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Abstract

Understanding events entails recognizing the structural and
temporal orders between event mentions to build event struc-
tures/graphs for input documents. To achieve this goal, our
work addresses the problems of subevent relation extraction
(SRE) and temporal event relation extraction (TRE) that aim
to predict subevent and temporal relations between two given
event mentions/triggers in texts. Recent state-of-the-art meth-
ods for such problems have employed transformer-based lan-
guage models (e.g., BERT) to induce effective contextual
representations for input event mention pairs. However, a ma-
jor limitation of existing transformer-based models for SRE
and TRE is that they can only encode input texts of limited
length (i.e., up to 512 sub-tokens in BERT), thus unable to
effectively capture important context sentences that are far-
ther away in the documents. In this work, we introduce a
novel method to better model document-level context with
important context sentences for event-event relation extrac-
tion. Our method seeks to identify the most important context
sentences for a given entity mention pair in a document and
pack them into shorter documents to be consume entirely by
transformer-based language models for representation learn-
ing. The REINFORCE algorithm is employed to train models
where novel reward functions are presented to capture model
performance, and context-based and knowledge-based similar-
ity between sentences for our problem. Extensive experiments
demonstrate the effectiveness of the proposed method with
state-of-the-art performance on benchmark datasets.

Introduction
Understanding events is critical to natural language process-
ing (NLP) due to their prevalence in texts. The major chal-
lenges to achieve this goal involve capturing multi-granular
nature of events and their complex connections/relations (i.e.,
event structures) to deliver a coherent story for an input docu-
ment (Wang et al. 2020). In information extraction (IE), these
challenges are addressed in event-event relation extraction
problems (EERE) that aims to recognize relations between
pairs of event mentions/trigger words in an input document.
In this work, we focus on two types of relations between
events that provide important information to reveal event
structures for documents, i.e., subevents and temporal orders.
As such, given two event mentions in the same document,
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subevent relation extraction (SRE) seeks to determine if an
event mention is a subevent (e.g., “Parent-Child”) of the
other while the goal of temporal relation extraction (TRE) is
to identify the temporal order of the two event mentions (e.g.,
“Before”, “After”). Based on such relations between events,
an event graph/structure for each document can be obtained
by using event mentions as the nodes and their subevent and
temporal relations as the edges. In addition to the demon-
stration of event understanding, event structures find their
applications in different downstream applications, including
question answering, event prediction, timeline construction,
and text summarization (Do, Lu, and Roth 2012; Chaturvedi,
Peng, and Roth 2017; Han, Ning, and Peng 2019a).

The latest advances present transformer-based language
models, e.g., BERT (Devlin et al. 2019), to encode input texts
and deliver state-of-the-art performance for EERE problems
(Ning, Subramanian, and Roth 2019; Han et al. 2019b; Wang
et al. 2020; Ballesteros et al. 2020; Tran and Nguyen 2021).
As the two event mentions of interest in EERE might appear
in different sentences with long distances from each other,
modeling document-level context for the event mentions is
necessary for successful relation predictions. However, a crit-
ical issue with recent transformer-based language models for
EERE is the limitation over the lengths of acceptable input
texts. For instance, BERT can only encode input texts with up
to 512 sub-tokens due to its quadratic self-attention complex-
ity (Devlin et al. 2019). As such, given an input document,
existing models for EERE have only constrained their opera-
tions to document context with a set of sentences that can fit
into the length limits of transformer-based language models
(Han, Ning, and Peng 2019a; Ballesteros et al. 2020; Wang
et al. 2020). These models are thus unable to capture impor-
tant context sentences for EERE that go beyond the length
limit of the BERT-like models to boost the performance.

To address the length limit for transformer-based language
models, prior methods for other NLP tasks have resorted to
two major approaches. First, in Self-Attention Architecture
Modification (Zaheer et al. 2020; Beltagy, Peters, and Cohan
2020; Kitaev, Kaiser, and Levskaya 2020), one can replace
the vanilla self-attention of transformer networks with some
variant architectures, e.g., sparse self-attention (Zaheer et al.
2020), that allow the modeling of larger document context
while maintaining the same complexity as the original trans-
former. However, the transformer structures with variants of
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Tropical storme1 Janis, downgraded from typhoon status, lashed 
southwestern Japan Saturday with heavy winds. At least two diede2
and 38 were injurede3. With winds of 67 miles per hour, Janis was 
located just north of Hiroshima, 429 miles southwest of Tokyo, 
according to the Central Meteorological Agency.  Later this night, an 
eight-hour suspensione4 of high-speed "bullet train" service to Kyushu, 
the southernmost of Japan's four main islands, left over 20,000 people 
strandede5 at Hiroshima station, television news reportede6.

