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Abstract

The task of Grammatical Error Correction (GEC) has re-
ceived remarkable attention with wide applications in Natu-
ral Language Processing (NLP) in recent years. While one
of the key principles of GEC is to keep the correct parts
unchanged and avoid over-correction, previous sequence-to-
sequence (seq2seq) models generate results from scratch,
which are not guaranteed to follow the original sentence
structure and may suffer from the over-correction problem. In
the meantime, the recently proposed sequence tagging mod-
els can overcome the over-correction problem by only gener-
ating edit operations, but are conditioned on human designed
language-specific tagging labels. In this paper, we combine
the pros and alleviate the cons of both models by proposing
a novel Sequence-to-Action (S2A) module. The S2A module
jointly takes the source and target sentences as input, and is
able to automatically generate a token-level action sequence
before predicting each token, where each action is generated
from three choices named SKIP, COPY and GENerate. Then
the actions are fused with the basic seq2seq framework to pro-
vide final predictions. We conduct experiments on the bench-
mark datasets of both English and Chinese GEC tasks. Our
model consistently outperforms the seq2seq baselines, while
being able to significantly alleviate the over-correction prob-
lem as well as holding better generality and diversity in the
generation results compared to the sequence tagging models.

Introduction

Grammatical Error Correction (GEC), which aims at au-
tomatically correcting various kinds of errors in the given
text, has received increasing attention in recent years, with
wide applications in natural language processing such as
post-processing the results of Automatic Speech Recogni-
tion (ASR) and Neural Machine Translation (NMT) mod-
els (Mani et al. 2020), as well as providing language assis-
tance to non-native speakers. In the task of GEC, the primary
goals are two-fold: 1) identifying as many errors as possi-
ble and successfully correcting them; 2) keeping the original
correct words unchanged without bringing in new errors.
Intuitively, GEC can be considered as a machine transla-
tion task by taking the incorrect text as the source language
and the corrected text as the target language. In recent years,
NMT-based approaches (Bahdanau, Cho, and Bengio 2015)
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with sequence-to-sequence (seq2seq) architectures have be-
come the preferred solution for the GEC task, where the
original sentences with various kinds of grammatical errors
are taken as the source input while the correct sentences are
taken as the target supervision. Specifically, the Transformer
model (Vaswani et al. 2017; Bryant et al. 2019) has been a
predominant choice for NMT-based methods.

However, there are some issues with the seq2seq methods
for the GEC task. In general, as a result of generating target
sentences from scratch, the repetition and omission of words
frequently occur in the seq2seq generation process as stud-
ied by previous works (Tu et al. 2016). More importantly,
there is no guarantee that the generated sentences can keep
all the original correct words while maintaining the seman-
tic structures. Experiments show that such problems occur
more frequently when the original sentences are too long
or contain low-frequency/out-of-vocabulary words. Conse-
quentially, the seq2seq models may suffer from these poten-
tial risks in practice which conflict with the second primary
goal of the GEC task. Recently, sequence tagging methods
(Malmi et al. 2019; Awasthi et al. 2019; Omelianchuk et al.
2020; Stahlberg and Kumar 2020) consider GEC as a text
editing task by detecting and applying edits to the original
sentences, therefore bypassing the above mentioned prob-
lems of seq2seq models. Nevertheless, the edits are usually
constrained by human designed or automatically generated
lexical rules (Omelianchuk et al. 2020; Stahlberg and Ku-
mar 2020) and vocabularies (Awasthi et al. 2019; Malmi
et al. 2019), which limits the generality and transferability
of these methods. Moreover, when it comes to corrections
which need longer insertions, most of these sequence tag-
ging methods rely on iterative corrections, which can reduce
the fluency.

To tackle these problems, in this paper, we propose a
Sequence-to-Action (S2A) model which is able to automat-
ically edit the erroneous tokens in the original sentences
without relying on human knowledge, while keeping as
many correct tokens as possible. Specifically, we simply
introduce three atomic actions named SKIP, COPY and
GENerate to guide the model when generating the corrected
outputs. By integrating the erroneous source sentence and
the golden target sentence, we construct a tailored input for-
mat for our model, and for each token, the model learns to
skip it if the current input token is an erroneous one, or copy



it if the token is an originally correct token, or generate it if
the token is a target token.

