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Abstract

We introduce Recursive INsertion-based Encoder (RINE), a
novel approach for semantic parsing in task-oriented dialog.
Our model consists of an encoder network that incrementally
builds the semantic parse tree by predicting the non-terminal
label and its positions in the linearized tree. At the genera-
tion time, the model constructs the semantic parse tree by
recursively inserting the predicted non-terminal labels at the
predicted positions until termination. RINE achieves state-
of-the-art exact match accuracy on low- and high-resource
versions of the conversational semantic parsing benchmark
TOP, outperforming strong sequence-to-sequence models and
transition-based parsers. We also show that our model design
is applicable to nested named entity recognition task, where
it performs on par with state-of-the-art approach designed for
that task. Finally, we demonstrate that our approach is 2−3.5×
faster than the sequence-to-sequence model at inference time.

Introduction
Task-oriented dialog systems are playing an increasingly im-
portant role in modern business and social lives of people
by facilitating information access and automation of routine
tasks through natural language conversations. At the core of
such dialog systems, a natural language understanding com-
ponent interprets user input utterances into a meaning repre-
sentation. While the traditional intent-slot based approach can
go a long way, such flat meaning representation falls short of
capturing the nuances of natural languages, where phenom-
ena such as conjunction, negation, co-reference, quantifica-
tion and modification call for a hierarchically structured rep-
resentation, as illustrated by recent work (Gupta et al. 2018;
Bonial et al. 2020; Cheng et al. 2020; Andreas et al. 2020).
Commonly adopted tree- or directed acyclic graph-based
structures resemble traditional frameworks for syntactic or
semantic parsing of natural language sentences.

The hierarchical representation of Gupta et al. (2018) moti-
vated the extension of neural shift-reduce parsers (Dyer et al.
2016; Einolghozati et al. 2019), neural span-based parsers
(Stern, Andreas, and Klein 2017; Pasupat et al. 2019) and
sequence-to-sequence (seq2seq) (Sutskever, Vinyals, and Le
2014; Vaswani et al. 2017; Rongali et al. 2020) models for
handing compositional queries in task-oriented dialog. Due
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to the state-of-the-art performance of these models, there has
been limited work designing structured prediction models
that have a stronger inductive bias for semantic parsing of
task-oriented dialog utterances.

In this paper, we propose the Recursive Insertion-based
Encoder) (RINE; pronounced ”Ryan”), that incrementally
builds the semantic parse tree by inserting the non-terminal
intent/slot labels into the utterance. The model is trained as
a discriminative model that predicts labels with their corre-
sponding positions in the input. At generation time, the model
constructs the semantic parse tree by recursively inserting the
predicted label at the predicting position until the termination.
Unlike seq2seq models (Rongali et al. 2020; Zhu et al. 2020;
Aghajanyan et al. 2020; Babu et al. 2021), our approach does
not contain a separate decoder which generates the linearized
semantic parse tree.

We extensively evaluate our proposed approach on low-
resource and high-resource versions of the popular conversa-
tional semantic parsing dataset TOP (Gupta et al. 2018; Chen
et al. 2020). We compare our model against a state-of-the-art
transition-based parser RNNG (Gupta et al. 2018; Einol-
ghozati et al. 2019) and seq2seq models (Rongali et al. 2020;
Zhu et al. 2020; Aghajanyan et al. 2020; Babu et al. 2021)
adapted to this task. We show that our approach achieves
the state-of-the-art performance on both low-resource and
high-resource settings TOP. In particular, RINE achieves up
to an 13% absolute improvement in exact match in the
low-resource setting. We also demonstrate that our approach
is 2− 3.5× faster than strong sequence-to-sequence model
at inference time.

While we focus on semantic parsing in task-oriented dia-
log, we demonstrate that our model design is applicable to
other structured prediction tasks, such as nested named en-
tity recognition (nested NER). We empirically show that our
model with no specific tuning performs on par with state-of-
the-art machine reading comprehension approach for nested
NER (Li et al. 2020) that was explicitly designed for that
task.

Proposed Approach
First, we introduce the problem of semantic parsing in task-
oriented dialog and give a general description of our approach
in Section . Then in Section , we give a detailed description
of the forward pass and loss calculation in our model. Finally
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What is the shortest way home ?

