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Abstract

Zero/few-shot transfer to unseen services is a critical chal-
lenge in task-oriented dialogue research. The Schema-Guided
Dialogue (SGD) dataset introduced a paradigm for enabling
models to support any service in zero-shot through schemas,
which describe service APIs to models in natural language.
We explore the robustness of dialogue systems to linguistic
variations in schemas by designing SGD-X - a benchmark
extending SGD with semantically similar yet stylistically di-
verse variants for every schema. We observe that two top
state tracking models fail to generalize well across schema
variants, measured by joint goal accuracy and a novel metric
for measuring schema sensitivity. Additionally, we present a
simple model-agnostic data augmentation method to improve
schema robustness.

Introduction
Task-oriented dialogue systems have begun changing how
we interact with technology, from personal assistants to cus-
tomer support. One obstacle preventing their ubiquity is the
resources and expertise needed for their development. Tra-
ditional approaches operate on a fixed ontology (Henderson,
Thomson, and Young 2014; Mrkšić et al. 2017), which is
not suited for a dynamic environment. For every new ser-
vice that arises or modification to an existing service, train-
ing data must be re-collected and systems re-trained.

The Schema-Guided Dialogue paradigm, introduced in
Rastogi et al. (2020b), advocates for the creation of a uni-
versal dialogue system which can interface with any service,
without service or domain-specific optimization. Each ser-
vice is represented by a schema, which enumerates the slots
and intents of the service and describes their functionality
in natural language (see Figure 1). Schema-guided systems
interpret conversations, execute API calls, and respond to
users based on the schemas provided to it. In theory, this
enables a single system to support any service; in practice,
whether this is feasible hinges on how robustly models can
generalize beyond services seen during training.

In the Schema-Guided Dialogue challenge at DSTC8
(Rastogi et al. 2020a), participants developed schema-
guided dialogue state tracking models, which were evalu-
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ated on both seen and unseen services. While results were
promising, with the top team achieving 87% joint goal ac-
curacy (92% seen, 85% unseen), we observed a major short-
coming with SGD - the dataset’s schemas are unrealistically
uniform compared to the diverse writing styles encountered
“in the wild”, where schemas are written by API developers
of various backgrounds.

The uniformity of SGD is evident in its schema element
names. Of the names in the test set schemas “unseen” in the
train set, 71% of intent names and 65% of slot names exactly
match names appearing in the train schemas, meaning most
names in “unseen” schemas are actually already seen by
the model during training. MultiWOZ (Budzianowski et al.
2018), another popular dialogue state tracking benchmark,
faces similar issues in the zero-shot leave-one-domain-out
setup (Wu et al. 2019), with 60-100% of slot names in the
held-out domain seen by the model during training. SGD
descriptions are also uniformly written. For example, all
descriptions for boolean slots either begin with the phrase
“Boolean flag...” or “Whether...”.

We hypothesize that the uniformity of SGD schemas al-
lows models to overfit on specific linguistic styles with-
out penalty in evaluation, leading to an overestimate of the
generalizability of models. Additionally, “seen” schemas in
evaluation are identical to the ones seen in training, meaning
SGD does not evaluate how well models handle changes in
seen schemas, however minor.

In this work, we investigate the robustness of schema-
guided models to linguistic styles of schemas. Our contri-
butions are as follows:

• We introduce SGD-X, an extension to the SGD dataset
that contains crowdsourced stylistic variants for every
schema in the original dataset1

• Based on SGD-X, we propose schema sensitivity - a met-
ric to evaluate model sensitivity to schema variations
• We show that two top schema-guided dialogue state

tracking (DST) models based on BERT and T5 are highly
sensitive to schema variations, dropping 12-18% in joint
goal accuracy for the average SGD-X variant

1We release SGD-X and an evaluation script for schema-
guided dialogue state tracking models on GitHub at
https://github.com/google-research-datasets/dstc8-schema-guided-
dialogue
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Figure 1: The original schema for a Payment service (left) alongside its closest and farthest SGD-X variants (center and right,
respectively), as measured by linguistic distance functions. We study the robustness of models to writing styles used in schemas.