In this way, the proposed model provides the following
benefits. 1) As a large proportion of tokens are correct in
the source sentences, the COPY action will appear more
frequently than the other actions. Therefore, by taking the
source sentence as an input to the S2A module, our model
is more inclined to copy the current input token, and there-
fore alleviates the over-correction problem of seq2seq mod-
els. 2) Comparing to sequence tagging models which gen-
erate edits based on the human-designed rules or vocabular-
ies, our model can realize more flexible generations such as
long insertions. More importantly, our model is language-
independent with good generality.

We evaluate the S2A model on both English and Chinese
GEC tasks. On the English GEC task, the proposed method
achieves 52.5 in Fjy 5 score, producing an improvement of
2.1 over the baseline models. Meanwhile, it achieves 38.06
in Fy 5 score on the Chinese GEC task, with improvement
of 1.09 over the current state-of-the-art baseline method
MaskGEC (Zhao and Wang 2020).

Related Work
GEC by Seq2seq Generation

A basic seq2seq model for GEC consists of an encoder and a
decoder, where the source sentence is first encoded into the
corresponding hidden states by the encoder, and each target
token is then generated by the decoder conditioned on the
hidden states and the previously generated tokens. Given a
pair of training samples (z, y), the objective function of the
seq2seq based GEC model can be written as:

CsZs(y‘x; @) = - Zlogp(y2|y<wx7 0525)7

=1

ey

where 0y, indicates the model parameters. In general, the
input and output sequences may overlap significantly for the
GEC task, while a seq2seq GEC model generates the target
sequences from scratch given that no source token is directly
visible to the decoder, which may lead to over-correction or
generation errors.

In the past few years, several methods have been pro-
posed to improve the performance of seq2seq GEC mod-
els. Kaneko et al. (2020) incorporate a pre-trained masked
language model such as BERT (Devlin et al. 2019) into a
seq2seq model, which is then fine-tuned on the GEC dataset.
A copy-augmented architecture is proposed in (Zhao et al.
2019) for the GEC task by copying the unchanged words
from the original sentence to the target sentence. Recent ad-
vances in seq2seq GEC models mainly focus on construct-
ing additional synthetic data for pre-training (Grundkiewicz,
Junczys-Dowmunt, and Heafield 2019; Xie et al. 2018; Ge,
Wei, and Zhou 2018; Kiyono et al. 2019; Zhou et al. 2020)
by directly adding noise to normal sentences, through back-
translation, or by using poor translation models. Neverthe-
less, even with the above improvements, the seq2seq GEC
models still suffer from generating results from scratch,
which inevitably leads to over-correction and generation er-
rors.
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GEC by Generating Edits

Another line of research takes a different perspective by
treating the GEC task as a text editing problem and proposes
sequence tagging models for GEC. In general, these models
predict an edit tag sequence ¢ = (t1, ta, ..., L, ) based on the
source sentence x by estimating p(t|z) = []\-; p(t;|x). In
the edit tag sequence, each tag is selected from a pre-defined
set and assigned to a source token, representing an edition to
this token.

Specifically, LaserTagger (Malmi et al. 2019) predicts
editions between keeping, deleting or adding a new to-
ken/phrase from a handcrafted vocabulary. PIE (Awasthi
et al. 2019) iteratively predicts token-level editions for a
fixed number of iterations in an non-autoregressive way.
GECToR (Omelianchuk et al. 2020) further improves the
model by designing more fine-grained editions w.r.t the lex-
ical rules of English. Seq2edits (Stahlberg and Kumar 2020)
generates span-level (instead of token-level) tags to gener-
ate more compact editions. In the sequence tagging mod-
els mentioned above, the operations of generating new to-
kens are restricted either by human-designed vocabularies
or language-dependent lexical rules, limiting their general-
ity. For example, GECToR outperforms baseline models on
English GEC datasets, but its performance severely degen-
erates on the Chinese GEC task, as shown in Table 3. There
also exist methods that integrate seq2seq models with se-
quence tagging methods into a pipeline system to improve
the performance or efficiency (Chen et al. 2020; Hinson,
Huang, and Chen 2020), which cannot be optimized end-
to-end.