RNN / Transformer Encoder

LABEL:

IN:GET_DIRECTIONS

START POS:

0

END POS:

7

Iteration 1

[IN:GET_DIRECTIONS What is the shortest way home ? ]

RNN / Transformer Encoder

LABEL:
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Iteration 2

[IN:GET_DIRECTIONS What is the shortest way 
[SL:DESTINATION home ] ? ]

RNN / Transformer Encoder

LABEL:

IN:GET_LOCATION_HOME

START POS:
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END POS:

9

Iteration 3

[IN:GET_DIRECTIONS What is the shortest way 
[SL:DESTINATION [IN:GET_LOCATION_HOME home ] ] ? ]

RNN / Transformer Encoder

LABEL:

EoP

START POS:
 END POS:


Iteration 4 / End

Figure 1: Overview of the top-down generation of the semantic parse tree corresponding to the utterance What is the shortest
way home? from the TOP dataset (Gupta et al. 2018) using our proposed model. The inserted labels at each generation step are
highlighted in red.

in Section we describe the generation procedure of semantic
parse tree given the input utterance.

Overview
Given the utterance X = (x0, ..., xn−1) with n tokens,
our goal is to predict the semantic parse tree Y . Each leaf
node in the tree Y corresponds to a token xi ∈ X , while
each non-terminal node covers some span (i, j) with tokens
xi:j = (xi, ..., xj−1). The label l of each non-terminal node
is either an intent (prefixed with IN:) or a slot (prefixed
with SL:). The root node of the TOP tree covering the span
(0, n) must be an intent. Intents can be nested inside the slots
and vice versa resulting in the composite tree structures. It
should be noted that this formulation of semantic parse tree
resembles the constituent structures commonly adopted in
syntactic parsing. The key difference is that the non-terminal
nodes in TOP tree are semantic entities in a dialog frame
representation (i.e. intents and slots). Therefore they are not
syntactic units and their corresponding leaf sub-sequences
do not necessarily pass the constituency test. Instead, these
non-terminal semantic nodes govern the linguistic expres-
sions where the meaning is derived: slot nodes dominate over
the string spans denoting their values; intent nodes dominate
over both the span of utterance signaling the intent and slot
nodes as arguments of each intent.

For our approach, it is helpful to view the target tree Y
as the result of the incremental insertions of the elements in

the set S = {(l1, i1, j1), ..., (lT , iT , jT )} into the utterance
X . The tth element (lt, it, jt) in the set S consists of the
intent/slot label lt, the start position it and the end position
jt. The label lt covers the span (it, jt − 1) in the partially
build tree Yt−1. The result of the sequence of consecutive
insertions of all elements in set S is the target tree YT = Y .
The utterance X is used as the input for the first insertion
step.

You can see the example of the semantic tree generation
using our model in Figure 1. At the first iteration, the label
IN:GET DIRECTIONS is inserted at the start position 0
and end position 7 into the utterance What is the shortest
way home ?. The result of the insertion operation is the tree
[IN:GET DIRECTIONS What is the shortest way home
? ]. This tree is fed back into the model to output the tu-
ple (SL:DESTINATION, 6, 8). The updated tree with in-
serted label SL:DESTINATION is fed back into the model
to output the (IN:GET LOCATION HOME, 7, 9). Finally,
the model predicts a special end of prediction EoP label that
indicates the termination of the generation process.

Training
For an input sequence [w1, w2, ..., wm] consisting of the to-
kens from utterance X and intent/slot labels from parse tree
Y , our model first encodes the input into a sequence of hid-
den vectors [e1, e2, ..., em]. This model consists of an encoder
that can have an RNN (Elman 1990), Transformer (Vaswani
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et al. 2017) or any other architecture. In practice, we use the
pretrained Transformer model RoBERTa (Liu et al. 2019)
due to its significant improvement in performance across nat-
ural language understanding tasks (Wang et al. 2018) and
state-of-the-art performance on task-oriented semantic pars-
ing (Rongali et al. 2020).

The hidden vector e1 corresponding to the special start
of the sentence symbol is passed to a multilayer percep-
tron (MLP) to predict the probability of the output label
lt = softmax(MLP(e1)). We use the attention probabilities
from the first attention head of the last layer’s multi-head
attention layer to predict the begin position it. Similarly, we
use the attention probabilities from the second attention head
of the last layer’s multi-head attention layer to predict the
end position jt. This choice allows the model to extrapolate
to start and end positions larger than the ones encountered
during training.

