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Abstract
Information retrieval (IR) is essential in search engines and
dialogue systems as well as natural language processing tasks
such as open-domain question answering. IR serve an impor-
tant function in the biomedical domain, where content and
sources of scientific knowledge may evolve rapidly. Although
neural retrievers have surpassed traditional IR approaches such
as TF-IDF and BM25 in standard open-domain question an-
swering tasks, they are still found lacking in the biomedical
domain. In this paper, we seek to improve information retrieval
(IR) using neural retrievers (NR) in the biomedical domain,
and achieve this goal using a three-pronged approach. First,
to tackle the relative lack of data in the biomedical domain,
we propose a template-based question generation method that
can be leveraged to train neural retriever models. Second, we
develop two novel pre-training tasks that are closely aligned to
the downstream task of information retrieval. Third, we intro-
duce the “Poly-DPR” model which encodes each context into
multiple context vectors. Extensive experiments and analysis
on the BioASQ challenge suggest that our proposed method
leads to large gains over existing neural approaches and beats
BM25 in the small-corpus setting. We show that BM25 and
our method can complement each other, and a simple hybrid
model leads to further gains in the large corpus setting.

1 Introduction
Information retrieval (IR) is widely used in commercial
search engines and is an active area of research for natu-
ral language processing tasks such as open-domain question
answering (ODQA). IR has also become important in the
biomedical domain due to the explosion of information avail-
able in electronic form (Shortliffe et al. 2014). Biomedical
IR has traditionally relied upon term-matching algorithms
(such as TF-IDF and BM25 (Robertson and Zaragoza 2009)),
which search for documents that contain terms mentioned in
the query. For instance, the first example in Table 1 shows that
BM25 retrieves a sentence that contains the word “Soluvia”
from the question. However, term-matching suffers from fail-
ure modes, especially for terms which have different mean-
ings in different contexts (example 2), or when crucial se-
mantics from the question are not considered during retrieval
(for instance, in the third example when the term “how large”
is not reflected in the answer retrieved by BM25).
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Since these failure modes can have a direct impact on
downstream NLP tasks such as open-domain question an-
swering (ODQA), there has been interest in developing neural
retrievers (NR) (Karpukhin et al. 2020). NRs which represent
query and context as vectors and utilize similarity scores for
retrieval, have led to state-of-the-art performance on ODQA
benchmarks such as Natural Questions (Kwiatkowski et al.
2019) and TriviaQA (Joshi et al. 2017). Unfortunately, these
improvements on standard NLP datasets are not observed in
the biomedical domain with neural retrievers.

Recent work provides useful insights to understand a few
shortcomings of NRs. Thakur et al. (2021) find NRs to be
lacking at exact word matching, which affects performance
in datasets such as BioASQ (Tsatsaronis et al. 2015) where
exact matches are highly correlated with the correct answer.
Lewis, Stenetorp, and Riedel (2021) find that in the Natural
Questions dataset, answers for 63.6% of the test data overlap
with the training data and DPR performs much worse on the
non-overlapped set than the test-train overlapped set. In this
work, we found this overlap to be only 2% in the BioASQ
dataset, which could be a potential reason for lower perfor-
mance of NR methods. We also discovered that NRs produce
better representations for short contexts that for long contexts
– when the long context is broken down into multiple shorter
contexts, performance of NR models improves significantly.

In this paper, we seek to address these issues and improve
the performance of neural retrieval beyond traditional meth-
ods for biomedical IR. While existing systems have made
advances by improving neural re-ranking of retrieved candi-
dates (Almeida and Matos 2020; Pappas, Stavropoulos, and
Androutsopoulos 2020), our focus is solely on the retrieval
step, and therefore we compare our neural retriever with
other retrieval methods. Our method makes contributions to
three aspects of the retrieval pipeline – question generation,
pre-training, and model architecture.

Our first contribution is the “Poly-DPR” model architec-
ture for neural retrieval. Poly-DPR builds upon two recent
developments: Poly-Encoder (Humeau et al. 2020) and Dense
Passage Retriever (Karpukhin et al. 2020). In DPR, a ques-
tion and a candidate context are encoded by two models
separately into a contextual vector for each, and a score for
each context can be computed using vector similarity. On the
other hand, Poly-Encoder represents the query by K vectors
and produces context-specific vectors for each query. Instead,
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Question Answer Retrieved Context (BM25) Retrieved Context(DPR)
What is Solu-
via?

Soluvia by Becton Dickinson is a mi-
croinjection system for intradermal de-
livery of vaccines.