Different to the works discussed above, the proposed
S2A model alleviates the over-correction/omission problem
of seq2seq models by taking the original sentence as in-
put and keeping as many correct tokens as possible. Mean-
while, by generating corrections with a set of actions in-
cluding SKIP, COPY and GENerate which do not rely on
any human-designed rules or vocabularies, S2A is language-
independent and more flexible compared to text editing
models.

Methodology

In this section, we elaborate on the proposed model for
GEC. We start with the problem definition, followed with
the motivation and the model architecture. We then proceed
to demonstrate how the model is designed.

Problem Definition Given a parallel training dataset
(X,Y) which consists of pairs of the original erroneous
source and the golden target sequences (x,y) € (X,)),
where © = (z1, T2, ..., Tpy) and y = (Y1, Y2, -+, Yn ), WE aim
at correcting x to y through the proposed model by optimiz-

ing p(y|z).

Model Architecture

We aim to build a framework that is able to alleviate the
problems of both seq2seq models and sequence tagging
models as discussed in the previous section. To be spe-
cific, the model should keep the original correct tokens as
much as possible, while being able to dynamically generate
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Figure 1: An illustration of the proposed framework.

editions w.r.t erroneous tokens without human knowledge.
To achieve these goals, we propose a novel Sequence-to-
Action (S2A) module based on the seq2seq framework, with
tailored input formats. An illustration of the proposed frame-
work is shown in Figure 1.

Specifically, our framework consists of three components:
the encoder, the decoder and the S2A module. The S2A
module is built upon the decoder to predict an action at
each input position. Different from previous sequence tag-
ging works which usually introduce lots of labels and gen-
erate new tokens from the pre-defined vocabulary, we sim-
ply design three actions named SKIP, COPY and GENerate,
where SKIP indicates that the current input token is an er-
ror that should not appear in the output, COPY refers to an
original correct token that should be kept, and GEN indicates
a new token should be generated at this position, and the to-
ken is predicted from the whole dictionary instead of a pre-
defined subset.

The S2A module takes the hidden output of the decoder
and the source sentence as input, and we design a special
input format to integrate them, ensuring that at each step,
the action is taken considering both the source and target in-
formation. Then the action probability produced by the S2A
module is fused with the traditional seq2seq prediction prob-
ability to obtain the final results. We introduce the details as
follows.

Input Construction

The encoder in our model is akin to a traditional seq2seq
encoder, which takes x as input and provides its hidden rep-
resentation h.. As for the decoder side, instead of simply
taking y as input, we integrate x with y as the decoder input
to provide direct information of the original sentence.
Specifically, we follow four principles to integrate x and
y into a new sequence z with an action sequence a. For ev-
ery token in x and y, 1) if the source token is an originally
correct token (i.e., appears both in x and y), we simply copy
it to z and assign the action COPY to it; 2) if the source to-
ken is an erroneous token that should be replaced (i.e., the
corresponding correct token appears in y), we jointly ap-
pend this token as well as the correct token to z, and assign
SKIP to the erroneous token while assigning GEN to the cor-
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Algorithm 1: Input Construction

Input: The source sentence z, the integrated sequence z
and the action sequence a with length ¢

Output: The S2A input Z, the decoder input %i,, the target
sequence Yout

1: Initialize  and y as empty lists; 7 = 1;
2: for k< 1totdo

3: if ap, == COPY then
4: Append zj, to T; i4++;
5: Append zj, to y;
6: elseif a, == SKIP then
7: Append zj, to T; i4++;
8: Append BLK to y;
9: else
10: Append z; to Z;
11: Append z, to y;
12:  endif
13: end for
14: Your < ¥
15: Replace BLK in g with the token on its left;
16: in < [S] +%o:-1;
17: return 2, ¥in, Yout

rect token; 3) if the source token is an erroneous token that
should be deleted (i.e., no corresponding correct token ap-
pears in y), we append it to z and assign the action SKIP
to it; 4) for the target tokens that do not have alignments in
z and thus should be generated, we append them to z and
assign the action GEN. Finally, we obtain the integrated se-
quence z and the action sequence a, both with length ¢ and
t > max(m,n). This process can be implemented by dy-
namic programming and we provide an illustration in Ta-
ble 1.