After getting the outputs from the model, we
train it by combining three objectives: label loss
Llabel = − log p(l∗t |Y ∗

t−1), start position loss
Lstart = − log p(i∗t |Y ∗

t−1) and end position loss
Lend = − log p(j∗t |Y ∗

t−1). As a result, we minimize
the joint negative log likelihood of the the ground-truth
labels (l∗t , i

∗
t , j

∗
t ) given the ground-truth partial tree Y ∗

t−1:

L = Llabel + Lstart + Lend

During training, we batch the predictions across the gen-
eration time-steps t = 1, ..., T . We follow a top-down gener-
ation ordering to create the training set of pairs of partially
constructed ground-truth trees Y ∗

t−1 and outputs (l∗t , i
∗
t , j

∗
t )).

When using top-down ordering, we first generate the root
node and then work down the tree to generate remaining
nodes. In principle, we can use other generation orderings
(such as bottom-up ordering where we start from generating
nodes at the lowest level of the tree and work up, which we
empirically compare against in Section ).

Generation
When evaluating the trained model, we use greedy decod-
ing. We start from the input utterance X and predict the
most likely label l̂1 = argmaxl p(l1|Y0) and most likely
start and end positions î1 = argmaxi p(i1|Y0) and ĵ1 =

argmaxj p(j1|Y0). We then insert the label l̂1 into position
î1, followed by inserting the closing bracket into the position
ĵ1 + 1. We feed the resulting tree Ŷ1 back into the model
to predict the next triplet of (l̂2, î2, ĵ2) following the same
procedure. The entire process is repeated until the special
end of prediction symbol EoP is predicted as the most likely
label by the model.

Related Work
Parsing the meaning of utterances in task-oriented dialogue
has been a prevalent problem in a research community since
the advent of the ATIS dataset (Hemphill, Godfrey, and Dod-
dington 1990). Traditionally, this task is formulated as a joint
intent classification and slot tagging problem. Sequence la-
beling models based on recurrent neural networks (RNNs)

(Mesnil et al. 2013; Liu and Lane 2016) and pre-trained Trans-
former models (Devlin et al. 2019; Chen, Zhuo, and Wang
2019) have been successfully used for joint intent classifica-
tion and slot tagging. These sequence models can only parse
flat utterances which contain a single intent class and single
slot label per each token in the utterance. To deal with this
limitation, recent studies investigated structured prediction
models based on neural shift-reduce parsers (Dyer et al. 2016;
Gupta et al. 2018; Einolghozati et al. 2019), neural span-
based parsers (Stern, Andreas, and Klein 2017; Pasupat et al.
2019), autoregressive sequence-to-sequence models (Rongali
et al. 2020; Aghajanyan et al. 2020), and non-autoregressive
sequence-to-sequence models (Zhu et al. 2020; Shrivastava
et al. 2021; Babu et al. 2021) for handling compositional
queries. All of these approaches have been adapted from
constituency parsing, dependency parsing and machine trans-
lation. Among these, the approach for task-oriented dialogue
by Zhu et al. (2020) bears the most similarity to our model.

Zhu et al. (2020) adapted the Insertion Transformer (Stern
et al. 2019) into the seq2seq-ptr model (Rongali et al. 2020)
for conversational semantic parsing. The Insertion Trans-
former generates the linearized parse tree in balanced binary
tree order by predicting labels in the insertion slots at each
generation step (there are T − 1 insertion slots for sentence
of length T ). Unlike traditional seq2seq models which scale
linearly with length of target sequence, the Insertion Trans-
former only requires a logarithmic number of decoding steps.
Despite sharing the insertion operation, there are several key
differences between our approach and the Insertion Trans-
former seq2seq-ptr approach illustrated in Figure 2. Unlike
Insertion Transformer: 1) our model does not have separate
decoder, 2) our model generates a parse tree in a top-down
fashion with the number of decoding steps equivalent to the
number of intent/slot labels in the tree. Additionally, the ter-
mination strategy in our model is as simple as termination in
vanilla seq2seq models. To terminate generation the Insertion
Transformer requires predicting EoS token for each insertion
slot. This makes the EoS token more frequent than other
tokens which leads to generation of short target sequences.
To avoid this issue, Zhu et al. (2020) add a special penalty
hyperparameter to control the sequence length.