e1: storm

e2: died e3: injurede4: suspension

e5: stranded e6: reported

Parent-Child Parent-Child
Parent-Child

BeforeBefore

Parent-Child
BeforeBefore

Before

Before

Figure 1: Event structure for an input document.

vanilla self-attention still suffer from a constraint of certain
input length, thus failing to capture important context that are
arbitrarily farther away from the event mention pair of inter-
est in the input document for EERE. Moreover, the changes in
the self-attention mechanism generally lead to poorer perfor-
mance for NLP tasks compared to vanilla transformer (Belt-
agy, Peters, and Cohan 2020). The second approach involves
Hierarchical Designs (Adhikari et al. 2019; Jörke et al. 2020)
where the standard transformer-based language models are
still leveraged to encode input texts with certain length limit.
For larger input documents, another network architecture will
be introduced to facilitate representation induction. For in-
stance, (Adhikari et al. 2019) first splits an input document
into multiple chunks that have shorter lengths than the limit
of transformer-based models. Afterward, the BERT-based
representation of each chunk is sent into a recurrent neural
network for document modeling. However, in this case, the
self-attention mechanism in the transformer-based language
models cannot consume the entire input document to fully
exploit its ability to capture long-range context dependencies
in the whole document for improved representation learning.
Above all, for both Self-Attention Architecture Modification
and Hierarchical Designs, the transformer-based models are
often used to encode a consecutive sequence of sentences in
an input document without considering potential contribu-
tion of each sentence for the prediction tasks of interest. For
EERE, this implies that irrelevant sentences for the relation
prediction of event mentions might be included in the inputs
for BERT-based models, potentially introducing noise into

the representations and impairing the prediction performance.
To this end, to model document-level context for EERE,

our intuition is to feed only on the important/relevant sen-
tences in an input document into transformer-based language
models to induce representation vectors for event relation
prediction. As such, we propose to design models that can
learn to select important context sentences for EERE to im-
prove representation learning with BERT. On the one hand,
sentence context selection helps compress an input document
into a shorter one (with only important context) that can
fit entirely into the length limit of transformer-based mod-
els to better leverage their representation learning capacity.
Further, important sentences with arbitrary distances in the
document can also be reached in this selection process to
provide effective information for the predictions in EERE.
Finally, context selection can avoid irrelevant sentences in
the inputs for transformer-based models to reduce noise in
the induced representations for EERE. In particular, starting
with the host sentences of the two event mentions of inter-
est, we will perform the sentence selection sequentially. The
total length of the selected sentences will be constrained to
not exceed the input limit in transformer-based models, thus
allowing the entire consumption and encoding of the models
for the selected context.

The major question in our models concerns the design of
the sentence selection component to reveal important context
for document-level representation learning with transformer-
based models for EERE. To this end, our vision is to choose
sentences in the input document that can be used to augment
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the host sentences of the event mentions to improve the rela-
tion prediction performance of transformer-based models. As
such, we propose to employ the performance of BERT-based
models for EERE tasks as the reward to guide the important
context selection. The policy-gradient method REINFORCE
(Williams 1992) can thus be leveraged to facilitate the selec-
tion training. In addition, to enrich the selection reward, we
introduce auxiliary rewards to capture the representational
similarity between the context sentences and the event trigger
host sentences. Our auxiliary rewards feature both contex-
tual and background knowledge-based representations that
focus on event information in the input documents to better
serve EERE. Finally, our experiments for both subevent and
temporal relation extractions demonstrate the state-of-the-art
performance of the proposed method for EERE.

Model
Following (Wang et al. 2020), to build event structures with
multi-faceted event-event relations for an input document,
we focus on two tasks of EERE, i.e., subevent and temporal
relation extraction. Given a pair of event mentions/triggers in
the input document, both tasks aim to predict some relation
between the two event mentions. For the subevent relation
detection task, we follow the label set in prior work with four
possible relations, i.e., PARENT-CHILD, CHILD-PARENT,
COREF, and NOREL (Hovy et al. 2013; Glavaš et al. 2014).
Based on the definition from (Hovy et al. 2013), an event
c2 is a child of the event c1 if c1 is a collector event with
a sequence of activities where c2 is one of the activity in
the sequence and c2 is spatially and temporally contained
within c1. For temporal event relation extraction (TRE), we
use the label set with temporal relations/orders of BEFORE,
AFTER, EQUAL, and VAGUE to be consistent with previous
work (Ning, Feng, and Roth 2017; Ning, Subramanian, and
Roth 2019; Han, Ning, and Peng 2019a; Wang et al. 2020).

