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Abstract

Volitionality and subject animacy are fundamental and
closely related properties of an event. Their classification is
challenging because it requires contextual text understanding
and a huge amount of labeled data. This paper proposes a
novel method that jointly learns volitionality and subject ani-
macy at a low cost, heuristically labeling events in a raw cor-
pus. Volitionality labels are assigned using a small lexicon of
volitional and non-volitional adverbs such as “deliberately”
and “accidentally”; subject animacy labels are assigned using
a list of animate and inanimate nouns obtained from ontolog-
ical knowledge. We then consider the problem of learning a
classifier from the labeled events so that it can perform well
on unlabeled events without the words used for labeling. We
view the problem as a bias reduction or unsupervised domain
adaptation problem and apply the techniques. We conduct ex-
periments with crowdsourced gold data in Japanese and En-
glish and show that our method effectively learns volitionality
and subject animacy without manually labeled data.

Introduction

Volitionality is a fundamental property of an event that indi-
cates whether someone is volitionally involved in the event.
This study particularly focuses on volitionality with respect
to the subject of an event. For example, “eating” and “writ-
ing” are usually volitional from the viewpoint of the sub-
ject, while “crying” and ““getting injured” are non-volitional.
Event volitionality classification has been used for causal
knowledge categorization (Lee and Jun 2008; Inui, Inui, and
Matsumoto 2003; Abe, Inui, and Matsumoto 2008a,b) and
has various potential applications such as conditional event
prediction (Du et al. 2019), script induction (Chambers and
Jurafsky 2008), and customer feedback analysis (Liu et al.
2017).

On the other hand, animacy is a fundamental property
of a noun that indicates whether the entity described by
the noun is capable of human-like volition (Bowman and
Chopra 2012). Since this study focuses on volitionality with
respect to the subject of an event, it would be helpful to con-
sider the animacy of the subject as a necessary condition for
volitionality. Consequently, this study considers the event
property of subject animacy. The close relationship between

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

10921

Joint learning with regularization

0 () t 0
l u 1 u
Dvol vol Dani ani
e ... deliberately e ... (?) ® L BUY .. o . ....(?
......... (V) e (?) e ee e (A) i (?)
.. i (?) . ® i (?)
. @ | e (?)
o i ® L
0 0 t
Volitionality indicating words Animacy indicating words
Volitional (V) Animate (A)
® deliberately ® guy
* .. * ..
|— Raw corpus J

Figure 1: Overview of our method. We construct labeled
and unlabeled datasets for volitionality and subject animacy
classification by heuristically labeling events in a raw corpus
using the volitionality/animacy indicating words. Our model
jointly learns volitionality and subject animacy on them with
regularization to prevent the model from focusing on words
used for labeling.

volitionality and subject animacy suggests a synergistic ef-
fect of joint learning.

The challenge of identifying volitionality and subject an-
imacy lies in limited language resources and contextual de-
pendence. The volitionality of an event is largely decided by
its predicate. However, existing language resources such as
ConceptNet (Speer, Chin, and Havasi 2017) do not provide
an exhaustive list of volitional predicates.

Even with a rich language resource, however, volitional-
ity cannot be entirely identified due to its context-dependent
nature. Let us consider the following Japanese examples.

€))] a. shawa-o abiru (v)
shower-ACC' take
b.  hinan-o abiru (v

criticism-ACC get
Example (1-a) and example (1-b) have the same predicate

'ACC is the accusative case marker.



“abiru (take/get).” However, the former is volitional, while
the latter is non-volitional.? Similarly, example (2-a) is non-
volitional, but example (2-b) is volitional because of the ad-
verb “fukaku (deeply).”

2) a. iki-o SUFH (NV)
breath-ACC take
b.  fukaku iki-o Suru (v)

deeply breath-ACC take

Coupled with the unbounded combinatorial nature of lan-
guage, such context-dependent nature entails the demand for
learning from a huge amount of labeled data.

As for subject animacy, although there exist some avail-
able language resources listing animate and inanimate
nouns, they are far from exhaustive. Besides, subject ani-
macy classification also requires contextual text understand-
ing. For example, although example (3-a) and example (3-b)
have the same subject, “shirobai (white motorcycle),” the
former describes an inanimate entity (a motorcycle) while
the latter describes an animate entity (a police officer) as
metonymy.>

3) a.  shirobai-ga fometearu (ia)
white motorcycle-NOM*  be parked
b.  shirobai-ga oikaketekuru (s

white motorcycle-NOM chase

In order to deal with these cases, it is inevitable to build a
classifier that is capable of contextual understanding, which
requires large amounts of labeled data for training.