In parallel to the design of neural architectures, there has
been a research effort on improving neural conversational
semantic parsers in low-resource setting using meta-learning
(Chen et al. 2020) and label semantics (Athiwaratkun et al.
2020; Paolini et al. 2021; Desai et al. 2021). These ap-
proaches are architecture agnostic and can be easily com-
bined with our model to further improve performance.

Experiments
Datasets
We use the TOP (Gupta et al. 2018) and TOPv2 (Chen et al.
2020) conversational semantic parsing datasets as well as
ACE2005 nested named entity recognition dataset in our
experiments.

The TOP dataset1 (Gupta et al. 2018) consists of natural
language utterances in two domains: navigation and event.

1http://fb.me/semanticparsingdialog
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Decoder

Weather in Seattle

Encoder

BoS

<ptr-1> (Weather)

EoS<ptr-2> (in)

[SL:LOCATION

[IN:GET_WEATHER Weather in Seattle ]

Encoder

LABEL:

SL:LOCATION

START POS:

3

END POS:

5

Recursive Insertion-based Encoder (ours) Insertion Transformer Seq2Seq-Ptr Model (Stern et al., 2019, Zhu et al., 2020)

Figure 2: Side-by-side comparison of two closely related architectures for semantic parsing in task-oriented dialog. On the left,
we show the forward pass of our model. On the right, we show the forward pass of Insertion Transformer Seq2seq-Ptr Model
(Stern et al. 2019; Zhu et al. 2020). Tokens < ptr-i> denote the pointers to the utterance. The Insertion Transformer follows the
balanced binary tree ordering by predicting labels for each insertion slot (there are T − 1 insertion slots for sentence of length T ).
Our model follows the top-down generation ordering by predicting the single intent/slot label with start and end positions in the
linearized tree.

The dataset consists of 25 intents and 36 slots. Following
previous work (Einolghozati et al. 2019; Rongali et al. 2020;
Zhu et al. 2020), we remove the utterances that contain
the UNSUPPORTED intent from the dataset. This results in
28,414 train, 4,032 valid and 8,241 test utterances2. 39% of
queries in the TOP dataset are hierarchical.

The TOPv2 dataset (Chen et al. 2020) is an extension
of TOP dataset (Gupta et al. 2018) that was collected by
following the same guidelines. Following the experimental
setup of Chen et al. (2020) we use low-resource versions
of reminder and weather domains. The reminder domain
consists of 19 intents and 32 slots. 21% of queries in reminder
domain are hierarchical. The weather domain consists of 7
intents and 11 slots. All queries in the weather domain are
flat. The low-resource data was created by taking a fixed
number of training samples per intent and slot label (SPIS)
from the original dataset. If a particular intent or slot occurred
less than the specified number of times then all the parse trees
containing that intent or slot are selected. We use the same
train, validation and test data at 25 and 500 SPIS for reminder
and weather prepared by Chen et al. (2020)3. The reminder
domain at 500 SPIS contains 4,788 train and 2,526 valid
samples, weather 500 SPIS contains 2,372 train and 2,667
valid samples, reminder 25 SPIS contains 493 train and 337
valid samples, and weather 25 SPIS contains 176 train and
147 valid samples. For both SPIS settings the test splits of
reminder and weather contain 5,767 and 5,682 test samples
respectively.

The ACE2005 nested named entity recognition dataset
is derived from the ACE2005 corpus (Walker et al. 2006)
and consists of sentences from a variety of domains, includ-
ing news and online forums. We use the same processing
and splits of Li et al. (2020), resulting in 7, 299 sentences
for training, 971 for validation, and 1, 060 for testing. The
dataset has seven entity types: location, organization, person,

2The dataset statistics were verified with authors of (Zhu et al.
2020)

3https://fb.me/TOPv2Dataset

vehicle, geographical entity, weapon, facility. 38% of queries
in the ACE2005 dataset are hierarchical. The design of the
semantic parse trees in ACE2005 dataset is similar to the
design of semantic parse trees in TOP dataset. The entities
in the ACE2005 dataset are represented as slots. Slots in
ACE2005 can be nested inside the slots resulting in nested
entity structures.