Formally, let D be the input document with N sentences
S1, S2, . . . , SN (i.e., D = [S1, S2, . . . , SN ]). In EERE, we
are also given two event mention/trigger words e1 and e2 in
D as the input for event relation prediction. For convenience,
let Si and Sj be the host sentences of e1 and e2 in D (respec-
tively) with Si as the earlier sentence, i.e., i ≤ j. Here, i can
be equal to j to indicate that the two event mentions e1 and
e2 are presented in the same sentence.

To predict the relation between e1 and e2 in EERE, our
model aims to induce effective representation vectors for
the input document D. Transformer-based language models
(e.g., BERT) will be leveraged to entirely consume important
context sentences for e1 and e2 in D, thus fully exploiting
their ability for representation learning. As such, our goal
is to select a set of sentences C in D that contains the most
important context for the relation prediction between e1 and
e2, i.e., C ⊂ Scontext = {Sk ∈ D|k 6= i, k 6= j}. The event
host sentences Si and Sj will be augmented with those in
C to create a shorter document D′ (i.e., D′ = {Si, Sj} ∪
C) with important context information for e1 and e2 (i.e.,
the compressed document). In our approach, the number
of words in D′ is constrained to not exceed length limit
of transformer-based language models, thus allowing the
models to consumeD′ entirely to induce better representation

vectors. Accordingly, any important context sentences for the
relation prediction of e1 and e2 in D (i.e., including those
that are far away from Si and Sj) can be reached and packed
into D′ for effective BERT-based document encoding.

Event Relation Prediction Model
Given the selected important sentences in C, our event re-
lation prediction model MEERE first constructs the com-
pressed document D′ by concatenating the sentences in
{Si, Sj} ∪ C. The order of the sentences in D′ will fol-
low their appearance order in D. For convenience, let D′ =
w1, w2, . . . , wM be the concatenated word sequences with
M words in D′, i.e., D′ = w1, w2, . . . , wM . Also, let i1
and i2 be the indexes of the event mentions/trigger words
e1 and e2 (respectively) in D′ (i.e., e1 = wi1 , e2 = wi2).
As the length of D′ is constrained to follow the input limit
of transformer-based language models, we can then send
D′ into a BERT-based language model to obtain representa-
tion vectors for the words wi. In particular, following prior
work (Wang et al. 2020), we employ the RoBERTa model
(Liu et al. 2019) (with the limit of 512 sub-tokens for in-
put texts) to encode D′ in this work. Here, as each word
wi ∈ D′ might be split into multiple sub-tokens in RoBERTa,
we use the vector vi for the first sub-token of wi in the last
layer of RoBERTa as the representation vector for wi. To
this end, the compressed document D′ is transformed into
the vector sequence V = [v1, v2, . . . , vM ]. Afterward, to
perform event relation prediction, we form the overall repre-
sentation vector O = [vi1 , vi2 ,max pool(v1, v2, . . . , vM )]
to capture the document-level context information for e1 and
e2 in D. Finally, O will be fed into a two-layer feed-forward
network FF with softmax in the end to compute a distri-
bution P (·|e1, e2, D) = FF (O) over the possible relations
between e1 and e2 for our EERE problems. The negative
log-likelihood Lpred = − logP (y|e1, e2, D) will be utilized
as the loss to train MEERE in this work (y is the golden
relation for e1 and e2).

Important Sentence Selection Model
The goal of this section is to select the most important con-
text sentences C for the event relation prediction between
e1 and e2 in D. As such, our major motivation is to di-
rectly rely on the prediction performance of MEERE as
the sentence selection guidance for C. In particular, a sen-
tence Sk ∈ D is considered to involve important context
information for EERE if including Sk into the compressed
document D′ can lead to improved performance for the pre-
diction of MEERE over e1 and e2. To implement this idea,
our model first seeks to obtain a representation vector xk for
each sentence Sk ∈ Scontext to facilitate the identification
of important sentences. In our model, the representation of
Sk is conditioned on the event host sentences Si and Sj to
achieve customization for the EERE problems. As such, Sk

will be concatenated with Si and Sj , following their order
in D and using the token [SEP ] to separate sentences. The
resulting sequence is then prepended with the special token
[CLS] and sent into RoBERTa. The vector for [CLS] in the
last layer will serve as the representation vector xk for the
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sentence Sk. In the next step, the representation vectors for
the sentences in Scontext, i.e., X = {xk|Sk ∈ Scontext},
will be employed by subsequent components to perform im-
portant sentence selection. Here, we note that the RoBERTa
model in this selection component is different from those
in the prediction model SMEERE to allow the learning of
task-specific information in our model.