This paper proposes a minimally supervised method to
learn volitionality and subject animacy jointly. Figure 1 il-
lustrates the overview of our method. We first heuristically
assign labels to events in a raw corpus. Volitionality labels
are assigned using a small lexicon of volitional and non-
volitional adverbs, collectively called the volitionality indi-
cating words. For example, example (4) is regarded as vo-
litional because the volitional adverb “aete (deliberately)”
modifies the predicate.

“4)

aete shinjitsu-o hanasu (v,
deliberately truth-ACC tell

Example (5) is considered non-volitional because the non-
volitional adverb “ukkari (accidentally)” modifies the predi-
cate.

®)

ukkari keitai-o otosu (\v)
accidentally mobile-ACC drop

Subject animacy labels are assigned using a list of animate
and inanimate nouns, collectively called the animacy indi-
cating words, obtained from ontological knowledge. Using
this labeling method, a large number of labeled events can
be collected at a low cost.

2We use “V” and “NV” to indicate that an event is volitional
and non-volitional from the viewpoint of the subject, respectively.

3We use “A” and “IA” to indicate that the subject of an event is
animate and inanimate, respectively.

“NOM is the nominative case marker.
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As example (4) and example (5) suggest, we can assume
that the volitionality of an event is preserved after removing
the volitionality indicating words in most cases. The same
can be said for subject animacy.

However, this is not always true. For example, exam-
ple (6-a) is volitional, but example (6-b) is non-volitional.
Here, the volitionality indicating word “aete (deliberately)”
plays an essential role.

(6) a. aete kokeru vy
deliberately tumble
b.  kokeru v,

tumble

Such cases also exist in subject animacy classification. For
example, the subject of example (7-a) “shogeki (impact)” is
inanimate, but the omitted subject of example (7-b) is nor-
mally assumed to be animate. In example (7-a), a classifier
needs to focus on the subject to make a correct prediction.

@) a. shogeki-ga hashiru a)
impact-NOM run
b.  hashiru (a)

run

Taking into account these properties, we learn a classifier.
Given that labels are generally preserved after removing the
volitionality/animacy indicating words, we learn classifica-
tion on labeled events with regularization to prevent the clas-
sifier from focusing such words, making the classifier gen-
eralize to unlabeled events that do not contain such words.
Although there exist exception cases where labels change by
removing the volitionality/animacy indicating words, we ex-
pect that such cases are learned from data by building the
classifier on top of the generalized vector representations
of events produced by a general-purpose language model,
BERT (Devlin et al. 2019).

We view the problem of restricting a classifier from focus-
ing on the volitionality/animacy indicating words as a bias
reduction (Kennedy et al. 2020; Jin et al. 2020) or unsuper-
vised domain adaptation (Ramponi and Plank 2020) prob-
lem and utilize the methods as regularization. In bias re-
duction, the volitionality/animacy indicating words are re-
garded as bias that should not be over-exploited to make
predictions. During training, the classifier learns to reduce
the contribution of the words towards predictions. In unsu-
pervised domain adaptation, labeled events and unlabeled
events are considered source domain data and target domain
data, respectively. Through training to make the classifier
perform well on unlabeled data, it is expected that the clas-
sifier learns not to solely rely on the volitionality/animacy
indicating words that are not available on unlabeled data.

We conduct experiments with crowdsourced gold data in
Japanese and English and verify the effectiveness of the
proposed method to learn volitionality and subject animacy
without manually labeled data.’

0ur code and crowdsourced gold data are available at https:
//github.com/hkiyomaru/volcls.



Related Work

Our work mainly builds on event volitionality classification,
bias reduction, and unsupervised domain adaptation.

Event Volitionality Classification

Previous work on event volitionality classification can be
categorized into a targeted setting and a non-targeted set-
ting. In the targeted setting, a model is given the predicate
and its argument of an event and predicts whether the argu-
ment is volitionally involved in the action or state the predi-
cate represents. This setting has been tackled as a sub-task of
semantic proto-role labeling (Reisinger et al. 2015; White
et al. 2016; Teichert et al. 2017).

In the non-targeted setting, which we tackle in this pa-
per, a model is given an event and predicts whether the sub-
ject is volitionally involved in the event. To this end, Abe,
Inui, and Matsumoto (2008a) and Abe, Inui, and Matsumoto
(2008b) manually built a lexicon of verbs with volitional-
ity labels and classified event volitionality by looking it up.
This method is constrained by its inability to take context
into account; as example (1-a) and example (1-b) suggest,
volitionality depends on context.