We then construct g, which serves as the decoder in-
put and  which maintains the source tokens and serves as
the input to the S2A module. Details are described in Al-
gorithm 1. To construct z, we iterate over z and keep the
tokens with COPY and SKIP actions. For tokens with the
GEN action, we fill up the location with its next token in the
original source sentence. Meanwhile, for g, we keep the to-
kens with COPY and GEN actions, and fill up the locations
with the SKIP action by introducing a special blank token
[BLK], which serves as a placeholder to represent the posi-
tions where the original tokens are skipped. It is worth not-
ing that while training, we take g as the target sequence Yout,
and we replace the [BLK] token with the most recent non-
blank token on its left and take the right-shifted version of §
as the decoder input ¢, to enable teacher forcing.

Training and Inference

Given the source input x, the decoder input ¥i,, the S2A in-
put = and the target sentence Yoy, the computation flow of
our model can be written as follows,

h = fa(ha,e(Z)) where hg = fq(Yin,
and  he = fe(x),

he
) 2



‘ Sequence

Source x The cat is sat at mat [/S]

Gold y The cat sat on the mat . [/S]

Integrated z | The cat is sat at on the mat . [/S]
Action a C C S C S G G C C C

T The cat is sat at mat mat mat . [/S]
Yin [S] The cat cat sat sat on the mat .

Yout The cat [BLK] sat [BLK] on the mat . [/S]

Table 1: An illustration for the decoder input construction. We refer to SKIP as S, COPY as C, and GEN as G. To differentiate
the three actions, we mark SKIP and [BLK] with underlines and GEN in boldface. [S] and [/S] represent the begin- and

end-of-sequence symbol.

where f,, fq and f. indicate the S2A module, the decoder
and encoder respectively, with the hidden outputs h, hg
and h. correspondingly, and e(-) indicates the embedding
lookup. Then the token prediction probability can be written
as Pa(Jout|Tin, ) = softmax(f,(hq)), where f,(-) € RV
is the linear output layer that provides the prediction proba-
bility over the dictionary, while d and V' indicate the dimen-
sion of the hidden outputs and the vocabulary respectively.

The S2A module simply consists of two feed-forward lay-
ers, taking the concatenation of h, and e(Z) as input and
producing the probability over actions as output:

Pa(alha, e(7))
= softmax (o ([hg; e(Z)] - w1 + b1) - wa + ba),
RQdXZd

3

RQdXS

where wy € ,Wo €

For each position, the three actions SKIP, COPY and GEN
indicate that the model should predict a [BLK] token, or
predict the input token, or generate a new token respectively.
Therefore, for the i-th position, denote the probabilities of
three actions as (p.(s),p.(c),p.(g)) = pi, we fuse them
with the token probability p’, to obtain the prediction proba-
bility of the S2A module p,, € RV,

Pl ([BLK]) = p(s),

Plaa(E') = pl(c),

Pl (V \{[BLK), ) = Bl (0) - ph(V \ { [BLK) &)
(4)

where 7' indicates the current input token and p4(V \
{[BLK],Z'}) indicates the normalized token probability af-
ter setting the prediction of the blank token as well as the
current token to 0. In this way, as the probabilities in p, (3-
classes) are usually larger than that in pg (V' -classes), with
action COPY, we amplify the probability of keeping the cur-
rent token which is originally correct; with action GEN, we
force the model to predict a new token from the vocabulary;
otherwise with action SKIP, we force the model to skip the
current erroneous token by predicting the [BLK] token.

