tasks.

Comprehensive Instruction bridges the gap between few-
shot learning and full supervision. STD and PE with
few-shot labeled data perform much worse than models
trained with all labeled data (“Full”) for IC and NLG.
CINS largely improves performances on these two tasks
with results comparable to “Full”.

4.4 Analysis and Discussions

What is a good prompt? In this experiment, we study
what makes it a good prompt with TS5 used as the back-
bone model. In Table 5, we present two types of “prompt
roots” underlined for IC, DST and NLG (“T2G2”). For each
prompt root (row), two expressions are considered in declar-
ative and question forms.> In Figure 3, we present results of
using these different prompts with T5-small for IC (1-shot),
DST (1% Labeled Data) and NLG (5-shot). We could see
that for the same prompt root, prompts with a question (Q)
expressions outperform prompt with declarative (D) expres-
sions for both PE and CINS. Such a pattern is more obvious
for PE, and it can be better visualized by purple arrows.

Does CINS improve different prompts? In this experi-
ment, we study whether CINS achieves consistent improve-
ments with different prompts. In Figure 3, we compare CINS
and PE with four prompts mentioned in Table 5. For each
prompt, regardless of declarative or questions expressions,
CINS outperforms PE. This results validates that adding
task-specific definition and constraint as instructions is ben-
eficial for prompts in PE.

3A prefix “Question:” is adopted as we found that adding it
achieves slightly better performance because this prefix is com-
monly seen during the T5 pre-training phase.



Prompt Declarative (D) Question (Q)
IC 1 The given query asks about: Question: What does the given query ask about?
2 The intent of the given query is: | Question: What is the intent of the given query?
DST Naive! stars of the hotel Question: What is the stars of the hotel?
(hotel_stars) | Slot Type (ST)* number of stars of the hotel Question: What is the number of stars of the hotel?
NLG 1 Paraphrase the input: Question: what is the paraphrase of the input?
2 Rewrite the input: Question: what is the rewriting of the input?

Table 5: Different prompts for IC, DST and NLG (“T2G2”). In each row, two expressions (declarative and question) are
considered for an underlined prompt root. For DST, we use the slot “hotel-stars” as an example, and more descriptions can be
founded in Lin et al. (2021). T Transform “domain-slot” to ”[slot] of the [domain]. ¥ Transform “domain-slot” to [slot typel

[slot] of the [domain]” (Lin et al. 2021).

T5-small | IC DST NLG

CINS 71.1 43.1 1.7
w/o Description | 65.6 41.2 -
w/o Definition 69.8 425 1.9
w/o Prompt 70.1 422 2.3
w/o Constraint 457 40.8 2.4

PE 417 40.0 2.6

Table 6: Ablation Study for CINS for IC (1-shot), DST
(1% data), NLG (5-shot SER) with T5-small. “Description”
stands for IC label and DST slot descriptions.

Is CINS robust? For main experiments conducted in
§ 4.3, we experiment with different data sizes and model
sizes for IC and DST; different data sizes and input forms
for NLG. In total, we have 12 configurations (4 for IC, 4
for DST, 4 SERs for NLG). For each configuration, stan-
dard deviations of three random seeds are also reported. We
could see that CINS achieves the lowest standard deviation
in 9/12 configurations. This result demonstrates that CINS
is more robust to the data sampling variance in few-shot
learning settings. Furthermore, we could see from Figure 3
that the performance of CINS is also less sensitive to the
prompts than PE. For example, the performance of 2(D) vs.
2(Q) or ST(D) vs. ST(Q) differs a lot for PE, while they per-
form similarly for CINS. Therefore, We contend that extra
task-specific instructions in CINS improve model robustness
w.r.t. the choice of few-shot training data as well as prompt.

Ablation study In Table 6, we compare several simpli-
fied versions of CINS to understand the effects of differ-
ent components. “w/o Definition”, “w/o Constraint”, and
“w/o Prompt” are intuitive. “w/o Description” for IC re-
moves label descriptions in constraint, and “w/o Descrip-
tion” for DST replace the slot description from “Slot Type”
to “Naive” (Lin et al. 2021). We observe that: (i) label and
slot descriptions are beneficial. Removing it degrades per-
formance by 5.5% and 1.9% on IC and DST respectively.
(ii) Task definition and Prompt are both concise but advan-
tageous. Dropping either of them (“w/o Definition”, “w/o
Prompt”) hurts performance slightly. (iii) Task-specific con-
straint is a critical component, indicated by relatively large

performance drop on three tasks when removing it (“w/o

11082
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Data Size
A
[ +13.2/+8.8 5.3/4.1

S-shot| @ .3 +0.9/1.9 =
1C
DST

B +35.6/+29.4 | g +23.2/+17.8

1-shot “’ +9.5/+2.4 © +2.4/+1.4

» Model Size
T5-small T5-base

Figure 4: Accuracy improvements of CINS over STD/PE in
different configurations of intent classification (IC) and dia-
log state tracking (DST) tasks.

Constraint”). Nevertheless, it still outperforms “PE”, mean-
ing that the model still learns from task definitions.

Effect of Different Model and Data Sizes In Figure 4,
we plot the improvements of CINS over STD and PE in dif-
ferent configurations of IC (red) and DST (blue). We could
see that the improvement margin of CINS over STD/PE is
largest in the 1-shot setting with T5-small for both IC and
DST. When more labeled data are used or the model size is
increased, improvement margins get smaller. The only ex-
ception is the 5-shot margin of CINS over PE for T5-base on
DST, because this is the only case when PE underperforms
STD. Therefore, we contend that CINS is especially benefi-
cial for low-resource learning with reasonable-sized models.

5 Conclusion

We study how to instruct PLMs for few-shot learning in
ToD. CINS is proposed to augment state-of-the-art prompt-
ing techniques with extra task-specific definition and con-
straint. Extensive empirical results on three ToD tasks
demonstrate the consistent improvements of CINS. Our find-
ings on using instructions may inspire future studies towards
better utilizing PLMs for building more sample-efficient and
scalable ToD systems.
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