Our sentence selection model follows an iterative process
where a sentence in Scontext is chosen at each time step to be
included in the sentence setC. In particular,C is empty at the
beginning (step 0). At step t+ 1 (t ≥ 0), given t sentences
selected in previous steps, i.e., C = {Sk1

, Sk2
, . . . , Skt

},
we aim to choose a next sentence Skt+1 over the set of non-
selected sentences St

context = Scontext\{Sk1 , Sk2 , . . . , Skt}
to include into C. To summarize the selected sentences in
prior steps, we run a Long Sort-Term Memory Network
(LSTM) LSTM over the representation vectors xki of the
selected sentences. The hidden vector ht of LSTM at step
t will serve as the summarization vector of the previously
selected sentences Sk1

, Sk2
, . . . , Skt

(i.e., h0 = 0 at the be-
ginning). Afterward, the selection of Skt+1

at step t+1 will be
conditioned on the selected sentences in prior steps via their
sumarization vector ht. In particular, for each non-selected
sentence Su ∈ St

context, a selection score sct+1
u is computed

as a function of the representation vector xu of Su in X and
the summarization vector ht: sct+1

u = sigmoid(G([xu, ht]))
where G is a two-layer feed-forward network.

To this end, the sentence Su∗ with highest selection score,
i.e., Su∗ = argmaxSu∈St

context
sct+1

u , will be considered for
selection at this step. In particular, if including Su∗ into C
causes the the number of sub-tokens in the compressed doc-
ument D′ = {Si, Sj} ∪ C to exceed the 512 length limit of
RoBERTa (i.e., |D′| = |Si|+ |Sj |+

∑t
q=1 |Skq |+ |Su∗ | >

512), the selection process will terminate and Su∗ will be
discarded. Otherwise, the sentence selection will continue
and Su∗ will be chosen for Skt+1

to be added into C. The rep-
resentation vector xu∗ of Su∗ will then be fed into LSTM
to obtain the hidden vector ht+1 for the current step, i.e.,
ht+1 = LSTM(ht, xu∗), serving as the summarization vec-
tor for the next selection step. For convenience, we will con-
sider C as the sequence of selected sentences from Scontext

in the process, i.e., C = Sk1
Sk2

. . . SkT
where T is the num-

ber of selected sentences.

Training Sentence Selection Model
To employ the relation prediction performance of MEERE

over e1 and e2 as the sentence selection guidance, we propose
to utilize the REINFORCE algorithm (Williams 1992) that
can treat the prediction performance as the reward function
R(C) for the selected sentence sequence C to train the se-
lection processes for input documents. In addition, another
benefit of REINFORCE involves its flexibility that facilitates
the incorporation of different information sources from C to
enrich the reward function R(C) and provide more training
signals for the selection model. As such, for EERE problems,
we propose the following information sources to compute the
reward function R(C) for REINFORCE training:
• Performance-based Reward Rper(C): We compute

this reward via the relation prediction performance of the
model MEERE for the event mentions e1 and e2 in D. To
condition on the selected sentence sequence C, MEERE is
applied on the compressed short document D′ = {Si, Sj} ∪
C. As such, Rper(C) is set to 1 if MEERE correctly predict
the relation between e1 and e2; and 0 otherwise.
• Context-based Reward Rcontext(C): The motivation

for this reward is that a sentence should be preferred to
be included in C in the selection process if its contextual
semantics is more similar to those for the event mentions
e1 and e2 in the host sentences Si and Sj (i.e., our target
sentences). In particular, we expect that similar sentences
to e1 and e2 are more likely to discuss the the same or re-
lated events (e.g., coreferring event mentions), thus providing
more relevant contextual information to better understand the
event mentions e1 and e2 and their relation in D. To this end,
we propose to include the contextual similarity Rcontext(C)
between the given event mention pairs (e1, e2) and the se-
lected sentence sequence C into the overall reward function
R(C) for enrichment. In particular, the representation vectors
hcontexte and hcontextC for (e1, e2) and C are first computed
by performing the max-pooling operation over the represen-
tation vectors of their corresponding event trigger words in
V (i.e., obtained from the output of MEERE over the com-
pressed document D′): hcontexte = max pool(vi1 , vi2) and
hcontextC = max pool(vq|wq ∈ Cevent) where Cevent is
the set of event mentions/trigger words presented in the sen-
tences in C. Finally, the dot-product between hcontexte and
hcontextC is used as the context-based reward Rcontext(C) for
our model: Rcontext(C) = hcontexte hcontextC .