Then the loss function of the proposed Sequence-to-
Action module can be written as:

Ls2a(gout|gin7 j7 37)
t
- Z IOgPSZa(gémwiiv jia x; Ogs, 952a)7
=1

®
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where 6, indicates the parameters of the proposed S2A
module. Together with the loss function of the traditional
seq2seq model described in Equation (1), the final loss func-
tion of our framework can be written as:

L(Ia Y3 6) :(1 - )\)LSZa(gouthjina ja €T 05257 052:1)) (6)

+ AL (gout‘gim €T os2s)a
where © = (6, 652,) denotes the parameters of the model,
and ) is the hyper-parameter that controls the trade-off be-
tween the two objectives.

While inference, our model generates in a similar way as
the traditional seq2seq model, except that we additionally
take a source token z7 as the input, which denotes the cur-
rent source token that serves as the input to the S2A mod-
ule. After the current generation step, if the predicted action
lies in SKIP and COPY, we move the source token a step
forward (i.e., j++). Otherwise with action GEN, we keep j
unchanged. In this way, we ensure that xJ serves the same
functionality as #* (i.e., the source token that should be con-
sidered at the current step) during training.

Discussion

Our model combines the advantages of both the seq2seq and
the sequence tagging models, while alleviating their prob-
lems. On the one hand, while seq2seq models usually suf-
fer from over-correction or omission of correct tokens in the
source sentence (Tu et al. 2016), the proposed sequence-to-
action module guarantees that the model will directly visit
and consider the source tokens in Z as the next predictions’
candidates before making the final predictions. On the other
hand, comparing with sequence tagging models which de-
pend on human-designed labels, lexical rules and vocabu-
laries for generating new tokens, we only introduce three
atomic actions in the model without other constraints, which
enhances the generality and diversity of the generated tar-
gets. As shown in the case studies, sequence tagging models
usually fail when dealing with hard editions, e.g., reorder-
ing or generating a long range of tokens, and our model
performs well on these cases by generating the target sen-
tence from scratch auto-regressively. In addition, we choose
the term ““action” instead of “label” because the proposed
sequence-to-action module does not need any actual labels
to be trained, instead it is trained end-to-end by fusing the
probability with the seq2seq model.



Model | Precision Recall Fj s
Transformer Big 64.9 266 504
LaserTagger (Malmi et al. 2019) 50.9 269 432
ESD+ESC (Chen et al. 2020) 66.0 247 495
S2A Model 65.9 289 525
Transformer Big (Ensemble) 71.3 26.5 533
S2A Model (Ensemble) 72.7 27.6 54.8
Transformer Big + pre-train 69.4 425 615
PRETLarge (Kiyono et al. 2019) 67.9 441 613
BERT-fuse (Kaneko et al. 2020) 69.2 45.6 62.6
Seq2Edits (Stahlberg and Kumar 2020) 63.0 45.6 58.6
PIE (Awasthi et al. 2019) 66.1 430 59.7
GECToR-BERT (Omelianchuk et al. 2020) 72.1 42.0 63.0
GECToR-XLNet (Omelianchuk et al. 2020) 77.5 40.1  65.3
ESD+ESC (Chen et al. 2020) + pre-train 72.6 372 610
S2A Model + pre-train 74.0 38.9  62.7
Transformer Big + pre-train (Ensemble) 74.1 375 620
GECToR (Ensemble) 78.2 41.5 66.5
S2A Model + pre-train (Ensemble) 74.9 384 629

Table 2: The results on the CoNLL-2014 English GEC task. The top group of results are generated by models trained only on
the BEA-2019 training set. The bottom group of results are generated by models that are first pre-trained on a large amount of
synthetic pseudo data followed with fine-tuning. Here we bold the best results of single models and ensemble models separately.