Inui, Inui, and Matsumoto (2003) proposed a data-driven
approach; they learned an SVM with hand-crafted linguis-
tic features of events on a small amount of manually labeled
data. However, the non-compositionality of event volitional-
ity prevents us from learning from a small dataset. We use
a massive amount of heuristically labeled events to learn a
wide range of language phenomena and world knowledge
related to volitionality.

Bias Reduction

Bias reduction is a technique to prevent a model from ex-
ploiting a specific bias to make predictions. While bias re-
duction has been actively studied in the field of fairness in
machine learning (Bolukbasi et al. 2016; Zhao et al. 2017,
2019; Kennedy et al. 2020), we use this technique to prevent
our model from over-exploiting the volitionality/animacy in-
dicating words. Specifically, we employ two bias reduction
methods proposed in Kennedy et al. (2020): word removal
and explanation regularization based on sampling and oc-
clusion (Jin et al. 2020). These methods were originally pro-
posed to learn a hate speech classifier robust to group iden-
tifiers such as “gay.” The details are deferred to the section
on the proposed method.

Unsupervised Domain Adaptation

It is reasonable to employ semi-supervised learning tech-
niques to solve our problem because our training data con-
tains both labeled and unlabeled events. In the context of
semi-supervised learning, given that our primary focus is on
classifying unlabeled events to which our heuristics cannot
assign labels, our problem can be particularly viewed as an
unsupervised domain adaptation (UDA) problem (Ramponi
and Plank 2020).

UDA focuses on the setting where a model is required to
perform well on a target domain using labeled data from a
source domain and unlabeled data from the target domain.
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We employ UDA regarding labeled events and unlabeled
events as source domain data and target domain data, respec-
tively. Specifically, we employ adversarial domain adapta-
tion (ADA) that has been used successfully in NLP tasks, in-
cluding text classification such as sentiment analysis (Ganin
et al. 2016; Ganin and Lempitsky 2015; Shah et al. 2018;
Shen et al. 2018). In ADA, a model learns a latent feature
space to reduce the discrepancy between the source and tar-
get distributions while learning a task using the source do-
main data, using an adversarial learning framework. The de-
tails are deferred to the section on the proposed method.

Problem Setting

This section describes the representation, scope, and anno-
tation of events we target in the present paper.

Representation

We represent an event as a clause, that is, a text that contains
one main predicate. Compared to structured representations
such as predicate-argument structures (Gildea and Juraf-
sky 2000), clauses can more flexibly represent the mean-
ing of events. Besides, by representing events by clauses,
we can obtain powerful event representations using strong
pretrained text encoders like BERT (Devlin et al. 2019).

Scope

This paper focuses on events whose volitionality cannot be
identified by simple linguistic features: POS tags and voice.
We use POS tags to filter out events whose predicates are
either an adjective or copula because they always represent
a state and thus never represent a volitional action, as shown
in example (8) and example (9).

(8) sora-ga  kireida v,
sky-NOM be beautiful
(9)  kare-wa gakuseida (v,

he-NOM be student

As for voice, we filter out events in the passive or potential
voice because they are not volitional from the viewpoint of
their subjects, as shown in example (10) and example (11).

(10)  sensei-ni shikarareru (v

teacher-DAT® be scolded

watashi-wa hashireru (v,
[-NOM can run

an

Besides, we filter out events with modality, a linguistic
expression representing the writer’s opinion or attitude to-
wards an event. Example (12) contains the modality of CER-
TAINTY expressed by “hazuda (should).”

(12) kare-wa  kuru hazuda

he-NOM come should

Because our focus is on recognizing the volitionality of an
event itself, we exclude such an event from the scope.

®DAT is the dative case marker.



Annotation
An event is given volitionality and subject animacy labels.

Volitionality An event is considered volitional if the sub-
jectis volitionally involved in the event. Otherwise, it is con-
sidered non-volitional.

Subject Animacy The subject of an event is considered
animate if the entity described by it can take volitional ac-
tions. Otherwise, it is considered inanimate. Note that we tie
an animacy label to an event rather than the subject. We con-
sider a model that is given an event and predicts its subject
animacy.

Proposed Method

Our goal is to train a model that is given an event x and pre-
dicts its volitionality 3y, and subject animacy ¥,n;. Both yyo;
and y,,; take the value of 1 if positive (volitional/animate)
and O if negative (non-volitional/inanimate). First, labeled
events are collected from a raw corpus with our heuristic la-
beling method. Then, our model jointly learns volitionality
and subject animacy with regularization.