Following previous work (Gupta et al. 2018; Einolghozati
et al. 2019; Rongali et al. 2020; Zhu et al. 2020; Aghajanyan
et al. 2020) we use exact match (EM) accuracy as the met-
ric for evaluating approaches on TOP and TOPv2 datasets.
The exact match measures the number of utterances where
complete trees are correctly predicted by the model. On
ACE2005 we report the span-level micro-averaged preci-
sion, recall and F1 scores.

Hyperparameters
We follow the experimental settings of previous conver-
sational semantic parsing work (Rongali et al. 2020; Zhu
et al. 2020; Chen et al. 2020) and use a pre-trained
RoBERTa (Liu et al. 2019) model as the backbone of our
RINE model. We experiment with both RoBERTaBASE and
RoBERTaLARGE architectures. The [CLS] representation is
passed into the MLP with 1 hidden layer to predict the in-
tent/slot label. The probabilities from the second and third
heads of the last self-attention layer are used to predict start
and end positions.

We train a sequence-to-sequence pointer network (seq2seq-
ptr) that combines a Transformer (Vaswani et al. 2017) and
pointer-generator network (See, Liu, and Manning 2017).
Rongali et al. (2020) proposed this model for the task of con-
versational semantic parsing. The seq2seq-ptr model gener-
ates the linearized semantic parse tree by alternating between
generating intent/slot tags from a fixed vocabulary and copy-
ing a token from the source query using a pointer network
(Vinyals, Fortunato, and Jaitly 2015; See, Liu, and Manning
2017). The encoder of seq2seq-ptr is initialized using a pre-
trained RoBERTa (Liu et al. 2019) architecture. The decoder
is initialized with random weights. The decoder contains 6
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layers, 4 attention heads, 512-dimensional embeddings, and
1,024 hidden units.

We use the Adam optimizer (Kingma and Ba 2014) with
the following hyperparameters: β1 = 0.9, β2 = 0.98,
ε = 1e − 6 and L2 weight decay of 1e − 4. When using
RoBERTaBASE , we warm-up the learning rate for 500 steps
up to a peak value of 5e − 4 and then decay it based on
the inverse square root of the update number. When using
RoBERTaLARGE , we warm-up the learning rate for 1,000
steps up to a peak value of 1e− 5 and then decay it based on
the inverse number of update steps. The same hyperparam-
eters of the optimizer are used for training both RINE and
seq2seq models. We use a dropout (Srivastava et al. 2014)
rate of 0.3 and an attention dropout rate of 0.1 in both our
proposed models and seq2seq baseline. The choices of hy-
perparameters were made based on preliminary experiments
on TOP. For all datasets we use 4 Tesla V100 GPUs to train
both baseline and proposed model. We use 3 random seeds
to train all models and report the average and standard devi-
ation. For fair comparison of results, we train both baseline
and proposed model for the same number of iterations on
all datasets. We implement all models on top of the fairseq
framework (Ott et al. 2019).

Results
TOP dataset We present the results on TOP (Gupta et al.
2018) in Table 1. Our proposed RINE model that uses
RoBERTaLARGE as the backbone outperforms all previously
published results on the TOP dataset. In particular, our RINE
model initialized with the RoBERTaLARGE outperforms the
non-autoregressive seq2seq-ptr model (Shrivastava et al.
2021) initialized with RoBERTaBASE by 2.5 EM, autoregres-
sive seq2seq-ptr models (Rongali et al. 2020; Zhu et al.
2020) initialized with RoBERTaBASE by 0.9 EM, decou-
pled seq2seq-ptr model initialized with BARTLARGE by 0.47
EM, and RNNG ensemble with SVM reranking (Einol-
ghozati et al. 2019) by 0.32 EM. Our model initialized
with the RoBERTaBASE outperforms the non-autoregressive
seq2seq-ptr model (Shrivastava et al. 2021) initialized with
RoBERTaBASE by 2.0 EM, autoregressive seq2seq-ptr mod-
els (Rongali et al. 2020; Zhu et al. 2020) initialized with
RoBERTaBASE by 0.4 EM, and performs on par with RNNG
ensemble with SVM reranking (Einolghozati et al. 2019) and
decoupled seq2seq-ptr (Aghajanyan et al. 2020) initialized
with BARTLARGE . Unlike RNNG, we do not use ensembling
and do not rerank outputs of our model. Unlike decoupled
seq2seq-ptr, we don’t use stochastic weight averaging (Iz-
mailov et al. 2018) to improve results.