The US FDA approved Sanofi Pasteur’s
Fluzone Intradermal influenza vaccine that
uses a new microinjection system for intra-
dermal delivery of vaccines (Soluvia, Bec-
ton Dickinson).

Internet-ordered viagra (sildenafil
citrate) is rarely genuine.

Is BNN20
involved in
Parkinson’s
disease?

BNN-20 could be proposed for treat-
ment of PD

Rare causes of dystonia parkinsonism. BNN-20 could be proposed for
treatment of PD

How large is a
lncRNAs?

lncRNAs are defined as RNA tran-
scripts longer than 200 nucleotides that
are not transcribed into proteins.

lncRNAs are closely related with the occur-
rence and development of some diseases.

An increasing number of long non-
coding RNAs (lncRNAs) have been
identified recently.

Table 1: Illustrative examples from the BioASQ challenge along with the context retrieved by two methods BM25 and DPR.

our approach Poly-DPR represents each context by K vec-
tors and produces query-specific vectors for each context. We
further design a simple inference method that allows us to
employ MIPS (Shrivastava and Li 2014) during inference.

Next, we develop “Temp-QG”, a template-based ques-
tion generation method which helps us in generating a large
number of domain-relevant questions to mitigate the train-
test overlap issue. TempQG involves extraction of templates
from in-domain questions, and using a sequence-to-sequence
model (Sutskever, Vinyals, and Le 2014) to generate ques-
tions conditioned on this template and a text passage.

Finally, we design two new pre-training strategies: “ETM”
and “RSM” that leverage our generated dataset to pre-
train Poly-DPR. These tasks are designed to mimic domain-
specific aspects of IR for biomedical documents which con-
tain titles and abstracts, as opposed to passage retrieval from
web pages (Chang et al. 2020). Our pre-training tasks are
designed to be used for long contexts and short contexts. In
both tasks, we utilize keywords in either query or context,
such that the capacity of neural retrievers to match important
keywords can be improved during training.

Armed with these three modules, we conduct a comprehen-
sive study of document retrieval for biomedical texts in the
BioASQ challenge. Our analysis demonstrates the efficacy
of each component of our approach. Poly-DPR outperforms
BM25 and previous neural retrievers for the BioASQ chal-
lenge, in the small-corpus setting. A hybrid method, which is
a simple combination of BM25 and NR predictions, leads to
further improvements. We perform a post-hoc error analysis
to understand the failures of BM25 and our Poly-DPR model.
Our experiments and analysis reveal aspects of biomedical
information retrieval that are not shared by generic open-
domain retrieval tasks. Findings and insights from this work
could benefit future improvements in both term-based as well
as neural-network based retrieval methods.

2 Related Work
Neural Retrievers aim to retrieve relevant context from a
large corpus given a query. NRs can be clubbed into two
architectural families – cross-attention models (Nogueira and
Cho 2019; MacAvaney et al. 2019; Yang et al. 2019), and

dual-encoder models which employ separate encoders to en-
code the query and context (Karpukhin et al. 2020; Chang
et al. 2020). The cross-attention model requires heavy com-
putation and can not be directly used in a large corpus setting,
while dual-models can allow pre-computation of context rep-
resentations and the application of efficient search methods
such as MIPS (Shrivastava and Li 2014) during inference. To
take advantage of both models, Poly-Encoder (Humeau et al.
2020) uses K representations for each query and an attention
mechanism to get context-specific query representations. Col-
BERT (Khattab and Zaharia 2020) extends the dual-encoder
architecture by performing a token-level interaction step over
the query and context representations, but requires significant
memory for large corpora (Thakur et al. 2021).

Pre-training Tasks for NR. Masked language model-
ing (MLM) and next-sentence prediction introduced in
BERT (Devlin et al. 2019) have led to a paradigm shift in the
training of neural network models for multiple NLP tasks. For
text retrieval, pre-training tasks that are more aligned with the
retrieval task have been developed. Chang et al. (2020) pro-
pose Body First Selection (BFS), and Wiki Link Prediction
(WLP) for document retrieval. Lee, Chang, and Toutanova
(2019) propose an Inverse Cloze Task (ICT) task in which a
random sentence drawn from a passage acts as a query and
the remaining passage as a relevant answer. Guu et al. (2020)
show that ICT effectively avoids the cold-start problem.