• We demonstrate that back-translation is an effective,
model-agnostic technique for improving schema robust-
ness

The SGD-X Dataset
We curate SGD-X, short for Schema Guided Dialogue -
eXtended, to evaluate the robustness of schema-guided di-
alogue models to schemas. Following SGD terminology, we
define a schema as a collection of intents and slots belonging
to a service, along with metadata that describe their intended
behavior. We also define a schema element as an intent, slot,
or service identifier. A key feature of schemas is the inclu-
sion of natural language descriptions for each schema ele-
ment. For example, an intent “SearchMap” might have the
description “Search for a location of interest on the map”.

For every schema in SGD, SGD-X provides 5 variants,
where each one replaces the original schema element names
and descriptions with semantically similar paraphrases. Fig-
ure 1 shows an original schema alongside two SGD-X vari-
ants. We describe the dataset in detail below.

“Blind” Paraphrase Collection
Schema element names and descriptions in the original SGD
dataset were written by a small set of authors, and achiev-
ing linguistic diversity was not an explicit goal. To diversify
SGD-X, we crowdsourced paraphrases across 400+ authors
from Amazon Mechanical Turk. We chose crowdsourcing
over automatic paraphrasing methods because we found that
automatic methods were often semantically inaccurate and
provided insufficient linguistic diversity, especially when the
text was short. We designed two crowdsourcing tasks (pic-
tured in the Appendix of the ArXiv version2 of this paper):

Paraphrasing names: To paraphrase names, we provided
a schema element’s long-form description from the SGD

2https://arxiv.org/abs/2110.06800

dataset and asked crowdworkers to generate a short name
that would capture the description. We deliberately did not
share the original names to encourage a diversity of para-
phrases - hence “blind” paraphrasing.

Paraphrasing descriptions: To generate descriptions,
we reversed the name paraphrasing task - i.e. given only the
name of a schema element, we asked crowdworkers to come
up with a long-form description. For a limited set of schema
elements, we provided additional information:

• If intent and slot names were ambiguous on their own
(e.g. the “intent” slot from the Homes service, which in-
dicates whether a user is interested in buying or renting
property), the original description was shown

• For categorical slots, their possible values were shown

For a single task, a crowdworker was tasked to come up
with either all names or all descriptions for a given service’s
schema elements.

After collecting raw responses, we deduplicated and man-
ually vetted responses for quality and correctness. Our pri-
mary criterion was whether a response accurately described
the schema element, and sometimes valid responses did
not fully overlap semantically with the original as tra-
ditional paraphrasing typically requires. For instance, we
considered SearchByLocation a valid replacement for
FindHomeByArea, despite the former’s lack of reference
to the “home” concept, since it is implied that the search is
for homes in the broader context of the Homes service.

We created enough tasks to collect approximately 10 para-
phrases per schema element name and description. At the
end of the collection and vetting phase, we had at least
5 paraphrases for every name and description. When there
were more than 5, we selected 5 at random.
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Composing Schema Variants
We composed our schema element paraphrases into schema
variants, where each variant replaces every name and de-
scription in the original schema with a crowdsourced para-
phrase. We placed paraphrases into schema variants such
that variants increasingly diverge from the original schemas
as the variant number increases. We sorted each schema ele-
ment’s name/description paraphrases by their distance from
the original name/description using the following metrics:
• For names, we used Levenshtein distance
• For descriptions, we used Jaccard distance, where stop-

words were removed and words were lemmatized using
spaCy (Honnibal et al. 2020)

After sorting, for every schema element elem, we ob-
tained a list of unique name paraphrases Nelem =
[nelem

idx ], idx ∈ {1..5}, ordered by increasing Levenshtein
distance from the original name nelem

gt . Similarly for every
schema element description, we obtained a list of unique de-
scription paraphrases Delem = [delemidx ], idx ∈ {1..5}, or-
dered by increasing Jaccard distance from the original de-
scription delemgt .

Finally to compose the idx schema variant, for every
elem in the schema, we simply selected nelem

idx and delemidx .
This establishes the SGD-X benchmark as a series of in-
creasingly challenging evaluation sets. Henceforth in this
paper, we refer to these schema variants as v1 through v5,
where v1 refers to the variant schema closest to the original
and v5 the farthest. Figure 1 compares an original schema
with its first and fifth variant to highlight the increasing di-
vergence property.

Dataset Statistics
The original SGD dataset contains 45 schemas with a total of
365 slots and 88 intents. Each schema element is associated
with 1 name and 1 description (though service names were
not paraphrased). After compiling paraphrases into variant
schemas, SGD-X presents 5 variants for every schema, to-
talling 4,755 paraphrases. Each schema variant is composed
of paraphrases from multiple crowdworkers. Designing the
tasks, collecting data, manually vetting responses, and com-
posing the variants took approximately 1 month.