•Knowledge-based RewardRknow(C): This reward has
the same motivation as the context-based rewardRcontext(C)
where similar sentences to e1 and e2 should be promoted for
selection in C due to the potential to involve related events
with helpful information for event-event relation prediction.
However, instead of relying contextual semantics (i.e., via
representation vectors) to obtain similarity measures as in
Rcontext(C),Rknow(C) seeks to exploit external knowledge
resources to retrieve semantic word representations for the
similarity-based reward (i.e., knowledge-based semantics).
In particular, we propose to employ the commonsense knowl-
edge graph ConceptNet (Speer, Chin, and Havasi 2017) to
obtain the knowledge-based reward for our sentence selec-
tion model for EERE in this work. The graph structure in
ConceptNet captures commonsense relations between con-
cepts (including events such as earthquake, tsunami) from
which some relations are directly related to our subevent and
temporal extraction problems (Liu et al. 2020).

As such, to obtain representation vectors for words based
on the commonsense knowledge in ConceptNet, we em-
ploy ConceptNet Numberbatch (CN) (Speer, Chin, and
Havasi 2017), a set of embedding vectors for words that
are trained over the commonsense connections between con-
cepts in ConceptNet. Adjusted from Word2Vec and Glove,
CN can encode commonsense knowledge/relation informa-
tion into word embedding vectors to support knowledge-
based similarity computation between words. For conve-
nience, let A = [a1, a2, . . . , aM ] be the ConceptNet Num-
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berbatch word embeddings for the words in the compressed
document D′ = w1, w2, . . . , wM respectively. Here, if a
word wq does not have its corresponding embedding in
CN, we simply set its vector aq to zero. Based on such
word embeddings, we then compute the representation vec-
tors hknowe and hknowC for the input event pairs (e1, e2) and
selected sequence C using the max-pooling operation as
done with Rcontext(C), i.e., hknowe = max pool(ai1 , ai2)
and hknowC = max pool(aq|wq ∈ Cevent). Finally, the
knowledge-based reward Rknow(C) will be computed via
the similarity between the knowledge-based representation
vectors hknowe and hknowC : Rknow(C) = hknowe hknowC .

Consequently, the overall reward function R(C) to
train our context selection module with REINFORCE for
EERE is: R(C) = αperR

per(C) + αcontextR
context(C) +

αknowR
know(C) (αper, αcontext, and αknow are trade-off

parameters). Given the reward function, REINFORCE
train the sentence selection model by minimizing the
negative expected reward R(C) over the possible choices
of C: Lselect = −EC′∼P (C′|e1,e2,D)[R(C

′)]. As such,
the policy gradient can be estimated by: ∇Lselect =
−EC′∼P (C′|e1,e2,D)[(R(C

′) − b)∇ logP (C ′|e1, e2, D)].
Using one roll-out sample, we can further es-
timate ∇Lselect via the selected sequence C:
∇Lselect = −(R(C) − b)∇ logP (C|e1, e2, D) where
b is the baseline to reduce variance. In our model, we obtain
the baseline b via: b = 1

|B|
∑|B|

q=1R(C
q), where |B| is the

mini-batch size and Cq is the selected sentence sequence for
the q-th sample in the mini-batch. Finally, the probability of
the selected sequence C is computed via: P (C|e1, e2, D) =∏

t=0..T−1 P (Skt+1
|e1, e2, D, Sk≤t

) where Sk≤t
=

Sk1
, Sk2

, . . . , Skt
and P (Skt+1

|e1, e2, D, Sk≤t
) is

computed via the softmax function over the se-
lection scores for the sentences in St

context at se-
lection step t + 1: P (Skt+1

|e1, e2, D, Sk≤t
) =

exp(sct+1
kt+1

)/
∑

Su∈St
context

exp(sct+1
u ).

In this work, we train the relation prediction model
MEERE and the sentence selection component in an alter-
nate training manner. At each update step with one batch of
training data (i.e., one iteration), the current sentence selec-
tion component is used to choose the important sentence set
C for each example (with an input document D and given
event trigger words e1 and e2) in the batch, thus generating
the compressed documents D′. The parameters for the rela-
tion prediction model MEERE will then be updated using
the gradient of Lpred over the compressed documents for the
current batch. Afterward, the parameters of the selection com-
ponent can be updated using the gradient of Lselect in which
the performance of the current prediction model MEERE is
employed to compute the reward function at this step.

Experiments
Datasets: For subevent relation extraction, we evaluate our
models on the HiEve dataset (Glavaš et al. 2014) to make
it consistent with prior work (Wang et al. 2020; Zhou et al.
2020). HiEve involves subevent and coreference relation an-
notation for events over 100 news articles. For temporal event

Model F1 score
PC CP Avg.