Question Generation (QG) methods have become sophis-
ticated due to the advances in sequence-to-sequence mod-
eling (Sutskever, Vinyals, and Le 2014); QG is considered
an auxiliary pre-training task for question answering mod-
els (Alberti et al. 2019). One set of QG methods can be
categorized as ‘Answer-Aware’ QG (Du and Cardie 2018;
Zhao et al. 2018; Dong et al. 2019), in which an answer ex-
traction model first produces potential answers, followed by
a question generator which generates a question given the
context and a potential answer. Alberti et al. (2019) utilizes
cycle consistency to verify whether a question-answering
model predicts the same answer to the generated question.
A second set of QG methods generate questions without
conditioning the generator using the answer – for instance,
Lopez et al. (2020) propose end-to-end question generation
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based on the GPT-2 model, while Lewis, Denoyer, and Riedel
(2019); Fabbri et al. (2020); Banerjee, Gokhale, and Baral
(2021) generate questions using linguistic and semantic tem-
plates. Question paraphrasing (Hosking and Lapata 2021)
is a related approach for creating augmented training sam-
ples. Question generation has also been explored in visual
question answering, with end-to-end methods (Li et al. 2018;
Krishna, Bernstein, and Fei-Fei 2019) and template-based
methods (Banerjee et al. 2021). While our proposed ques-
tion generation method is also template-based, instead of
using a pre-defined list of templates designed by humans, our
template extraction process is automated.

3 Poly-Dense Passage Retriever
3.1 Preliminaries
Dense Passage Representation (DPR) (Karpukhin et al.
2020) is a neural retriever model belonging to the dual-model
family. DPR encodes the query q and the context c into dense
vector representations:

vq = Eq(q)[CLS], vc = Ec(c)[CLS]. (1)

where Eq and Ec are BERT (Devlin et al. 2019) models
which output a list of dense vectors (h1, . . . , hn) for each
token of the input, and the final representation is the vec-
tor representation of special token[CLS]. Eq and Ec are
initialized identically and are updated independently while
being trained with the objective of minimizing the negative
log likelihood of a positive (relevant) context. A similarity
score between q and each context c is calculated as the inner
product between their vector representations:

sim(q, c) = vTq vc. (2)

Poly-Encoder (Humeau et al. 2020) also uses two en-
coders to encode query and context, but the query is rep-
resented by K vectors instead of a single vector as in DPR.
Poly-Encoder assumes that the query is much longer than
context, which is in contrast to information retrieval and open-
domain QA tasks in the biomedical domain, where contexts
are long documents and queries are short and specific.

3.2 Poly-DPR: Poly-Dense Passage Retriever
We integrate Poly-Encoder and DPR to use K vectors to
represent context rather than query. In particular, the con-
text encoder includes K global features (m1,m2, · · · ,mk),
which are used to extract representation vic, ∀i ∈ {1 · · · k}
by attending over all context tokens vectors.

vic =
∑
n

wmi
n hn, where (3)

(wmi
1 . . . , wmi

n ) = softmax(mT
i · h1, . . . ,m

T
i · hn). (4)

After extracting K representations, a query-specific con-
text representation vc,q is computed by using the attention
mechanism:

vc,q =
∑
k

wkv
k
c , where (5)

(w1, . . . , wk) = softmax(vTq · v1c , . . . , vTq · vkc ). (6)

MiR-1 influences susceptibility 
to cardiac arrhythmias after 

myocardial infarction

TEMPLATE 
SELECTION

QUESTION 
GENERATION (T5)

is ____ influenced by ____ ?

is myocardial 
infarction influenced 

by MiR-1 ?

TEMPLATE

TEXT

QUESTION

Figure 1: Overview of Template-Based Question Generation.

Although we can pre-compute K representations for each
context in the corpus, during inference, a ranking of the con-
text needs to be computed after obtaining all query-specific
context representations. As such, we can not directly use
efficient algorithms such as MIPS (Shrivastava and Li 2014).
To address this challenge, we use an alternative similarity
function for inference – the score siminfer is computed by
obtaining K similarity scores for the query and each of the
K representations, and take the maximum as the similarity
score between context and query:

siminfer(q, c) = max(vTq · v1c , . . . , vTq · vkc ). (7)

Using this similarity score, we can take advantage of MIPS
to find the most relevant context to a query.

In sum, Poly-DPR differs from Poly-Encoder in two major
aspects: (1) K pre-computed representations of context as
opposed to K representations computed during inference,
and (2) a faster similarity computation during inference.