Table 1 presents various metrics on SGD-X. As men-
tioned in Section , one concern with the original test set is
that roughly 70% of the slot and intent names in the 15 “un-
seen” schemas appear in training schemas. In contrast, that
figure drops to 8% for slot names and 2% for intent names
for the average SGD-X variant.

For names, the average normalized Levenshtein distance
from original to paraphrase is about 0.5 (on a scale of 0 to
1), indicating high variation. For descriptions, the average
BLEU score between original and paraphrase is 7.9, and the
average BLEU score among paraphrased descriptions (i.e.
self-BLEU3) is 4.5, indicating a large diversity of descrip-
tions.

3We calculate self-BLEU for a description by calculating the
BLEU score between every pair of variants, resulting in 5 * 4 = 20
scores. We then compute top-line self-BLEU by averaging these
scores across all descriptions across all 45 unique schemas.

Schema variant
Metric Orig v1 v2 v3 v4 v5 Avg
% of test slot
names seen in train 65% 13% 14% 5% 6% 2% 8%
% of test intent
names seen in train 71% 0% 0% 4% 0% 4% 2%
Levenshtein
Distance (names) - 0.30 0.42 0.49 0.56 0.61 0.48
BLEU (desc) - 18.8 11.3 5.6 2.9 1.0 7.9

Table 1: SGD-X dataset statistics. The metrics show high
linguistic variation from the original SGD schemas.

Evaluation Methodology
We propose evaluating models by training them on original
SGD only and evaluating on SGD-X. In addition to stan-
dard accuracy metrics, we propose measuring the consis-
tency of predictions across variants. Below, we first describe
our schema sensitivity metric, followed by a general pro-
posal for training and evaluating dialogue systems on SGD-
X, and finally a detailed proposal for evaluating dialogue
state tracking models specifically.

Schema Sensitivity Metric
LetM be a turn-level evaluation metric, which takes a pre-
diction and ground truth at turn t as input and returns a
score. Let K denote the number of schema variants, pkt de-
note turn-level predictions for variant k, and gt denote the
ground-truth. We define schema sensitivity (SS) for the met-
ricM as the turn-level Coefficient of Variation (CoV ) of the
metric value (i.e., the standard deviation normalized by the
mean) averaged over all turns in the evaluation set. This is
described by the following set of equations:

SSM =
1

|T |
∑
t∈T

CoVt =
1

|T |
∑
t∈T

st
x̄t

(1)

where the standard deviation st and mean x̄t are defined
as follows:

st =

√√√√√ K∑
k=1

(M(pkt , gt)−M(pt, gt))2

K − 1
(2)

x̄t =M(pt, gt) (3)

M(pt, gt) = 1
K

K∑
k=1

M(pkt , gt) is the average of the met-

ric corresponding to predictions over all K variants in turn
t, and T is the set of all turns in the eval set.

Intuitively, schema sensitivity quantifies how much pre-
dictions fluctuate when exposed to schema variants, inde-
pendent of the prediction correctness, and models with lower
SS are more robust to schema changes. SS may be com-
puted for any turn-level or dialogue-level metric across the
schema-guided dialogue modeling pipeline.

Metric design considerations: We chose Coefficient of
Variation (CoV ) over standard deviation to represent vari-
ability since normalizing by the mean allows for comparison
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of variability across dialogue modeling components such as
DST and NLG, as well as between two models with differing
absolute performance.

For the standard deviation used in the numerator of CoV ,
we employ the sample standard deviation because we view
the K variants as a sample of the total population of possi-
ble ways a schema could be written. Using the sample stan-
dard deviation instead of the population standard deviation
reduces bias of the estimate of the true variability.

Finally, by computing the average turn-level CoV instead
of computing CoV on the dataset’s top-line performance,
we increase the metric’s sensitivity to changes in prediction
stability. Designing SS as the average turn-level CoV also
provides us with a sense of how much a model’s predictions
can be expected to fluctuate at each given turn depending on
how the schema is written.