Experiments
Datasets and Evaluation Metrics

We conduct experiments on both Chinese GEC and English
GEC tasks. For the Chinese GEC task, we use the dataset
of NLPCC-2018 Task 2 (Zhao et al. 2018)!, which is the
first and latest benchmark dataset for Chinese GEC. Follow-
ing the pre-processing settings in (Zhao and Wang 2020),
we get 1.2M sentence pairs in all. Then 5k sentence pairs
are randomly sampled from the whole parallel corpus as the
development set. The rest are used as the final training set.
We use the official test set’> which contains 2k sentences
extracted from the PKU Chinese Learner Corpus. The test
set also includes the annotations that mark the golden ed-
its of grammatical errors in each sentence. We tokenize the
sentence pairs following (Zhao and Wang 2020). Specifi-
cally, we use the tokenization script of BERT? to tokenize
the Chinese symbols and keep the non-Chinese symbols un-
changed.

For English GEC, we take the datasets provided in
the restricted track of the BEA-2019 GEC shared task
(Bryant et al. 2019). Specifically, the training set is the con-
catenation of the Lang-8 corpus (Mizumoto et al. 2011),
the FCE training set (Yannakoudakis, Briscoe, and Med-
lock 2011), NUCLE (Dahlmeier, Ng, and Wu 2013), and
W&I+LOCNESS (Granger 2014; Bryant et al. 2019). We
use the CoNLL-2013 (Ng et al. 2013) test set as the develop-
ment set to choose the best-performing checkpoint, which is
then evaluated on the benchmark test set CoONLL-2014 (Ng

'hitp://tcci.ccf.org.cn/conference/2018/taskdata.php
*https://github.com/pkucoli/NLPCC2018_GEC
3https://github.com/google-research/bert
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et al. 2014). We also conduct experiments by pre-training
the model with 100M synthetic parallel examples provided
by (Grundkiewicz, Junczys-Dowmunt, and Heafield 2019).
All English sentences are preprocessed and tokenized by
32K SentencePiece (Kudo and Richardson 2018) Byte Pair
Encoding (BPE) (Sennrich, Haddow, and Birch 2016).

We use the official MaxMatch (M?) scorer (Dahlmeier
and Ng 2012) to evaluate the models in both the Chinese
and English GEC tasks. Given a source sentence and a sys-
tem hypothesis, M? searches for a sequence of phrase-level
edits between them that achieves the highest overlap with the
gold-standard annotation. This optimal edit sequence is then
used to calculate the values of precision, recall and Fj 5.

Model Configurations

For the basic seq2seq baseline, we adopt the original Trans-
former architecture. To compare with the previous works,
we use the base/big model of Transformer for the Chine-
se/English GEC task respectively, and we follow the official
settings of Transformer: in the base/big model, the number
of self-attention heads of Transformer is set to 8/16, the
embedding dimension is 512/1024, the inner-layer dimen-
sion in the feed-forward layers is set to 2048/4096 respec-
tively. For the loss function, we use the cross entropy loss
with label smoothing and set the epsilon value to 0.1. We
apply dropout (Srivastava et al. 2014) on the encoders and
decoders with probability of 0.3. The implementations of
our model and baselines are based on fairseq (Ott et al.
2019) and will be available when published.

Moreover, as suggested in (Junczys-Dowmunt et al.
2018), for the English GEC task, we not only report the re-
sults generated by single models, but also compare to en-
sembles of four models with different initializations.



Model | Precision Recall Fys5

YouDao (Fu, Huang, and Duan 2018) 35.24 18.64 29091
AliGM (Zhou et al. 2018) 41.00 13.75 29.36
BLCU (Ren, Yang, and Xun 2018) 41.73 13.08 29.02
Transformer 36.57 1427 27.86
S2A Model 36.57 18.25 30.46
Transformer + MaskGEC (Zhao and Wang 2020) 44.36 22.18  36.97
GECToR-BERT (Omelianchuk et al. 2020) + MaskGEC 41.43 23.60 35.99
S2A Model + MaskGEC 42.34 27.11 38.06

Table 3: The results on the NLPCC-2018 Chinese GEC task. The upper group of results are generated by models trained on
the original NLPCC-2018 training data without data augmentation. The lower group of results are generated by models trained
on the same training data but with the dynamic masking based data augmentation method proposed by MaskGEC (Zhao and

Wang 2020). Here we bold the best results.