3.3 Hybrid Model
In this paper, we also explore a hybrid model that combines
the traditional approach of BM25 and neural retrievers. We
first retrieve the top-100 candidate articles using BM25 and a
neural retriever (Poly-DPR) separately. The scores produced
by these two methods for each candidate are denoted by
SBM25 and SNR respectively and normalized to the [0, 1]
range to obtain S′

BM25 and S′
NR. If a candidate article is

not retrieved by a particular method, then its score for that
method is 0. For each article, we get a new score:

Shybrid = S′
BM25 + S′

NR. (8)

Finally, we re-rank candidates based on Shybrid and pick the
top candidates – for BioASQ performance is evaluated on
the top-10 retrieved candidates.

4 Template Based Question Generation
We propose a template-based question generation approach –
TempQG, that captures the style of the questions in the target
domain. Our method consists of three modules: template
extraction, template selection, and question generation.

Template Extraction aims to extract unique templates
from which the questions in the training set can be generated.
We first use bio-entity taggers from Spacy (https://spacy.io/)
to obtain a set of entities from the question. We replace non-
verb entities having a document frequency less than k with an
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ETM 
Expanded Title Mapping

NR

Keyword
Extraction

Title (T): 

Left Ventricular Hypertrophy in Patients with Nephronic
Arterial Hypertension

K: HLVH, ChGN, AH...

 Abstract  (A):

Incidence and geometric peculiarities of hypertrophy of the
left ventricle of the heart (HLVH) were studied on the basis
of findings from the echocardiographic investigation done in
86 patients with chronic glomerulonephritis (ChGN) with
arterial hypertension 

S: Incidence and geometric peculiarities
of hypertrophy of the left ventricle of the
...

TF-IDF
Importance

Scoring
W: [0.017, 0.009, 0.024, 0.028,
0.002, 0.030, ..]

S': Incidence geometric peculiarities hypertrophy GT: A

RSM 
Reduced Sentence Mapping

NR

GT: A

Figure 2: Poly-DPR is pre-trained on two novel tasks designed specifically for information retrieval applications. This figure
illustrates the sample generation pipeline using the title and abstract from each sample in BioASQ.

underscore (_) – this prevents common entities such as “dis-
ease", “gene" from being replaced. For e.g., given the ques-
tion “Borden classification is used for which disease?”, the
entity tagger returns [“Borden classification”, “disease”],
but only the first entity clears our frequency-based criteria.
As a result, the generated template is “_ is used for which dis-
ease?”. This process gives us a preliminary list of templates.
We then use a question similarity model (which returns a
score between [0, 1]) to compute the pairwise score between
all templates. Templates are assigned to a cluster if they have
a minimum similarity of 0.75 with existing templates of a
cluster. Once clusters have been formed, we choose either
the sentence with the smallest or second-smallest length as
the representative template. These representative templates
are used for question generation.

Template Selection. Given a text passage, we create a text-
template dataset and train the PolyDPR architecture to re-
trieve a relevant template. After the model is trained, we feed
new text inputs to the model, obtain query encoding and com-
pute the inner product with each template. Templates with
maximum inner product are selected to be used for QG.

Question Generation (QG). We use a T5 (Raffel et al.
2020) model for generating questions, by using text and
template as conditional inputs. To distinguish between these
two inputs, we prepend each with the word “template” or
“context”, resulting in an input of the form: {“template” :
template, “context” : text}. Figure 1 shows an illustrative
example for the template-based question generation method
abbreviated as TempQG. The context used for generating the
questions are any two consecutive sentences in the abstract.
Given such a context, we first select 10 unique templates and
concatenate each template with the context independently.
These are used by the question generation model to produce
10 initial questions; duplicate questions are filtered out.

5 Pre-training for Neural Retrieval
Our aim is to design pre-training tasks specifically for the
biomedical domain since documents in this domain bear the
<title, abstract, main text> structure of scientific literature.
This structure is not commonly found in documents such
as news articles, novels, and text-books. Domain-specific
pre-training tasks have been designed by Chang et al. (2020)
for Wikipedia documents which contains hyperlinks to other

Wikipedia documents. However most biomedical documents
do not contain such hyperlinks, and a such, pre-training strate-
gies recommended by Chang et al. (2020) are incompatible
with structure of biomedical documents.

Therefore, we propose Expanded Title Mapping (ETM)
and Reduced Sentence Mapping (RSM), designed specifi-
cally for biomedical IR, to mimic the functionality required
for open-domain question answering. An overview is shown
in Figure 2. The proposed tasks work for both short as well
as long contexts. In biomedical documents, each document
has a title (T ) and an abstract (A). We pre-train our models
on ETM or RSM and then finetune them for retrieval.