General Evaluation on SGD-X
In order to evaluate on SGD-X, we propose the following
steps:

1. Train models on the original SGD train set schemas
2. Make predictions on the evaluation set using the 5 SGD-

X schemas
3. Finally, measure performance on two classes of metrics:

(a) An average of standard performance metrics over the
5 variants

(b) Schema sensitivity metrics corresponding to the stan-
dard performance metrics

Using this training and evaluation setup best measures a
model’s ability to generalize to schemas written by a diverse
set of authors.

Dialogue State Tracking on SGD-X
Because schema-guided dialogue state tracking (DST) is rel-
atively well-studied, we apply the recommendations from
section and outline the evaluation procedure on SGD-X. We
propose scoring DST models on 2 metrics: Average Joint
Goal Accuracy (JGAv1−5 ) and Schema Sensitivity of JGA
(SSJGA).

We first compute model predictions across each of the |T |
dialogue turns in the eval set |K| times - once for each of the
schema variants - for a total of |T | ∗ |K| predictions.

We compute the average turn-level JGA as follows:

JGAv1−5
=

T∑
t=1

K∑
k=1

JGA(pkt , gt)

|T | ∗ |K|
(4)

Next, schema sensitivity SS of the JGA is calculated fol-
lowing Equation (1).

Note: in this evaluation, we only use predictions on the
SGD-X variant schemas and not the original SGD schemas
to avoid models “cheating” by overfitting on the original
schemas’ writing styles.

We expect that JGAv1−5
will typically be the primary

metric and SSJGA an auxiliary metric. The precise tradeoff
between the two metrics when evaluating candidate models

Figure 2: Input to one of the four sub-models of SGP-DST
responsible for free-form slot value prediction. The last 2
dialogue utterances, a “null” token, and the slot description
are concatenated (green), and the context feature takes on a
value based on the slot’s presence in the dialogue prior to
this turn. After encoding, a slot value is predicted by select-
ing a span from the user utterance. Figure borrowed from
Ruan et al. (2020).

will depend on the context in which the model will be ap-
plied (e.g. how do we value higher accuracy vs. prediction
consistency?). In the next section, we apply this evaluation
on two DST models.

Experiments
Given schema-guided modeling for DST is relatively well
studied, we use SGD-X to conduct two classes of robustness
experiments:
1. We train models on original SGD and evaluate on SGD-X
2. We experiment with data augmentation techniques to im-

prove performance on SGD-X
We use the following models for our experiments:

• SGP-DST4 (Ruan et al. 2020) - the highest-performing
model with publicly available code, at the time of
writing. 4 sub-models are trained from independent
BERT-Base encoders, each specializing in a sub-task.
Each one takes the dialogue and relevant schema ele-
ment names/descriptions as input and makes predictions,
which are then combined across the 4 models using rules.
Figure 2 illustrates one sub-model.
• T5DST (Lee, Cheng, and Ostendorf 2021) - a generative

model trained by fine-tuning T5-Base (Raffel et al. 2020)
to predict slot values given the dialogue context, service,
slot name, and slot description, which achieves SOTA re-
sults on MultiWOZ 2.2. Figure 3 depicts the model input
and output.

Train on SGD, Evaluate on SGD-X
We trained both models on the original SGD training set
with the settings that produce their reported results, and then
evaluated them on the SGD-X test sets. More training details
in the Appendix, available in the ArXiv version2 of this pa-
per.

Results: Table 2 shows the summarized results and Fig-
ure 4 displays JGA by variant. Both models see significant

4While the authors of SGP-DST report 72.2% JGA on the origi-
nal SGD test set, we were only able to reproduce 60.5% JGA when
training with the recommended hyperparameters.
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Figure 3: Example inputs and outputs for fine-tuning the T5DST model. The model is run once for each slot. The dialogue
history (blue), service (green), slot name (orange), and slot description (dark gray) are input to the model, and the predicted
value is decoded. Figure borrowed from Lee, Cheng, and Ostendorf (2021).

Model Eval set JGAOrig JGAv1−5
Diffrel SSJGA

SGP-
DST

all 60.5 49.9 -17.6 51.9
seen 80.1 60.7 -24.3 51.5
unseen 54.0 46.3 -14.3 52.0

T5DST
all 72.6 64.0 -11.9 40.4
seen 89.7 79.3 -11.6 31.9
unseen 66.9 58.9 -12.0 43.3

Table 2: Evaluation of two top-performing DST models on
the SGD-X test set. Both models experience substantial de-
clines in performance when exposed to variant schemas.

drops in joint goal accuracy, with SGP-DST and T5DST de-
clining -17.6% and -11.9% respectively on average. For both
models, the decline in JGA tends to increase in magnitude
as the distance from the original schemas (reflected by the
variant number) increases, with the two models dropping as
much as -28% and -19% respectively for their worst vari-
ants. These results reveal that evaluating solely on the origi-
nal SGD dataset overestimates the generalization capability
of schema-guided DST models.