Constructing Training Dataset

We construct four types of datasets: events with volitionality
labels D! |, events without volitionality labels DY, events
with subject animacy labels D ., and events without subject
animacy labels D

First, events whose volitionality cannot be identified by
simple linguistic features are extracted from a raw corpus
using an off-the-shelf syntactic dependency parser and POS
tagger. Each event is then given its volitionality and subject
animacy labels by our heuristic labeling method. According
to the given label, the event is added to the corresponding
dataset.

To assign the volitionality label, we prepare a small lexi-
con of volitional and non-volitional adverbs. If an adverb in
the lexicon modifies the predicate of the event, the event is
given the corresponding label and added to D! ;. Otherwise,
the event is added to Dy, without being given a label.

To assign the subject animacy label, we first find the sub-
ject of the event using a semantic dependency parser. If the
subject is found, its animacy is then examined by looking
up the animacy indicating words obtained from ontological
knowledge and using the result of named entity recognition.
If the animacy is identified, the event is associated with the
corresponding label and pushed into D! . If the subject is
not found — which is not rare in pro-drop languages, includ-
ing Japanese — or its animacy is not identified, the event is
added to D} . without being given a label.

ani

Model

Our model consists of the following three neural networks:
a text encoder F, a volitionality classifier C,,, and a subject
animacy classifier Cyy,;. The text encoder transforms an event
z into a distributed representation. The volitionality classi-
fier is given the representation and predicts the probability of
z being volitional. Likewise, the subject animacy classifier
predicts the probability that the subject of x is animate.
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Training with Regularization

Our model jointly learns volitionality classification and
subject animacy classification with regularization. As their
training is done in a unified manner, we introduce placehold-
ers for convenience. We refer to a labeled dataset as D!, an
unlabeled dataset as D", the label assigned to events in D
as y, and the classifier to predict y as C. When learning vo-
litionality, these placeholders are accompanied by the suffix
“vol”; as for subject animacy, they are accompanied by the
suffix “ani.”

Our model learns classification using the labeled dataset.
Formally, the objective is written as follows:

Ecls = E(m,y)NDl BCE(y, C(E(ZE))),
where BCE is binary cross-entropy.
We explore the following regularization methods.

Word Removal (WR) WR is a bias reduction method that
decreases reliance on a word to make predictions by remov-
ing the word from training data. We use this method to re-
duce reliance on the volitionality/animacy indicating words.
The objective is written as follows:

ACWR = E(w’y)N'DlBCE(y, C’(E(x\w))), (2)
where w is the volitionality/animacy indicating word in x
and z\w is z from which w is removed.

(1)

Explanation regularization by sampling and occlusion
(SOC) SOC is a bias reduction method that penalizes the
context-independent contribution of a word towards predic-
tions (Kennedy et al. 2020). In order to estimate a context-
independent contribution, SOC calculates the difference of
model output after masking out the word, marginalized over
all the possible context of the word. We use this method
to reduce reliance on the volitionality/animacy indicating
words. Formally, the objective is written as follows:

Lsoc = Epopi[(2)]?, 3)
o) = é S [C(EW) - CEE )P, @)

z’eS

where w is the volitionality/animacy indicating word in z,
S is a set of events created by sampling the context of w
according to a pretrained language model, and "\w is 2’
that w is replaced with a padding token.

Adversarial Domain Adaptation (ADA) ADA is an un-
supervised domain adaptation technique (Ganin et al. 2016;
Ganin and Lempitsky 2015). In ADA, a model learns to
make the features of unlabeled data from a target domain
closer to the features of labeled data from a source domain
while learning a task using the labeled data. This training
is done in an adversarial manner. During training, an addi-
tional neural network called discriminator D is trained. The
discriminator is given the output of the encoder and predicts
1 if the input is source domain data and O otherwise. The
encoder learns to fool the discriminator. We use ADA con-
sidering the labeled dataset as source domain data and the
unlabeled dataset as target domain data. Formally, the ob-
jective is written as follows:

ﬁADA :]Ew,\,'DL BCE(O, D(E(:ZJ))

+ E,p«BCE(1, D(E(2))). (5)



Japanese

Volitional

Non-volitional

Volitional

English
Non-volitional

aete (5,293)
isoide (4,187)
Jikkuri (4,017)
shinchoni (3,743)
wazawaza (3,262)

omowazu (18,115)

tsui (15,897)

jidoutekini (14,212)

futo (12,050)
tsuitsui (10,054)

carefully (13,594)
thoroughly (12,468)

unfortunately (13,070)
automatically (12,824)

actively (10,379) accidentally (5,272)
deliberately (3,366) unexpectedly (3,106)
intentionally (2,713)  luckily (1,894)

Table 1: The five most frequent volitionality indicating words in our lexicon. The numbers in parentheses indicate frequency.