BigBird 65.6 53.7 59.6
Reformer 64.8 55.0 59.9
Longformer 65.7 54.5 60.1
Hierachical 63.7 57.1 60.4
Neighbor Sentences 66.8 58.9 62.8
Host Sentences-BERT 40.6 40.7 40.6
Host Sentences-RoBERTa 62.1 57.3 59.7
StructLR (Glavaš et al. 2014) 52.2 63.4 57.7
TACOLM (Zhou et al. 2020) 48.5 49.4 48.9
Joint Learning (Wang et al. 2020) 62.5 56.4 59.5
SCS-EERE (ours) 68.7 63.2 65.9

Table 1: Model performance on test data of HiEve for
subevent relation extraction. We focus on the performance for
PARENT-CHILD (PC), CHILD-PARENT (CP), and their
micro-average to be consistent with prior state-of-the-art
model (Wang et al. 2020).

relation extraction, we employ the popular dataset MATRES
(Ning, Wu, and Roth 2018c) for model evaluation as in previ-
ous studies (Han et al. 2019b; Wang et al. 2020; Zhao, Lin,
and Durrett 2021; Mathur et al. 2021). In particular, MA-
TRES annotates 275 documents for four temporal relations,
i.e., BEFORE, AFTER, EQUAL, and VAGUE. In addition, fol-
lowing recent work (Naik, Breitfeller, and Rose 2019; Mathur
et al. 2021), we utilize the TDDMan and TDDAuto datasets
in the TDDiscourse corpus (Naik, Breitfeller, and Rose 2019)
to further evaluate the EERE models. TDDMan and TD-
DAuto are datasets for temporal event relation extraction
on English articles that emphasize relations between event
pairs with more than one sentence apart, thus making it crit-
ical to model global document-level context for successful
predictions (Naik, Breitfeller, and Rose 2019).

For compatible comparison, we utilize the same data splits
as in prior work for the considered datasets. In particular,
for HiEve, we employ the split with 80 documents for train-
ing (with 35,001 event pairs) and 20 documents for testing
(with 7,093 event pairs) as in (Wang et al. 2020). For MA-
TRES, we apply the standard spit as in prior work (Han, Ning,
and Peng 2019a; Ning, Subramanian, and Roth 2019; Wang
et al. 2020), featuring 183/20 documents with 6332/827 event
pairs for the training/test portions (respectively). MATRES
also reserves 72 documents for development purpose (Han,
Ning, and Peng 2019a; Wang et al. 2020). Finally, inherited
from (Naik, Breitfeller, and Rose 2019; Mathur et al. 2021),
our data splits involve 4000/650/1500 and 32609/1435/4258
event pairs in the training/development/test data for the TD-
DMan and TDDAuto datasets (respectively). We fine-tune
the hyper-parameters in our model using the development set
of the MATRES dataset. The selected values are applied for
all datasets in this work.
Baselines: We compare our model for important sentence
context selection for EERE (called SCS-EERE) with other
variants of transformer-based language models that can en-
code input texts with longer length than the limit in RoBERTa.
In particular, we consider three popular language models of
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Model P R F1
BigBird 74.4 84.4 79.1
Reformer 75.1 84.3 79.4
Longformer 76.2 83.8 79.8
Hierachical 74.2 83.1 78.4
Neighbor Sentences 74.7 86.5 80.2
Host Sentences-BERT 77.3 79.0 78.1
Host Sentences-RoBERTa 76.8 80.0 78.4
SP+ILP (Ning et al. 2017) 71.3 82.1 76.3
BiLSTM (Cheng and Miyao 2017) 59.5 59.5 59.5
CogCompTime (Ning et al. 2018b) 61.6 72.5 66.6
Perceptron (Ning et al. 2018c) 66.0 72.3 69.0
(Goyal and Durrett 2019) - - 68.6
BiLSTM+MAP (Han et al. 2019a) - - 75.5
CSE+ILP (Ning et al. 2019) 71.3 82.1 76.3
Joint Learning (Wang et al. 2020) 73.4 85.0 78.8
DEER (Han, Ren, and Peng 2020) - - 79.3
(Zhao, Lin, and Durrett 2021) 75.1 84.8 79.6
SMTL (Ballesteros et al. 2020) - - 81.6
TIMERS (Mathur et al. 2021) 81.1 84.6 82.3
SCS-EERE (ours) 78.8 88.5 83.4

Table 2: Model performance on test data of MATRES for
temporal event relation extraction.