For SGP-DST, the JGA drop is much greater for seen ser-
vices than unseen services. Recall that in this setup, “seen”
schemas at evaluation time are no longer linguistically iden-
tical to the schemas the models were trained on. The sharp
decline suggests that SGP-DST likely overfit to the exact
language used in seen schemas. Performance on unseen
schemas also declines for both models, which we hypoth-
esize is due to overfitting on the linguistic styles in the orig-
inal SGD dataset, as mentioned in Section .

On schema sensitivity, T5DST scores almost 12 points
lower than SGP-DST in addition to achieving higher
JGAv1−5

, indicating it is superior to SGP-DST in both di-
mensions.

We observe that both models face robustness issues de-
spite having powerful pre-trained language models as their
base encoders, which have demonstrated immense success
when applied to a variety of natural language tasks. We hy-
pothesize that the models lose some of their generalization
capabilities during the fine-tuning stage, a phenomenon also
observed in other settings (Jiang et al. 2020).

Schema Augmentation
The results in Section suggest both models overfit on the
training schemas, reducing their ability to generalize to
new linguistic styles. We experiment with back-translating

Figure 4: JGA achieved by SGP-DST and T5DST respec-
tively on the test set for the original SGD dataset and the
five SGD-X variants. Both models fail to generalize well to
variants of the original schemas.

schemas (Sennrich, Haddow, and Birch 2016) to augment
the training data (Hou et al. 2018; Yoo, Shin, and Lee 2019)
and study its impact on model robustness. In addition, to es-
tablish an approximate upper-bound for how much improve-
ment paraphrasing-based schema augmentation can provide,
we also evaluate the impact of augmenting the SGD-X
crowdworker-collected paraphrases.

Back-translation: For each training schema, we back-
translate its schema element names and descriptions three
times using Google Translate to create three alternate
schemas: one each for Mandarin, Korean, and Japanese -
chosen for their relatively high difficulty and consequent di-
versity of back-translated paraphrases. The average normal-
ized Levenshtein distance for names and BLEU score for de-
scriptions between the originals and their back-translations
are 0.14 and 34.1 respectively. Self-BLEU among back-
translated variant schemas is 41.8. These metrics indicate
a moderate degree of linguistic deviation from the original
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Model Aug method JGAv1−5
SSJGA

SGP-
DST

None 49.9 51.9
Backtrans 54.1 (+8%) 43.1 (-17%)
Oracle 66.2 (+33%) 22.5 (-57%)

T5DST
None 64.0 40.4
Backtrans 70.8 (+11%) 34.0 (-16%)
Oracle 73.3 (+15%) 24.6 (-39%)

Table 3: Results for schema augmentation methods on SGP-
DST and T5DST models. Back-translation improves ro-
bustness for both models. Oracle augmentation, which in-
volves augmenting SGD-X variant schemas, serves as an
approximate upper bound for paraphrasing-based augmen-
tation methods.

schemas and intra-variant diversity, though still much less
than the SGD-X variants, which average 0.48 Levenshtein
distance, 7.9 BLEU, and 4.5 self-BLEU. Examples pictured
in the ArXiv version2 of this paper.

Once these variant schemas were created, new training ex-
amples were generated using the same dialogues as the orig-
inal training set, but with schema inputs drawn from the vari-
ant schemas. When training on the augmented dataset, mod-
els encounter the same dialogue multiple times in a given
epoch, where schema element names and descriptions differ
for each version.

SGD-X Crowdsourced Paraphrases (Oracle): During
crowdsourcing, we collected paraphrases for all 45 schemas
across train, dev, and test sets. Similarly to the back-
translation experiment, for this experiment we use the
crowdsourced v1 through v5 training set schemas to augment
the training data. Note that this approach should be seen
as an oracle for paraphrasing-based schema augmentation
since this involves collecting roughly 5K human paraphrases
for schema element names/descriptions. Furthermore, for a
given variant vi, the schema is the same for a service across
train and eval sets. This means that models have already
been exposed to the exact language used in seen schemas
during training, giving them an unfair advantage on those
services during evaluation.