Expanded Title Mapping (ETM). For ETM, the model is
trained to retrieve an abstract, given an extended title T ′ as
a query. T ′ is obtained by extracting top-m keywords from
the abstract based on the TF-IDF score, denoted as K =
{k1, k2, · · · , km}, and concatenating them with the title as:
T ′ = {T, k1, k2, · · · , km}. The intuition behind ETM is
to train the model to match the main topic of a document
(keywords and title) with the entire abstract.

Reduced Sentence Mapping (RSM). RSM is designed to
train the model to map a sentence from an abstract with the
extended title T ′. For a sentence S from the abstract, we
first get the weight of each word W = {w1, w2, · · · , wn}
by the normalization of TF-IDF scores of each word. We
then reduce S to S′ by selecting the words with the top-m
corresponding weights. The intuition behind a reduced sen-
tence is to simulate a real query which usually is shorter than
a sentence in a PubMed abstract. Furthermore, S′ includes
important words based on the TF-IDF score, which is similar
to a question including keywords.

6 Experiments
Dataset. We focus on the document retrieval task in
BioASQ8 (Tsatsaronis et al. 2015) with a goal of retriev-
ing a list of relevant documents to a question. This dataset
contains 3234 questions in the training set and five test sets
(B1, B2, B3, B4, B5) with 100 questions each. Each question
is equipped with a list of relevant documents and a list of
relevant snippets of the documents.

Baselines. We compare our work with BM25 and DPR
in the short corpus setting, and BM25 and GenQ (Ma et al.
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2021) in the large corpus setting. Note that the same test sets
(B1-5) are used for evaluating both settings. We also compare
an alternative question generation method AnsQG (Chan and
Fan 2019) in which an answer extraction model first extracts
an answer from a context and a question generation model
uses the answer as well as the text to generate a question. Sim-
ilarly, we compare our method with an existing pre-training
task ICT (Lee, Chang, and Toutanova 2019). Retrieval sys-
tems for the BioASQ task typically follow a two-step process:
retrieval of candidates and re-ranking. The focus of this paper
is on improving the former, and thus we use different retrieval
methods as baselines and do not compare with state-of-the-art
systems that use various re-ranking methods. We use Mean
Average Precision (MAP) as our evaluation metric.

6.1 Experimental Settings
Size of Corpus. PubMed is a large corpus containing 19
million articles, each with a title and an abstract. Due to this
large corpus size, indexing the entire corpus takes a signifi-
cantly long time. To conduct comprehensive experiments and
to efficiently evaluate the impacts of each proposed method,
we construct a small corpus with 133, 084 articles in total:
33, 084 articles belonging to the training and test sets of
BioASQ8, and an additional 100K articles that are randomly
sampled from the entire corpus.

Length of Context. We use two context lengths for train-
ing neural retrievers and indexing the corpus: 128 (short) and
256 (long). We use RSM as the pre-training task for short
contexts and either ETM or ICT with long contexts.

Training Setup. We use BioBERT (Lee et al. 2020) as
the initial model for both query and context encoders in
all experiments. For BM25, we use an implementation from
Pyserini (Lin et al. 2021) with default hyperparameters k=0.9
and b=0.4. We also try k=1.2 and b=0.75 as used by Ma
et al. (2021) and find the default setting to be slightly better.
For Poly-DPR, the number of representations K is set as
6 after a hyper-parameter search. While larger values of K
improve results, it makes indexing slower 1.

6.2 Results
Effect of Pre-Training Tasks and Fine-Tuning Datasets.
Table 2 shows results when Poly-DPR is trained with different
methods of pre-training and different fine-tuning datasets.
Both RSM and ETM lead to improvements even when the
finetuning task has only a limited amount of supervised data,
i.e. BioASQ. When compared to Poly-DPR trained without
any pre-training, RSM improves by∼9% and ETM by∼18%.
ETM is better than the existing pre-training method ICT (Lee,
Chang, and Toutanova 2019) by ∼2%. When the size of
fine-tuning set is large, i.e. with our question generation
method (TempQG), the gains due to pretraining are higher
with short contexts than with large contexts. We believe this
to be a result of the finetuning dataset in the long-context
setting being significantly larger than the pre-training dataset,
thereby having a larger effect on the training process1.

1see Appendix of https://arxiv.org/abs/2201.07745 for details.

CL PT FT B1 B2 B3 B4 B5 Avg.