Baselines

For the English GEC task, we compare the proposed S2A
model to several representative systems, including three
seq2seq baselines (Transformer Big, BERT-fuse (Kaneko
et al. 2020), PRETLarge (Kiyono et al. 2019)), four se-
quence tagging models (LaserTagger (Malmi et al. 2019),
PIE (Awasthi et al. 2019), GECToR (Omelianchuk et al.
2020), Seq2Edits (Stahlberg and Kumar 2020)), and a
pipeline model ESD+ESC (Chen et al. 2020). Specifically,
for GECToR, we report their results when utilizing the pre-
trained BERT model, XLNet model (Yang et al. 2019) and
the results that integrate three different pre-trained language
models in an ensemble. We denote them as GECToR-BERT,
GECToR-XLNet and GECToR (Ensemble) respectively.

For the Chinese GEC task, we compare S2A to sev-
eral best performing systems evaluated on the NLPCC-
2018 dataset, including three top systems in the NLPCC-
2018 challenge (YouDao (Fu, Huang, and Duan 2018),
AliGM (Zhou et al. 2018), BLCU (Ren, Yang, and Xun
2018)), the seq2seq baseline Char Transformer, and the
current state-of-the-art method MaskGEC (Zhao and Wang
2020). Note that the proposed S2A model is orthogonal to
MaskGEC, and we also report our results enhanced with the
data augmentation method of MaskGEC.

In addition, we reproduce and conduct Chinese GEC ex-
periments with the sequence tagging based method GEC-
ToR (Omelianchuk et al. 2020), which is originally de-
signed for the English task. To adapt it to the Chinese
GEC task, we utilize the pre-trained Chinese BERT model
BERT-base—Chinese and use $KEEP, $SREPLACE and
$APPEND as the tags. We pre-train the model using the
data augmentation method proposed in MaskGEC and then
fine-tune it on the training set. We follow the default hyper-
parameter settings, and we set the max iteration number to
10 while inference.

Results

The English GEC results are summarized in Table 2. In
the top group of results without pre-training, the proposed
model achieves 52.5/54.8 in Fy 5 score with single/ensem-
ble model, which significantly outperforms the baselines.
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Compared to Transformer Big, our model achieves an im-
provement of 2.1 in Fj 5 score with single model, and an
improvement of 1.5 in F{y 5 score with ensemble model. Fur-
ther, when pre-trained on the synthetic data, our method still
achieves clear gains over most of the listed models. In the
meantime, it slightly outperforms BERT-fuse using the pre-
trained BERT in their framework, which is not used in the
S2A model. One can also notice that, as benefits of pre-
trained language models, GECToR-XLNet performs the best
among all the listed methods with single models, and GEC-
ToR (Ensemble) performs the best among all the baselines.
Nevertheless, the proposed S2A model uses neither any pre-
trained language models, nor human designed rules, and is
only outperformed by the GECToR models.

We proceed with the Chinese GEC results as shown in
Table 3. In the upper group, when trained on the NLPCC-
2018 training set without data augmentation, our proposed
model consistently outperforms all the other baseline sys-
tems. In the lower group, when trained with the data aug-
mentation method, our model outperforms MaskGEC with
an improvement of 1.09 in Fj 5 score and achieves a new
state-of-the-art result.

It is worth noting that GECToR, which performs the best
on the English GEC task, degenerates when generalizing to
the Chinese GEC task. Without a well-designed edit vocab-
ulary in Chinese GEC, it fails to achieve comparable per-
formance as a standard seq2seq model even equipped with
a pre-trained Chinese BERT model. In comparison, the pro-
posed S2A framework is language independent with good
generality.

Model | COPY SKIP GEN
Transformer | 96.6 372 139
GECToR ‘ 96.8 433 121
S2A Model ‘ 96.7 39.8  14.7

Table 4: I values of COPY, SKIP actions and GEN action
fragments generated by Transformer, GECToR, S2A model
on the NLPCC-2018 test set.



Type Samples

SRC BT funk][unk] . REEEET B ORI, TR A
TGT 18335 [unk] [unk] . MEREEIIZ BRI AL, T EREHES. ...
Transformer A IAMERERIIZ B ORI AN, 1 HEEHES. ...