Results: We train the SGP-DST and T5DST models using
the two aforementioned schema augmentation approaches
and evaluate on the SGD-X benchmark (without augmen-
tation). The results are summarized in Table 3 and Figure
5.

Training with back-translated schemas improves the ro-
bustness of both models. Accuracy on SGD-X increases by
+8% for SGP-DST and +11% for T5DST (relative), and it
decreases schema sensitivity -17% and -16%, respectively.
The improvement is considerable for unseen as well as seen
schemas, suggesting that training with diverse schemas im-
proves model generalization. This result is consistent with
Wei et al. (2021), which hypothesizes that increasing diver-
sity of training data improves performance on unseen tasks.
The oracle method further improves joint goal accuracy and
schema sensitivity beyond back-translation - a useful refer-
ence for how much paraphrasing-based schema augmenta-
tion may improve performance.

Figure 5: JGAv1−5
for the SGP-DST and T5DST mod-

els with different schema augmentation methods, split by
seen and unseen services. Back-translation improves perfor-
mance across the board.

Although the models trained with back-translation do not
achieve parity with performance on the original SGD test
set (54.1% vs. 60.1% JGA for SGP-DST, 70.8% vs. 72.6%
for T5DST), much of the decline is recouped. Not only is
this technique effective, but it is easy to implement, model
agnostic, and requires requires no changes to modeling code.

Given that back-translating schemas with Mandarin, Ko-
rean, and Japanese already produces a relatively high BLEU
score of 34.1 despite being tough to translate, we hypoth-
esize that incorporating additional back-translated schemas
from other languages would not greatly increase the diver-
sity of linguistic styles. As a result, we believe that sim-
ply scaling to more languages would yield limited improve-
ments in performance. One alternative to further increase
linguistic diversity would be to introduce sampling when de-
coding for back-translation.

Other augmentation methods: Besides back-
translation, we also experimented with augmenting
corrupted versions of schemas, where we randomly re-
placed words and perturbed word order. However, we did
not see improvements over the non-augmented models,
which we hypothesize is due to a mismatch between the
corrupted training schemas and real test schemas. Besides
augmenting schemas, augmenting dialogues has shown
promise in other settings and could also improve robustness
(Ma et al. 2019; Noroozi et al. 2020).

Analysis
To gain better intuition of model robustness issues, we in-
spect cases where T5DST predicts incorrectly when given
variant schemas. We also analyze T5DST’s performance
broken down by service. All analysis is done on T5DST
trained only on the original SGD schemas.
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Service Dialogue Slot Name and Description Predicted Value
Weather
(seen)

USER: What will the
weather in Portland be on
the 14th?

O: city - Name of the city Portland

v1: city name - Name of place None

Payment
(unseen)

USER: I need to make a
payment from my visa.

O: payment method - The source of
money used for making the payment

credit card

v5: money withdrawal source - What
is being used to pay, either app bal-
ance or debit/credit card

app balance

Table 4: Examples where T5DST fails to predict slots correctly when given SGD-X variant schemas. O represents the original,
and vi represents the i-th SGD-X schema.

Visually Inspecting Errors

We visually inspected examples where T5DST fails to pre-
dict slots correctly when provided with variant schemas.
Many errors arise from failing to predict slots as active.
For example, in the Weather dialogue in Table 4, the model
correctly predicts “city = Portland” when given the original
schema but mis-predicts “city name = None” for the v1 vari-
ant. In these cases, the model may not understand the slot
name and description well, possibly leading it believe the
slot is irrelevant for the current dialogue.

We also observe cases where the model correctly pre-
dicts a categorical slot as active but predicts an incorrect
value. For example, in the Payment dialogue in Table 4, the
model predicts that the slot for “money withdrawal source”
is “app balance” instead of “credit card” when given the v5
schema. One hypothesis is that the word “withdrawal” in
the name “money withdrawal source” biases the model to
decode “balance” over “credit card”, since “balance” and
“withdrawal” are words present in the Banks schema seen
at training time.

While SGD’s original schemas and SGD-X variant
schemas are semantically similar from a human’s perspec-
tive, these slight perturbations have an outsized impact on
model performance, highlighting the degree to which mod-
els overfit on the writing styles of schemas.