Sh
or

t(
12

8)

- B 54.48 50.51 53.8 59.06 48.71 53.31
- T 62.92 58.79 62.94 70.30 63.39 63.67

RSM B 65.94 57.43 61.89 69.01 58.23 62.50
RSM A 56.84 55.79 57.52 58.68 55.15 56.80
RSM T 64.71 64.92 64.28 73.11 66.29 66.66

L
on

g
(2

56
)

- B 35.69 32.66 32.26 38.28 30.87 33.95
- T 63.95 59.51 62.98 66.71 62.80 63.19

ICT B 54.44 47.37 52.61 53.69 44.38 50.50
ETM B 56.63 46.63 52.79 56.97 49.61 52.53
ETM T 64.57 58.51 64.02 68.44 62.60 63.62
ETM A 54.44 49.95 48.42 58.15 52.60 52.71

ICT+ETM B 51.33 49.43 49.36 53.19 43.58 49.38
ICT+ETM T 64.93 58.49 60.18 69.42 64.87 63.58

Table 2: Effect of pre-training tasks (PT) and fine-tuning
datasets (B: BioASQ, T: TempQG and A: AnsQG) on the
performance of Poly-DPR with two context lengths (CL) on
the BioASQ small corpus test set. Bi stands for the ith batch
in the testing sets.

We also see that when Poly-DPR is only trained on
BioASQ, the performance with small contexts is much better
than with long contexts (53.31% vs 33.95%). This suggests
that Poly-DPR trained on the small corpus finds it difficult to
produce robust representations for long contexts. On the other
hand, the performance of Poly-DPR variants trained on Tem-
pQG is close for short and long contexts, which suggests that
large-scale relevant training data improves representations.

Comparison with Baselines. Table 3 shows a compari-
son between baselines and our best model (Poly-DPR with
short context (128) pre-trained with RSM and finetuned on
TempQG). Note that our model is only trained on datasets
acquired from the small corpus. However, we evaluate the
same model on the large corpus test set.

In the small corpus setting, it can be seen that our model
outperforms all existing methods in the small corpus set-
ting, and is better than DPR by 13.3% and 20.8% in short
(128) and long (256) context lengths respectfully. In the large
corpus setting, our method is better than GenQ (Ma et al.
2021) on all five test sets. This shows that our method, which
uses 10 million generated samples is better than GenQ which
uses 83 million samples for training, thus showing the effec-
tiveness of our template-based question generation method.
Although our method performs better than BM25 on B1, B2,
B5, the average performance is slightly worse (−1.17%). For
the hybrid method, we apply our best Poly-DPR model to
index the entire corpus, and use the procedure as described
in Sec 3.3. Our hybrid method which combines BM25 and
Poly-DPR, is better than all existing methods.

We also report state-of-the-art (SOTA) results reported on
the BioASQ8 leader-board. These approaches are a combi-
nation of retrieval and improved re-ranking methods. Since
this paper is concerned with improving retrieval and does not
study re-ranking, we do not compare our methods directly
with these approaches, but report them for completeness.
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Model B1 B2 B3 B4 B5 Avg.

Small Corpus
BM25 (2009) 62.15 61.30 66.62 74.14 61.30 65.10
DPR128 (2020) 54.48 50.51 53.80 59.06 48.71 53.31
DPR256 44.86 41.18 40.25 47.78 40.42 42.89
P-DPR128 (Ours) 64.71 64.92 64.28 73.11 66.29 66.66
P-DPR256 (Ours) 64.57 58.51 64.02 68.44 62.60 63.62
Hybrid (DPR128) 66.55 61.29 68.08 72.91 60.30 65.83
Hybrid (P-DPR128) 66.30 64.90 69.54 75.71 64.82 68.25

Large Corpus
BM25 28.50 27.82 37.97 41.91 35.42 34.32
GenQ (2021) 28.90 20.30 30.70 29.00 33.10 28.40
P-DPR128 (Ours) 35.10 29.07 32.74 33.31 35.54 33.15
Hybrid (P-DPR128) 30.02 31.31 39.79 42.18 37.99 36.26

Large Corpus SOTA (Re-ranking)
PA(2020) 35.91 39.45 52.73 41.15 52.02 44.25
bioinfo-4 (2020) 38.23 36.86 51.08 46.77 50.98 44.78
AUEB-4 (2020) 5.47 7.23 53.29 49.92 49.53 33.09

Table 3: Comparison between our Poly-DPR (P-DPR) with
baseline methods in the small corpus and large corpus set-
tings. The bottom section shows performance of existing
methods that make improvements in the re-ranking method.