D\l/ol yol Dzlmi ;;i
Japanese 782 769 772 743
English 624 628 668 67.1

Table 2: The inter-annotator agreement rate for each dataset,
calculated by averaging the ratios of majority answers.

Consistency (CON) CoN learns the consistency of voli-
tionality classification and subject animacy classification on
the unlabeled datasets. Recall that animacy is a necessary
condition for volitionality. Therefore, it is implausible to
predict that an event is volitional while predicting that its
subject is inanimate. CON learns this relationship by:

Leon = Egopp 4oy, max(0, Cvol(E(z)) — Cani(E(2))).
(6)
These regularization objectives are combined with the
classification objective with a weight. Our training objective
is finally written as follows:

L = Las + aLwr|socjapa + BLcoN, @)

where « and (3 are weights selected as hyper-parameters and
Lywrsoc|apa is either Lwr, Lsoc, or Lapa.’

Experiments
Training Dataset

Japanese We used 30M documents in CC-100 as a raw
corpus (Conneau et al. 2020; Wenzek et al. 2020). Events
were parsed and extracted using KNP, a widely used
Japanese parser (Kawahara and Kurohashi 2006). For voli-
tionality labeling, we manually constructed a lexicon of rep-
resentative and frequent volitional/non-volitional adverbs.
We used 15 volitional and 15 non-volitional adverbs (Ta-
ble 1). For animacy labeling, we used the dictionary on
which KNP builds® as ontological knowledge. It contained
approximately 30K nouns with animacy labels. We also used
the named entity recognizer built into KNP to recognize an-
imacy. We did not delete duplicate events to preserve fre-
quency information.

English We again used 30M documents in CC-100 as a
raw corpus. Events were parsed and extracted using spacy’.

It is possible to combine WR, SOC, and ADA, in theory. We
did not try that due to the computational cost.

8https://github.com/ku-nlp/TumanDIC

*https://spacy.io
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Split  Label ‘ Japanese  English

D!, Train Volitional 31,812 47,926
Non-volitional 81,002 40,564

Dev Volitional 149 67
Non-volitional 233 92

Test Volitional 149 68
Non-volitional 233 93

vy Train  Unlabeled 112,814+ 88,490+
Dev Volitional 206 62
Non-volitional 164 104

Test Volitional 206 63
Non-volitional 164 104

DL, Train Animate 29,344+ 71,257+
Inanimate 83,470+ 17,233+

Dev Animate 175 170
Inanimate 199 59

Test Animate 176 170
Inanimate 200 60

Dy;  Train  Unlabeled 112,814+ 88,490+
Dev Animate 246 78
Inanimate 93 152

Test Animate 246 78
Inanimate 93 153

Table 3: Statistics of our dataset. The number with + means
that the events were randomly sampled from a larger set ac-
cording to the size of smallest dataset, D! ;.

For volitionality labeling, we manually constructed a lexicon
of 10 volitional and 10 non-volitional adverbs (Table 1). For
animacy labeling, we obtained animate and inanimate nouns
from ConceptNet (Speer, Chin, and Havasi 2017). Specifi-
cally, we used the hyponyms of “person” and “organization”
as animate nouns, and the hyponyms of “object,” “item,”
“thing,” “artifact,” and “location” as inanimate nouns. As a
result, we obtained 2,604 animate nouns and 430 inanimate
nouns. Besides, we used the named entity recognizer built
into spacy for animacy recognition.

Evaluation Dataset

We constructed an evaluation dataset for each of D\l/ol’ Dy
D!, and D%,. We first randomly extracted 1,200 unique
events from each of the datasets. We then assigned the
ground truth to them by crowdsourcing. As for volitional-
ity labeling, crowdworkers were given an event and assigned

one of the following labels:



Japanese English

Vol. Ani. Dl vol Dl Dy Diy vol Dl D
NONE VAN + CON | 65.3+2.6 773409 | 92.04+0.7 81.4+0.8 | 64.0+£0.9 69.3+0.7 | 83.5£1.0 82.4+1.3
WR +CoN | 73.5+£14 85.1£1.0 | 94.3+0.6 86.4+0.2 | 65.1£0.6 70.7+0.2 | 84.2+04 81.7+04
Soc + CoN | 73.7£2.9 82.3£1.7 | 93.94+0.2 84.5£1.3 | 63.5+£2.0 70.0£0.6 | 84.3£1.6 82.7£1.7
ADA +CoN | 69.7£1.0 81.5£0.7 | 92.7£0.7 81.9+4.2 | 629+3.6 69.6+1.2 | 84.6£1.2 83.44+2.0
VAN NONE +CoON | 91.7£1.0 89.5+1.1 | 72.6+2.4 70.7£2.7 | 73.7£1.8 66.2+0.9 | 67.2£3.6 66.0+1.9
VAN 91.8+1.3 90.6£0.1 | 91.3+0.3 81.7£1.7 | 74.4+0.5 70.74£3.1 | 82.3£2.1 81.5£1.0
+CoON | 92.1£0.5 89.6+1.9 | 87.74£3.3 83.0+1.2 | 74.0+£1.6 69.843.0 | 84.3+1.6 81.9+13
WR 93.940.6 92.5£1.2 | 94.0+0.0 86.4+04 | 72.4+43 69.7+0.2 | 83.6+0.7 81.6£0.1
+CoON | 92.1£0.9 92.8+1.0 | 96.0+0.5 88.5+0.3 | 71.9+£2.6 70.84+0.6 | 84.1£0.8 81.94+0.6
Soc 90.7£0.7 94.7£0.7 | 92.8%+1.1 85.4£0.7 | 72.8+£1.9 72.0+0.4 | 83.5£29 78.6£2.9
+CON | 91.5+£1.0 93.5+0.6 | 89.6%1.5 83.7+0.8 | 72.8+1.4 69.5+1.1 | 849+04 82.3+0.3
ADA 92.3+04 89.9£2.7 | 87.24+3.3 82.24+2.0 | 74.4+0.7 72.842.2 | 84.1£1.3 82.8+£14
+ CoN | 922404 90.9£3.1 | 87.74£3.1 82.0£2.1 | 72.0+£1.3 70.942.0 | 82.2+£1.7 82.3+£1.3
WR NONE +CoN | 91.5+£15 91.240.8 | 57.3+£10.6 57.6+10.7 | 69.8+0.8 70.04+0.3 | 55.5+0.5 67.4+£1.1
VAN 924+0.8 91.9+0.1 | 88.8+7.6 83.9+14 | 73.0+£1.0 73.1£23 | 82.6+£2.1 84.0+0.5
+ CoON | 93.24+0.8 93.2+1.3 | 84.7+5.8 82.2+14 | 723+0.5 72.441.2 | 82.3£09 83.7£0.5
WR 91.84£0.7 932409 | 94.3+1.2 87.1+14 | 72.4+0.8 75.5+1.0 | 82.5+£2.2 83.64+0.2
+CON | 934413 93.0£1.0 | 93.6+1.5 86.3£1.1 | 72.6+£0.8 71.94+1.4 | 82.0£0.8 84.5£1.0
Soc 92.1+£04 94.9+04 | 88.9+3.8 83.6+2.4 | 729+14 752414 | 81.2+24 82.84+0.7
+CON | 93.5+£1.3 93.3£1.2 | 85.0+5.5 82.3£14 | 723%+1.1 75.54+1.8 | 80.7£2.2 83.5+£1.8
ADA 924405 923+1.3 | 83.6+34 81.9+0.3 | 72.3+£0.7 75.6+0.6 | 82.3+£2.1 83.64+0.2
+CoON | 93.94+1.0 93.1£0.8 | 85.1£5.5 81.7£1.0 | 72.3+£0.8 72.74+0.7 | 81.4£1.3 83.9+04
Soc NONE +CON | 944406 929+0.1 | 67.3£2.2 67.1£0.7 | 73.3£04 722413 | 66.2£1.8 73.0+1.3
VAN 94.6+0.4 94.0£0.5 | 92.3+1.8 86.1£0.8 | 73.9+0.5 75.440.8 | 83.2+1.9 83.3+0.2
+ CON | 94.6£04 94.7+0.5 | 90.0+1.0 84.5+04 | 73.7£0.3 75.8+0.5 | 85.4+03 85.1+0.3
WR 94.34+0.1 96.7+0.7 | 95.3%+1.0 89.94+0.6 | 73.2+0.3 74.0+19 | 84.0+0.1 83.0+0.4
+ CON | 94.5+03 96.7+0.4 | 90.1+0.9 84.5+0.6 | 73.6+£0.2 75.7+0.2 | 84.6£0.9 84.7+04
Soc 94.5+£03 95.24+03 | 91.3£1.3 86.0£0.8 | 73.8+0.1 76.7+1.4 | 86.2+0.4 81.4+1.2
+ CON | 944+04 96.0£0.5 | 90.0+0.4 84.6+0.8 | 73.6+£0.3 77.1+1.1 | 85.4+0.8 84.4+04
ADA 94.64+0.5 95.940.1 | 92.1+2.0 85.3£0.9 | 73.1+0.4 74.0+1.8 | 83.9+04 83.1£0.2
+ CoON | 95.0+£0.8 95.1+1.2 | 90.4+1.0 84.6+0.8 | 73.5+£0.3 754403 | 84.7£0.8 84.7+0.5
ADA NONE +CoON | 96.3+0.6 93.6+£0.9 | 73.6+2.1 734+1.6 | 749£1.3 70.0+34 | 62.2+32 644+1.9
VAN 90.7£0.4 91.8+0.5 | 90.8+0.7 82.4+1.7 | 70.5£2.3 70.5£1.3 | 849+0.6 80.4+14
+CoN | 92.1+0.5 89.5£24 | 86.9+4.3 82.8+£1.5 | 72.3+4.4 699419 | 84.9+0.7 81.0£2.6
WR 92.0+£13 94.6+04 | 94.9+13 86.8+1.1 | 71.7£0.8 70.6+0.6 | 83.3+£0.7 82.2+1.3
+CON | 93.1£1.0 94.5+1.0 | 95.9+0.3 87.6+0.8 | 69.7+2.4 71.5+1.1 | 85.2£1.0 80.4+£25
Soc 91.2+0.6 94.6+09 | 91.24+24 84.3+0.5 | 69.1+£3.4 73.2+1.6 | 84.0+£3.0 78.2%1.6
+ CoN | 91.64+0.6 93.6+0.2 | 88.7£1.0 83.3£0.2 | 69.4+1.7 68.3+0.8 | 85.1£0.8 82.0+1.7
ADA 91.9+03 90.8+1.1 | 87.3+2.7 83.1+£0.9 | 71.5+£0.2 67.6£2.6 | 84.0+£0.6 77.0£2.3
+ CoN | 922404 91.3£14 | 87.5+29 83.4£0.8 | 71.5+£29 71.04+2.8 | 84.94+0.7 81.0£2.1