We also re-implemented and trained our seq2seq-ptr
model by Rongali et al. (2020). We obtain exact match
of 85.73 ± 0.21 and 86.67 ± 0.21 with RoBERTaBASE and
RoBERTaLARGE backbones respectively. Compared to our
replication of autoregressive seq2seq-ptr model by Rongali
et al. (2020), the proposed RINE model achieves 1.41 and
0.9 improvement in exact match using RoBERTaBASE and
RoBERTaLARGE respectively. The performance of RINE is
5 − 7 standard deviations higher than performance of our
seq2seq-ptr model.

The decomposition of the parse tree leads to multiple train-

ing passes over the same source sentence in our model. This
is unlike seq2seq-ptr model that processes each pair of source
and target once during the epoch. One could argue that in-
creasing the number of training iterations in baseline seq2seq-
ptr approach can lead to the same performance as our model.
However despite training baseline seq2seq-ptr for the same
iterations as RINE, seq2seq-ptr stops improving validation
exact match after 150 epochs and starts overfitting after.

TOPv2 dataset We present the results on low-resource
versions of reminder and weather domains in TOPv2 (Chen
et al. 2020) in Table 2. There are several observations on this
dataset.

First, our proposed RINE model outperforms the baseline
autoregressive seq2seq-ptr model on all evaluated scenarios
of this dataset. In the 500 SPIS setting with RoBERTaBASE ,
our RINE model achieves 8.4 and 2.9 exact match improve-
ment on reminder and weather domains over the best pub-
lished seq2seq-ptr baseline. In the 25 SPIS setting with
RoBERTaBASE , our RINE model achieves 13.0 and 2.9 exact
match improvement on reminder and weather domains over
the best published autoregressive seq2seq-ptr baseline. In the
reminder domain the improvement in performance is higher
for the 25 SPIS setting, whereas in the weather domain the
improvement in performance is comparable for both 25 and
500 SPIS. We hypothesize that this is due to the reminder
domain being more challenging that weather domain since it
contains composite utterances and have a larger number of
intent and slot types.

Second, we trained our re-implementation of seq2seq-
ptr model by Rongali et al. (2020) on 500 SPIS set-
ting. We find that our replication of seq2seq-ptr approach
with RoBERTaBASE backbone achieves 78.46 ± 0.3 and
85.41± 0.04 exact match on reminder and weather domains.
The performance of our replication of seq2seq-ptr model
with RoBERTaBASE performs better than seq2seq-ptr with
RoBERTaBASE reported by Chen et al. (2020). We believe it
is due to the number of epochs we used to train seq2seq-ptr
models. Chen et al. (2020) report using 100 epochs to train all
models without meta-learning, whereas we train seq2seq-ptr
for larger number of epochs to match the number of itera-
tions used to train RINE. Despite training our seq2seq-ptr for
larger number of iterations, RINE outperforms our replica-
tion of seq2seq-ptr approach by 1.84 and 2.39 exact match
on 500 SPIS setting of the reminder and weather domains
respectively. We make a similar observation to TOP dataset
and find that seq2seq-ptr approach underperforms RINE de-
spite increasing number of training iterations to match the
number of training iterations of RINE. In particular, seq2seq-
ptr converges to the highest validation exact match after 300
epochs and starts overfitting after.

ACE2005 We present the results on ACE2005 dataset in
Table 3. Our model outperforms all previously published ap-
proaches designed for nested named entity recognition task,
except for BERT-MRC (Li et al. 2020) approach. In particular,
RINE with RoBERTaLARGE encoder underperforms BERT-
MRC with BERTLARGE encoder in terms of precision, while
achieving higher recall and comparable F1 score. Compared
to our model, BERT-MRC uses questions constructed from
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Method Pretrained model Exact Match

RNNG (Einolghozati et al. 2019) - 80.86
RNNG (Einolghozati et al. 2019) ELMo 86.26

RNNG ensemble + SVMRank (Einolghozati et al. 2019) ELMo 87.25

Non-AR Seq2seq-Ptr (Shrivastava et al. 2021) RoBERTaBASE 85.07
Seq2seq-Ptr (Rongali et al. 2020) RoBERTaBASE 86.67

Insertion Transformer + Seq2seq-Ptr (Zhu et al. 2020) RoBERTaBASE 86.74
Decoupled Seq2seq-Ptr (Aghajanyan et al. 2020) BARTLARGE 87.10

RINE (ours) RoBERTaBASE 87.14±0.06
RINE (ours) RoBERTaLARGE 87.57±0.03

Table 1: Accuracy (exact match ↑) on the test split of TOP dataset (Gupta et al. 2018). Non-AR stands for non-autoregressive.
Pretrained model stands for the type of pretrained architecture used in the corresponding method.