Index Unit Mem. Time B1 B2 B3 B4 B5 Avg.
2-sents 21.0 G 321 64.71 64.92 64.28 73.11 66.29 66.66
128-chunk 8.1 G 206 65.16 63.24 63.72 72.13 65.29 65.91
256-chunk 4.5 G 192 63.76 59.71 62.70 67.21 64.17 63.51
Full 2.8 G 101 61.92 57.84 60.01 61.11 62.66 60.71

2-sents 21.0 G 321 64.65 59.21 63.65 70.90 65.97 64.88
128-chunk 8.1 G 206 64.11 58.08 64.15 69.90 63.16 63.88
256-chunk 4.5 G 192 64.57 58.51 64.02 68.44 62.6 63.62
Full 2.8 G 101 60.06 56.38 61.99 65.01 59.63 60.61

Table 4: Two best NR models in short and long context: the
first block is Poly-DPR pretrained with RSM and fine-tuned
on TempQG (short); the second block is Poly-DPR pretrained
with ETM and fine-tuned on TempQG (long).

6.3 Ablation Study
We provide ablation studies of different hyper-parameters on
model performance. Results are reported on the small corpus.

Granularity of Indexing. Here we examine the impact of
indexing units. We conjecture that the representation pro-
duced with a shorter indexing unit is better than the one with
a longer indexing unit, and thus an NR should perform bet-
ter if the indexing unit is short. To verify this, we use our
best Poly-DPR models that are trained in short and long con-
text settings. We compare four indexing units, 2-sents: two
consecutive sentences, 128 chunk: a chunk with maximum
length of 128 tokens that includes multiple consecutive sen-
tences, 256 chunk: a chunk with maximum length of 256
tokens that includes multiple consecutive sentences, and 512
chunk: the entire article including title and abstract, and we
use 512 tokens to encode each article. The results are shown
in Table 4; we see that the smaller indexing units yield better

NT B1 B2 B3 B4 B5 Avg.
1 67.21 62.43 66.49 72.15 61.55 65.96
5 66.76 62.19 66.41 71.55 64.33 66.25

10 64.71 64.92 64.28 73.11 62.29 66.66

Table 5: Effect of number of templates (NT) on performance.

K B1 B2 B3 B4 B5 Avg.
0 62.06 61.81 61.85 66.69 61.30 62.74
6 62.92 58.79 62.94 70.30 63.39 63.67

12 65.22 60.86 62.59 70.50 66.21 65.08

0 61.70 58.28 58.62 67.33 61.48 61.48
6 63.95 59.51 62.98 66.71 62.80 63.19

12 63.83 57.81 62.72 70.00 63.64 63.60

Table 6: Comparison among different values of K for Poly-
DPR in both short and long context settings.

performance, even for the model that is trained in long context
setting. We also present the memory (Mem.) and inference
time (Time) which depend upon the choice of indexing unit.
The inference time refers to the number of seconds taken to
retrieve 10 documents for 100 questions. Table 4 shows that a
smaller indexing unit requires more memory and longer infer-
ence time. Thus, there is a trade-off between retrieval quality
and memory as well as inference time. Future work could
explore ways to improve the efficiency of neural retrievers to
mitigate this trade-off.

Number of Templates for Generating Questions We
study three values for the number of templates, 1, 5, and 10,
and report the results for Poly-DPR in Table 5. We see that
training Poly-DPR on questions generated from one template
is already better than BM25. While increasing the number
of templates yields better performance, the improvement is
relatively small, and we conjecture that this could be due to
lower-quality or redundant templates. A question filtering
module can be used to control the quality of the questions as
shown in previous work (Alberti et al. 2019).

Number of Context Representations Poly-DPR encodes
a context into K vector representations. We study the effect
of three values of K (0, 6, and 12) on model performance,
both with short (128) and long (256) contexts. All models are
trained directly on the TempQG without pretraining. Table 6
shows that a larger K value yields better performance. This
observation is aligned with Humeau et al. (2020).

6.4 Question Generation Analysis
Table 7 shows examples of selected templates and gener-
ated questions. Our template-based generation approach can
produce diverse and domain-style questions using three strate-
gies. Fill in the blank: the generator fills the blank in the
template by key entities mentioned in the context without
changing the template, as shown by Example 1. Changing
partially: the generator produces questions by using part of
the template and ignores some irrelevant part as shown by
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# Context Template Generated Question
1 The lysosomal-membrane protein type 2A (LAMP-2A) acts as the receptor for

the substrates of chaperone-mediated autophagy (CMA), which should undergo
unfolding before crossing the lysosomal membrane and reaching the lumen for
degradation.

which recep-
tor is targeted
by _

Which receptor is targeted by
LAMP-2A?