this type: BigBird (Zaheer et al. 2020) (using sparse self-
attention), Reformer (Kitaev, Kaiser, and Levskaya 2020)
(using locality-sensitive hashing to replace dot-product atten-
tion), and Longformer (Beltagy, Peters, and Cohan 2020)
(using local self-attention with global task-aware attention).
In addition, we also consider two typical approaches for
document-context modeling with transformer-based language
models as the baselines: Hierarchical (Adhikari et al. 2019)
that splits a document into multiple chunks and encode
them separately with RoBERTa. A BiLSTM model is then
employed to aggregate the representations of the chunks
to compute document representations; and Neighbor Sen-
tences that augments the event host sentences (i.e., Si and
Sj) with the sentences immediately preceding and following
the first and second input event triggers in the documents
for RoBERTa. Note that for BigBird, Reformer, Longformer,
and Neighbor Sentences, the sentences between the event
host sentences will be first included into the input context
for the models. The remaining quotas for input length of the
models will then be distributed evenly for the preceding and
following context of the event host sentences. Further, we
include the baselines that only use the event host sentences
Si and Sj (i.e., via concatenation if i 6= j) as the input for
the transformer-based models to learn representation vectors
(called “Host Sentences”). Following (Mathur et al. 2021), we
examine both RoBERTa (Liu et al. 2019) and BERT (Devlin
et al. 2019) for these baselines (leading to Host Sentences-
RoBERTa and Host Sentences-BERT) to serve as strong
baselines. Finally, for each considered dataset, we also report
the results of previous work that has reported their model
performance on the datasets. In particular, the state-of-the-art
performance on HiEve is due to the joint constrained learning
method in (Wang et al. 2020) while the best reported perfor-

Model TDD TDD
Man Auto

BigBird 43.3 65.3
Reformer 43.7 65.9
Longformer 44.2 66.8
Hierachical 42.3 64.9
Neighbor Sentences 44.7 67.1
Host Sentences-BERT 37.5 62.3
Host Sentences-RoBERTa 37.1 61.6
SP+ILP (Ning et al. 2017) 23.8 46.1
BiLSTM (Cheng and Miyao 2017) 24.3 51.8
BiLSTM+MAP (Han et al. 2019a) 41.1 57.1
Deep SSVM (Han et al. 2019b) 41.0 58.8
UCGraph+BERT (Liu et al. 2021) 43.4 61.2
TIMERS (Mathur et al. 2021) 45.5 71.1
SCS-EERE (ours) 51.1 76.7

Table 3: Model performance (F1) on test data of TDDMan
and TDDAuto.

mance for MATRES, TDDMan, and TDDAuto are recently
achieved in the TIMERS system (Mathur et al. 2021).
Comparison: Tables 1, 2, and 3 show the performance of
the models (F1 scores) on the HiEve, MATRES, TDDMan,
and TDDAuto datasets. Here, the performance for the models
in previous work (i.e., those accompanied with citations) is
inherited from the original papers. An observation from the
tables is that methods with document-level context modeling
(i.e., BigBird, Reformer, Longformer, Hierarchical, Neighbor
Sentences, SCS-EERE) tend to perform better than those
with only event host sentence encoding (i.e., Host Sentence-
RoBERTa) across different tasks and datasets. The perfor-
mance gap between these models are larger in TDDMan and
TDDAuto as they involve more sentences between the event
host sentences Si and Sj than other datasets. In all, such per-
formance differences clearly demonstrate the benefits of cap-
turing document-level context for EERE. In addition, among
such document-level baseline models, the proposed method
SCS-EERE achieves significantly better performance (i.e.,
p < 0.01) with substantial performance gap, thus highlight-
ing the effectiveness of learning to select important context
sentences in SCS-EERE. Finally, SCS-EERE significantly
outperforms previous models (with p < 0.01) over different
tasks and datasets, leading to the state-of-the-art performance
on those datasets.
Ablation Study: In this section, we aim to ablate the major
components in the SCS-EERE model and evaluate the per-
formance of the remaining model to understand the compo-
nents’ contribution. In particular, we consider the following
ablated models for SCS-EERE: (1) “- Multiple-step Selec-
tion”: In our context selection component, multiple sentence
selection steps are performed where the hidden vector of the
LSTM network at each step is treated as a summarization
for previously selected sentences, providing a condition for
sentence selection in the next step for C. To assess the ne-
cessity of the multi-step selection with LSTM, we instead
examine a one-step selection strategy. In particular, we only
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Model MATRES HiEve
SCS-EERE (full) 83.4 65.9
-Multiple-step Selection 80.4 60.4
-Performance-based Reward 80.9 63.4
-Context-based Reward 81.0 64.2
-Knowledge-based Reward 81.2 62.5
Most Context-based Similar 81.2 63.5
Most Knowledge-based Similar 80.8 62.3

Table 4: Performance (F1 scores) of the ablated models. The
results on HiEve are the micro-average of PARENT-CHILD
and CHILD-PARENT.

perform the sentence selection once where the the top Q
sentences with highest selection scores from the first step
(i.e., sc1u for Su ∈ Scontext) are selected to form the con-
text set C (thus eliminating LSTM). Here, Q is chosen such
that the resulting compressed document D′ can occupy the
input length limit of RoBERTa as much as possible; and
(2) “- Performance-based Reward”, “- Context-based Re-
ward”, and “- Knowledge-based Reward”: These models
exclude the reward components Rper(C), Rcontext(C), and
Rknowledge(C) (respectively) from the overall reward R(C)
for sentence selection to study their effectiveness.