Method Pretrained model
Exact Match

Reminder Weather
25 SPIS 500 SPIS 25 SPIS 500 SPIS

LSTM Seq2Seq-Ptr (Chen et al. 2020) - 21.5 65.9 46.2 78.6
Seq2seq-Ptr (Chen et al. 2020) RoBERTaBASE - 71.9 - 83.5
Seq2seq-Ptr (Chen et al. 2020) BARTLARGE 55.7 71.9 71.6 84.9

RINE (ours) RoBERTaBASE 68.71±0.46 80.30±0.04 74.53±0.86 87.80±0.04
RINE (ours) RoBERTaLARGE 71.10±0.63 81.31±0.22 77.03±0.16 87.50±0.28

Table 2: Accuracy (exact match ↑) on the test split of reminder and weather domains of TOPv2 dataset (Chen et al. 2020). SPIS
stands for samples for each intent and slot label.

Method Pretrained Model Precision Recall F1

Hyper-Graph LSTM (Katiyar and Cardie 2018) - 70.6 70.4 70.5
Seg-Graph (Wang and Lu 2018) GLoVE 76.8 72.3 74.5

ARN (Lin et al. 2019) GLoVE 76.2 73.6 74.9
Path-BERT (Shibuya and Hovy 2019) BERTLARGE 82.98 82.42 82.7

Merge-BERT (Fisher and Vlachos 2019) BERTLARGE 82.7 82.1 82.4
DYGIE (Luan et al. 2019) GLoVE + ELMo - - 82.9

Seq2seq-BERT (Straková, Straka, and Hajic 2019) BERTLARGE - - 84.33
TANL (Paolini et al. 2021) T5BASE - - 84.9
BERT-MRC (Li et al. 2020) BERTLARGE 87.16 86.59 86.88

RINE (ours) RoBERTaBASE 84.13±0.03 87.06±0.19 85.57±0.1
RINE (ours) RoBERTaLARGE 84.62±0.05 88.33±0.07 86.44±0.04

Table 3: Precision (↑), recall (↑) and F1 score (↑) on the test split of ACE2005 dataset.

the annotation guideline notes used for collecting ACE2005
dataset. These questions contain the ground-truth label se-
mantics (example for ORG label the question is ”find orga-
nizations including companies, agencies and institutions“).
Li et al. (2020) show that label semantics improve results
by 1.5 F1 (Table 5 of BERT-MRC (Li et al. 2020)) and use
scores obtained with label semantics in the main results. We
believe using some form of label semantics in the output can
further improve RINE on ACE2005. Despite the lack of label
semantics in our approach and no additional tuning, RINE
achieves comparable performance to state-of-the-art BERT-
MRC which further demonstrates the strong performance of
our model.

Analysis

Does Generation Order Matter?

In this section we analyze whether generation order matters
for our model. In our default setting, we follow the top-down
ordering of the labels when training and generating trees.
We experiment with a bottom-up ordering and present the
comparison with top-down ordering in Table 4. We find that
the choice of ordering makes no difference in exact match
accuracy on the validation split of TOP suggesting that the
model is agnostic to the particular order in which it was
trained.
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Architecture Order Exact Match

RoBERTaBASE
Top-down 87.07±0.09
Bottom-up 87.01±0.04

RoBERTaLARGE
Top-down 87.72±0.07
Bottom-up 87.70±0.04

Table 4: Exact match of proposed RINE model on validation
split of TOP dataset with top-down and bottom-up generation
orderings.