Table 4: The result of volitionality classification and subject animacy classification. Reported scores are the average and standard
deviation of the AUC of the ROC curve when we trained each model three times with different random seeds. VAN means that
classification is learned without regularization (i.e., « = 0.0). NONE means that classification is not learned using its labeled
data, but learned through optimizing prediction consistency with CON. The bold scores indicate the highest ones over models,
and the underlined scores indicate the highest ones over models that did not rely on joint learning.

» The subject is volitionally involved in the event.

» The subject is not volitionally involved in the event.
* Unable to say either.
* Unable to understand.

As for animacy labeling, crowdworkers were given an event

and assigned one of the following labels:

* The subject is a person(s) or organization(s).
» The subject is neither a person(s) nor organization(s).
* Unable to say either.
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¢ Unable to understand.

Each event was annotated by five crowdworkers. One
crowdworker annotated ten events. For Japanese, we used
Yahoo! Crowdsourcing!® as a crowdsourcing platform. For
quality control, we used the function provided in the plat-
form to reject workers who made a mistake on an easy ques-
tion that we manually prepared in advance. The total cost
was 24,000 JPY. For English, we used Amazon Mechani-

"https://crowdsourcing.yahoo.co.jp/



cal Turk (MTurk). For quality control, we followed common
best practices (Berinsky, Huber, and Lenz 2012); workers
had to have over a 95% acceptance rate, live in the US, and
have done more than 1,000 tasks. The total cost was 288
USD.

Table 2 shows the inter-annotator agreement rates. Events
with an agreement rate of 80% or more were extracted, and
half were used for validation and the other half were used
for testing. Table 3 summarizes the constructed datasets.

Implementation Detail

The encoder was pretrained BERTgasg (Devlin et al. 2019).
We used the output of the classification token ([CLS]) as
event representations. The classifiers were a three-layered
fully-connected neural network with the ReLU nonlinearity
followed by the sigmoid function. The discriminator used in
ADA had the same architecture as the classifiers. SOC was
used with a sample size of three. & was selected from {0.0,
0.01, 0.1, 1.0} for each of WR, SOC, and ADA. 8 was se-
lected from {0.0, 0.01, 0.1, 1.0}. We trained the model for
three epochs with a batch size of 256. We used the Adam op-
timizer (Kingma and Ba 2015) with a learning rate of 3e-5,
linear warmup of the learning rate over the first 10% steps,
and linear decay of the learning rate. We evaluated the per-
formance on the development dataset of D{.,, which was
our primary concern, at every 100 steps, and adopted the
checkpoint that achieved the best performance. The evalu-
ation metric was the AUC of the ROC curve. Models were
trained three times with different random seeds. We used
Pytorch for implementation.