To further demonstrate the benefit of learning to select im-
portant sentences for EERE, we evaluate the typical heuristics
to choose context sentences for the target event mentions e1
and e2 in a document D. The key property of such heuristics
is that they directly suggest a set of context sentencesC given
the input event mentions, thus not involving any training step.
The event host sentences Si and Sj will then be concatenated
with the suggested context sentence following their order in
D and length limit in RoBERTa to produce D′ for RoBERTa.
As such, we explore the following suggestion heuristics for
evaluation: (1) Most Context-based Similar: This baseline
selects the top sentences Su ∈ Scontext that bear the high-
est contextual similarity with the input event mentions e1
and e2. In particular, motivated by the context-based reward
Rcontext(C), for each sentence Su ∈ Scontext, we feed it
into the RoBERTa model of MEERE and the hidden vector
of the [CLS] token in the last layer is used as the representa-
tion vector for Su. Afterward, the cosine similarity between
Su’s representation vector and the input event mention repre-
sentation hcontexte will serve as the contextual similarity for
sentence selection in this baseline; and (2) Most Knowledge-
based Similar: This baseline also choose the top sentences
in Scontext with highest similarity to e1 and e2; however, the
representation vectors for similarity will be computed via the
knowledge-based representations as in the reward Rknow(C)
(i.e., hknowe for the event mentions). In particular, the repre-
sentation for each sentence in Su ∈ Scontext will be based
on the max-pooled vector of the ConceptNet Numberbatch
embeddings for the event triggers in Su.

Table 4 reports the performance of the ablated models on
the test data of MATRES and HiEve. As can be seen, re-
moving multi-step selection or any reward component (i.e.,
performance-, context-, and knowledge-based) significantly
hurts the overall performance, thus clearly demonstrating

their importance for sentence selection in SCS-EERE. The
largest performance drop is due to the elimination of multi-
step selection, suggesting that selecting sentences incremen-
tally and conditioning on previously selected sentences are
critical to document-context modeling for EERE. In addition,
compared to heuristics-based selection methods (i.e., Most
Context-based Similar and Most Knowledge-based Similar),
the superior performance of SCS-EERE clearly highlights
the advantage to learn to select context sentences with REIN-
FORCE for EERE.

Related Work
Early methods for event temporal relation extraction have
been rule-based where syntax, knowledge databases, regular
expressions are leveraged to design temporal rules (Hagège
and Tannier 2007; Strötgen and Gertz 2010; Llorens, Saquete,
and Navarro 2010). Afterward, machine learning models have
been applied to both event temporal relation extraction (Mani
et al. 2006; Ning, Feng, and Roth 2017; Leeuwenberg and
Moens 2017; Ning et al. 2018b; Tran, Nguyen, and Nguyen
2021) and subevent relation extraction (Glavaš et al. 2014;
Araki et al. 2014; Aldawsari and Finlayson 2019) to exploit
various contextual features for input texts (i.e., feature engi-
neering). To alleviate feature engineering, recent works have
explored deep learning models to induce representations for
EERE from data, i.e., representation learning for TRE (Dli-
gach et al. 2017; Tourille et al. 2017; Cheng and Miyao 2017;
Meng, Rumshisky, and Romanov 2017) and SRE (Nguyen,
Meyers, and Grishman 2016; Zhou et al. 2020; Tran, Phung,
and Nguyen 2021). Approaches to improve deep learning
models for EERE in prior work include joint inferring events
and temporal relations (Han et al. 2019b; Han, Ning, and
Peng 2019a) and leveraging transformer-based language mod-
els for input texts (Ning, Subramanian, and Roth 2019; Ross,
Cai, and Min 2020; Wang et al. 2020; Phung, Nguyen, and
Nguyen 2021; Phung et al. 2021). However, none of exist-
ing work explores context sentence selection to effectively
encode long input documents with the limited input length
of transformer-based language models for EERE as we do in
this work.

Conclusion
We present a novel model for event-event relation extraction
that learns to select the most important context sentences in
a document and directly use them to induce representation
vectors with transformer-based language models. Relevant
context sentences are selected sequentially in our model that
is conditioned on the summarization vector for the previously
selected sentences in the sequence. We propose three novel
reward functions to train our model with REINFORCE. Our
extensive experiments show that the proposed model can
select important context sentences that are far away from
the given event mentions and achieve state-of-the-art perfor-
mance for subevent and temporal event relation extraction. In
the future, we plan to extend our proposed method to other
related tasks in event structure understanding (e.g., for joint
event and event-event relation extraction).
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