Flat vs Composite Queries
Our initial motivation of the proposed approach stems from
the argument that the seq2seq-ptr models are not ideally
suited for parsing the utterance into hierarchically structured
representations. In this section, we empirically validate this
argument by breaking down the performance of both models
on flat and hierarchical trees. We find that a larger improve-
ment of our approach over the baseline model comes from
composite trees. In particular, on the validation split of TOP,
the RINE model achieves 3.4% relative improvement on
the composite queries over the seq2seq-ptr model. On the
same dataset, the RINE model achieves 1.6% improvement
on the flat queries over the seq2seq-ptr model. We make a
similar empirical observation on the validation split of the re-
minder domain on the TOPv2 dataset. In the 25 SPIS setting,
the proposed model achieves a 22.4% relative improvement
on composite queries, while it achieves only a 6% relative
improvement on flat queries. In the 500 SPIS setting, the
proposed model achieves a 3.5% and 1.3% relative improve-
ment on composite and flat queries. The relative improvement
in performance on composite queries becomes larger in the
low-resource 25 SPIS setting. This shows that the proposed
approach is better suited for hierarchically structured mean-
ing representations compared to the seq2seq-ptr model.

Validity of Generated Trees
In this section we compare the validity of the semantic parse
trees generated by our and baseline approaches. Unlike our
approach which generates perfectly valid trees when trained
on both low- and high-resource settings of TOP dataset,
seq2seq-ptr struggles to achieve perfect validity when trained
in the low-resource setting. In particular in the 25 SPIS set-
ting of the reminder domain, 93% of the generated trees by
seq2seq-ptr model are valid. When we increase the training
dataset size and train the seq2seq-ptr model on the 500 SPIS
setting of the reminder domain, the validity of generated
trees becomes close to 100%. This demonstrates that base-
line seq2seq-ptr model requires larger amount of training
data to learn the structure of semantic parse trees in order to
generate valid trees.

Generation Efficiency
In this section we compare the generation latency of the
seq2seq-ptr and RINE approaches. We generate parse trees
by processing 1 sentence at a time using Tesla V100 GPU. As
the measure of generation efficiency we use number of sen-
tences per second (↑) processed by each approach. We show

Architecture Seq2seq-ptr RINE

RoBERTaBASE 3.70 12.95
RoBERTaLARGE 3.42 7.09

Table 5: Generation efficiency (sentences per second ↑) of
seq2seq-ptr and RINE approaches with RoBERTaBASE and
RoBERTaLARGE architectures on validation split of TOP
(Gupta et al. 2018) dataset.

results in Table 5. We find that our approach is 3.5× faster
with RoBERTaBASE and 2× faster with RoBERTaLARGE than
seq2seq-ptr approach. We notice that the decoding efficiency
of our approach relative to baseline drops when using large
encoder. Seq2seq-ptr scales better with larger encoders due
to caching of the encoder representations that are later used
by the decoder.

Conclusions and Future Work
Following on the exciting and recent development of hierar-
chically structured meaning representations for task-oriented
dialog, we proposed a recursive insertion-based encoder ap-
proach that achieves state-of-the-art results on low- and high-
resource versions of the conversational semantic parsing
benchmark TOP (Gupta et al. 2018; Chen et al. 2020). We
also showed that the proposed model design is applicable to
nested NER, where it achieves comparable results to state-
of-the-art with no additional tuning. Analysis of the results
demonstrates that proposed approach achieves higher relative
improvement on hierarchical trees compared to baselines and
does not require large amount of training data to learn the
structure of the trees.

Despite achieving strong empirical results, there are some
limitations with the proposed approach. The insertion-based
approach is generally limited to generate anchored and well-
nested tree structures that are addition to the input with no
deletion or reordering. While such assumption is commonly
adopted in many linguistic representations, well-known ex-
ceptions do exist (e.g. non-projective dependencies (Hall
and Nivre 2008), discontiguous constituents (Vijay-Shanker,
Weir, and Joshi 1987; Müller 2004), or unanchored meaning
representations such as AMR (Banarescu et al. 2013)). While
the authors of TOP (Gupta et al. 2018) found that a very small
fraction of English queries (0.3%) require a more general
unanchored graph-based meaning representation, we believe
it is important to address such issues for non-configurational
languages as well as the broader range of application-specific
structural representations. We plan to extend the model with
additional actions such as token insertion and swap in order
to support parsing of such non-anchored representation in
multilingual semantic parsing.

Overall, we hope that our paper inspires research commu-
nity to further extend and apply our model for a variety of
structured prediction tasks.
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