Service-level Results

In order to dissect model performance further, we plot the
Average JGA (JGAv1−5

) and Schema Sensitivity to JGA
(SSJGA) by service, shown in Figure 6. We observe that
higher JGAv1−5

tends to correspond to lower SSJGA. This
suggests that higher accuracy prediction stability come hand
in hand, for both seen and unseen services.

Given how SSJGA is defined, for a given service, a model
could predict the dialogue state inaccurately yet also achieve
a desirably low schema sensitivity. However, our results sug-
gest that this is atypical, with Flights 4 being one of the
exceptions to this pattern. We hypothesize that Flights 4
breaks this pattern because it is exceptionally challenging to
predict its state, leading the model to make uniformly poor
predictions regardless of which schema variant it is given.

Figure 6: A plot of Average Joint Goal Accuracy and
Schema Sensitivity on the test set for the T5DST model
trained only on original SGD. Each point represents one ser-
vice. The model tends to be less sensitive to schema varia-
tions for services it predicts more accurately.

Related Work
Schema-guided modeling aims to build task-oriented dia-
logue systems that can generalize easily to new verticals
using very little extra information, including for slot fill-
ing (Bapna et al. 2017; Shah et al. 2019; Liu et al. 2020)
and dialogue state tracking (Li et al. 2021; Campagna et al.
2020; Kumar et al. 2020) among other tasks. More recent
work has adopted the schema-guided paradigm (Ma et al.
2019; Li, Xiong, and Cao 2020; Zhang et al. 2021) and even
extended the paradigm in functionality (Mosig, Mehri, and
Kober 2020; Mehri and Eskenazi 2021).

Model robustness is an active area of NLP research (Goel
et al. 2021) and has many interpretations, such as to noise
(Belinkov and Bisk 2018), distribution shift (Hendrycks
et al. 2020) and adversarial input (Jia and Liang 2017).

As they are inherently public-facing in nature, the robust-
ness of dialogue systems to harmful inputs (Dinan et al.
2019; Cheng, Wei, and Hsieh 2019) and input noise (Einol-
ghozati et al. 2019; Liu et al. 2020), such as ASR error, mis-
spellings, and user input paraphrasing have been explored.
However, robustness to API schemas for schema-guided di-
alogue systems remains relatively unexplored.
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Lin et al. (2021) and Cao and Zhang (2021) both inves-
tigate natural language description styles for zero/few-shot
dialogue state tracking. The former experiments with homo-
geneously training and evaluating on different description
styles, unlike our work. The latter performs heterogeneous
evaluation of template-based description styles (e.g. rephras-
ing slot name as a question, using the original description).
Models are also evaluated against paraphrased descriptions
created via back-translation but only decline slightly in per-
formance.

Conclusion
In this work, we present SGD-X, a benchmark dataset
for evaluating the robustness of schema-guided models to
schema writing styles. To evaluate robustness, we propose
training models on SGD, predicting on SGD-X, and fi-
nally measuring standard performance metrics alongside a
novel schema sensitivity metric that quantifies the stability
of model predictions across variants.

Applying this to two of the highest-performing schema-
guided DST models, we discover that both perform substan-
tially worse on SGD-X than SGD, suggesting that evaluat-
ing solely on SGD overestimates models’ ability to gener-
alize to real-world schemas. It’s noteworthy that we witness
this decline on models based on T5 and BERT - two popular
large language models in research and production. We fur-
ther demonstrate that back-translating schemas for training
data augmentation is an effective, model-agnostic technique
for recovering some of this decline while simultaneously re-
ducing schema sensitivity.

We note that the weaknesses of evaluating only on the
original SGD dataset uncovered in this work also apply to
the leave-one-domain-out zero-shot evaluation on the popu-
lar MultiWOZ dataset. Also, while dialogue state tracking is
the focal point of this work, SGD-X is applicable to evalu-
ating the robustness of other schema-guided dialogue com-
ponents (e.g. policy, NLG). We hope that releasing this pa-
per and benchmark motivates further research in the area of
schema robustness.

Ethical Impact
Crowdsourcing details: We hired 400+ Amazon Mechan-
ical Turk crowdworkers from the U.S. and paid USD $1-2
per task, where each task consisted of paraphrasing either
names or descriptions for every element in a single schema.
The median submission time was 3 minutes, which equates
to US$20-40/hr. In total, we spent ∼$2000 on data collec-
tion.
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