Results

Table 4 shows the result. In both Japanese and English, joint
learning combined with regularization achieved the best per-
formance on both volitionality and subject animacy classi-
fication on the unlabeled datasets and most of the labeled
datasets. Specifically, when joint learning was employed,
Soc was constantly effective to learn volitionality classifi-
cation. Without joint learning, the models trained with ADA
often performed best.

As for subject animacy classification, the effective
method depended on language. This is likely because
Japanese is a pro-drop language while English is not. In
Japanese, the most effective method was WR. Learning sub-
ject animacy of events produced by WR can be interpreted
as learning animacy of omitted subjects. Events with omit-
ted subjects were not given a subject animacy label by our
labeling method and thus were in D}... The models trained
with WR successfully generalized to such events. In English,
on the other hand, because subjects are not omitted, WR was
not as effective as in Japanese.

We observed that the overall scores on the English
datasets were lower than the Japanese ones. The reason was
the quality of the evaluation datasets. As Table 2 suggests,
the English evaluation datasets were constructed by crowd-
workers with a lower agreement rate. Investigating the out-
put manually, we found that the performance was underesti-
mated due to labeling mistakes in the gold data.
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Analysis
Qualitative Analysis

We investigated what is learned by our method, using the
model that best performed on D,. While we had three
models trained with the same setting with different random
seeds, we used one that achieved the second-best validation
performance for analysis.

Japanese The best performing model learned volitionality
with SOC, subject animacy with WR, and prediction consis-
tency with CON. We found that the model was aware of con-
text. Example (1-a) and (1-b) were successfully classified
as volitional and non-volitional, respectively, though these
events had the same predicate. Example (2-a) and (2-b) were
again correctly classified as non-volitional and volitional, re-
spectively, considering the meaning of the adverb. We ob-
served that subject animacy was also recognized considering
context; the subjects of example (3-a) and (3-b) were suc-
cessfully classified as inanimate and animate, respectively. It
would be interesting to quantitatively evaluate such context-
awareness by constructing a dataset like Winograd Schema
Challenge (Levesque, Davis, and Morgenstern 2012).

However, we found that there still existed verbs that our
model struggled with recognizing the volitionality. One no-
table verb was “iru (exist/stay).” While the verb “iru (exist/s-
tay)” basically represents a state, it can represent a volitional
action when the subject is animate. We speculate that the dif-
ficulty of recognizing the animacy of omitted subjects also
contributed to this problem. A plausible solution is to con-
sider the preceding and following events during training. If
the meaning of an event is different, the distribution of its
surrounding events should be too. Learning such contextual
differences could lead to better performance.

English The best performing model learned volitionality
with SOC, subject animacy with SOC, and prediction con-
sistency with CON. We again found that the model suc-
cessfully performed classification considering context. For
example, the following examples with the same predicate
“made” were correctly classified.

(13)  a

b.

I made pancakes. (v)
I made a mistake. (nv)

The following examples were also successfully classified,
capturing the meaning of the adverbial phrase “for him.”

(14)  a

b.

I tumbled. nv)
I tumbled for him. (v

Quality of Labeled Data

Because we had heuristically and automatically assigned la-
bels to events, our labeled datasets should contain wrongly
labeled events. However, if the datasets were full of errors,
it is likely to fail to learn classification.

Given the fact that we could learn a classifier with fairly
good performance, we report the quality of our labeled data
as a reference for applying our method to other languages.
We randomly extracted 100 unique positive and negative

events from each of D! | and D! ., and manually examined



Label Japanese  English
DL, Volitional 88% 94%
Non-volitional 92% 80%
D.; Animate 81% 96%
Inanimate 72% 76%

Table 5: The ratio of events being given a correct label.

whether they were given a correct label or not. We con-
sidered that events incomprehensible for some reason (e.g.,
parsing error) were not given a correct label.

Table 5 shows the result. We found that most events were
labeled correctly. Japanese negatively-labeled events in D!, ;
had relatively low accuracy. This was primarily because of
the failure in subject recognition. In English, negatively-
labeled events in D!, had relatively low accuracy. While
there were several reasons, one of them was that, although
we regarded nouns representing a location as inanimate, they

sometimes represented an organization (e.g., country name).

Conclusion

This paper focused on the close relationship between voli-
tionality and animacy and proposed a method to jointly learn
them with regularization in a minimally-supervised manner.
Experiments in Japanese and English showed the effective-
ness of the proposed method to learn volitionality and sub-
ject animacy without manually labeled data.

There have been few studies using volitionality classifica-
tion. This is partly because there was neither a readily avail-
able volitionality classifier nor a method to create a volition-
ality classifier at a low cost. We hope this study facilitates
future research that builds on volitionality classification.
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