GECToR i) 5 Bucket List , ANMEREEIZ BORIANAE, THREHE......

Ours 183t S unk] [unk] . AMEREEMZ BORIAA, THBEHES. ...
Translation By writing [unk] [unk], not only can I recall my own life,but also prepare for ...
SRC flmt /] X207 ks TR R AR K -

TGT flmt /] TOX 207, SREERE] T EF A -

Transformer LA TiX P20y ARl 7B ERFRFAOR

GECToR BB T IX AT | tARE] T AR AR -

Ours flmt ] X4, SRIEERE] TR -

Translation He asked the woman , and then he found his brother’s home.

Figure 2: Case studies of the seq2seq (Transformer) model, the sequence tagging model (GECToR) and the proposed S2A
model on the Chinese NLPCC-2018 test set. The translation of the golden target in each pair is also listed. The tokens with
wavy lines are errors, while tokens with underlines are the corrections made by the gold target or hypotheses. [unk] means

out-of-vocabulary words.

Accuracy of Action Prediction

In order to analyze the impact of the S2A module, we evalu-
ate the generated actions. To compare with other models, we
extract the action sequences from the results generated by
them on the NLPCC-2018 test set. Next, we calculate the F;
values of COPY, SKIP actions and GEN action fragments.
All scores are listed in Table 4.

As shown in Table 4, with a lower Fy 5 value of the M?
score, GECToR performs the best in deciding whether each
token should be copied or skipped from the original sen-
tence. This is not surprising considering that GECToR is
a sequence editing model. In the meantime, with an extra
S2A module, our proposed framework can learn to explic-
itly process each token from the original sentence as GEC-
ToR does, and it performs better than Transformer in pre-
dicting COPY and SKIP. As for the action GEN, S2A and
Transformer both generate new tokens in an auto-regressive
way, which are more flexible than GECToR. As a conse-
quence, they achieve higher accuracy when predicting the
action GEN than GECToR, and the S2A model performs the
best in this aspect.

If we look further into one of the gold-standard anno-
tations in NLPCC 2018, among all the corrections, 1864
are replacing error characters, 130 are reordering characters,
1008 are inserting missing characters, and 789 are delet-
ing redundant characters. Except the corrections of delet-
ing redundant characters, the other three types of corrections
all involve both deleting and extra generating. As a conse-
quence, improving the accuracy of predicting GEN may help
more to boost the GEC quality, which is the advantage of the
proposed S2A model, and agrees with the results in Table 3.

Case Study

Next, we conduct case studies to intuitively demonstrate the
advantages of the proposed S2A model. All the cases are
picked from the NLPCC-2018 Chinese GEC test set. Results
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are listed in Figure 2.

Comparison to Seq2seq Methods In the upper part of
Figure 2, we list an example in which a standard seq2seq
model does not perform well. In this example, the seq2seq
model suffers from word omissions. In comparison, the pro-
posed S2A model rarely omits a long string of characters.

Comparison to Sequence Tagging Methods In the bot-
tom example of Figure 2, a relatively long insertion is nec-
essary which is very common in Chinese GEC. As shown in
the results, the sequence tagging model is not able to pro-
duce correct output in this challenging case, while the pro-
posed S2A model can generate the expected result due to its
flexibility, which justifies the generality of S2A.

Conclusion

In this paper, we propose a Sequence-to-Action (S2A)
model based on the sequence-to-sequence framework for
Grammatical Error Correction. We design tailored input for-
mats so that in each prediction step, the model learns to
COPY the next unvisited token in the original erroneous sen-
tence, SKIP it, or GENerate a new token before it. The S2A
model alleviates the over-correction problem, and does not
rely on any human-designed rules or vocabularies, which
provides a language-independent and flexible GEC frame-
work. The superior performance on both Chinese and En-
glish GEC justifies the effectiveness and generality of the
S2A framework. In the future, we will extend our idea to
other text editing tasks such as text infilling, re-writing and
text style transfer.
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