2 Is Tokuhashi score suitable for evaluation of life expectancy before surgery in
Iranian patients with spinal metastases? One of the most important selection criteria
for spinal metastases surgery is life expectancy and the most important system for
this prediction has been proposed by Tokuhashi.

what is evalu-
ated with _

What is the Tokuhashi score?

3 Lambert-Eaton myasthenic syndrome (LEMS) is a pre-synaptic disorder of the
neuromuscular and autonomic transmission mediated by antibodies to voltage-gated
calcium channels at the motor nerve terminal.

_ is diagnosed
in which _

Lambert-Eaton myasthenic syn-
drome is diagnosed in which neuro-
muscular and autonomic pathways?

Table 7: Ilustrative examples for templates and questions generated by TempQG1.

Question Explanation
B1 What is minodixil approved

for?
minodixil is a typo, the correct one is minoxidil

B2 List 5 proteins with antioxidant
properties?

BM25 fails to connect proteins and antioxidant properties, and retrieves documents all related to
antioxidant, however, they are not about proteins nor antioxidant proteins.

B3 How large is a lncRNAs? BM25 retrieves document about lncRNAs but not about how large it is.

P1 What is Xanamem? NR fails to retrieve any document related to Xanamem, rather, it retrieves documents that lexical
similar to Xanamem such as Ximenia, Xadago, and Xenopus.

P2 Does an interferon (IFN) signa-
ture exist for SLE patients?

NR ranks documents about interferon higher than documents of SLE patients and documents of
both. In the retrieved documents, interferon appears rather frequently.

Table 8: Examples of the common failure modes of BM25 and Poly-DPR1.

Example 2. Ignoring entirely: the generator ignores the tem-
plate entirely and generates questions that are not relevant to
the given context as shown by Example 3.

6.5 Error Analysis
To better understand the differences between BM25 and NR,
we study their failure modes. From the BioASQ test set, we
select questions on which either BM25 or Poly-DPR perform
poorly, and categorize these failure cases (see Table 8).

Failures Cases of BM25. We found 91 failure cases on
which the MAP score of BM25 is 0 for 41 cases, and the
performance of BM25 is at least 0.5 less than Poly-DPR for
50 cases. Upon manual inspection, we identify three common
categories of these failures. B1: questions contain keywords
with typographical errors. B2: questions mention multiple
entities related to each other. BM25 may fail to retrieve doc-
uments that connect these entities. B3: questions mention
conceptual properties of entities and answers are values. For
example, "how large" is a conceptual property and "200" is
the answer value. BM25 retrieves documents related to the
entities in questions but not contain the answer.

Failure cases of Poly-DPR. There we 55 failure cases of
Poly-DPR, including 23 cases with 0 MAP score and 32
case where the score for BM25 is at least 0.5 better than
Poly-DPR. There are two common failure modes of Poly-
DPR. P1: questions are simple but focused on rare entities
which Poly-DPR fails to retrieve. This conforms with the
finding that NR performs significantly worse than BM25 on

entity-questions (Sciavolino et al. 2021). We find that for
such questions, retrieved entities and entities in the question
are lexical similar or have overlapping substrings, which in
turn could be due to the WordPiece embeddings (Wu et al.
2016) used in BERT. P2: Questions mention multiple entities.
Articles that contain frequent entities are ranked higher than
articles that include all entities in the question.

7 Discussion and Conclusion
In this work, we show that DPR, a neural retriever, is unable
to surpass BM25 on biomedical benchmarks such as BioASQ.
We address this drawback of NRs with a three-pronged ap-
proach with Poly-DPR: a new model architecture, TempQG:
a template-based question generation method, and two new
pre-training tasks designed for biomedical documents. Tem-
pQG can generate high quality domain-relevant questions
which positively impact downstream performance. While in
this paper, we apply TempQG to a small corpus of 100,000
PubMed articles, we show that this method can surpass neu-
ral retrievers when trained on small or large corpora. Our
model achieves better performance than BM25 in the small
corpus setting, but it falls short by ∼1% in the large corpus
setting. However, we show that a hybrid model combining
our approach and BM25 is better than all previous baselines
on the entire corpus. In the future, applying our question
generation methods to the entire PubMed corpus, and com-
bining our approach with improved re-ranking techniques
could potentially result in further improvement.
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