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Abstract

Cross-lingual pre-training has achieved great successes us-
ing monolingual and bilingual plain text corpora. However,
most pre-trained models neglect multilingual knowledge,
which is language agnostic but comprises abundant cross-
lingual structure alignment. In this paper, we propose XLM-
K, a cross-lingual language model incorporating multilin-
gual knowledge in pre-training. XLM-K augments existing
multilingual pre-training with two knowledge tasks, namely
Masked Entity Prediction Task and Object Entailment Task.
We evaluate XLM-K on MLQA, NER and XNLI. Experi-
mental results clearly demonstrate significant improvements
over existing multilingual language models. The results on
MLQA and NER exhibit the superiority of XLM-K in knowl-
edge related tasks. The success in XNLI shows a better cross-
lingual transferability obtained in XLM-K. What is more,
we provide a detailed probing analysis to confirm the de-
sired knowledge captured in our pre-training regimen. The
code is available at https://github.com/microsoft/Unicoder/
tree/master/pretraining/xlmk.

Introduction
Recent development of pre-trained language model (Devlin
et al. 2019; Liu et al. 2019) has inspired a new surge of
interest in the cross-lingual scenario, such as Multilingual
BERT (Devlin et al. 2019) and XLM-R (Conneau et al.
2020). Existing models are usually optimized for masked
language modeling (MLM) tasks (Devlin et al. 2019) and
translation tasks (Conneau and Lample 2019) using multi-
lingual data. However, they neglect the knowledge across
languages, such as entity resolution and relation reasoning.
In fact, the knowledge conveys similar semantic concepts
and similar meanings across languages (Vulić and Moens
2013; Chen et al. 2021), which is essential to achieve cross-
lingual transferability. Therefore, how to equip pre-trained
models with knowledge has become an underexplored but
critical challenge for multilingual language models.

Contextual linguistic representations in language mod-
els are ordinarily trained using unlabeled and unstructured
corpus, without the consideration of explicit grounding to
knowledge (Févry et al. 2020; Xiong et al. 2020; Fan et al.
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2021), such as entity and relation. On one side, the structural
knowledge data is abundant and could be a great comple-
ment to the unstructured corpus for building a better lan-
guage model. Many works have demonstrated its impor-
tance via incorporating basic knowledge into monolingual
pre-trained models (Zhang et al. 2019; Staliūnaitė and Ia-
cobacci 2020; Zhang et al. 2020; Wang et al. 2021b). On
another side, knowledge is often language agnostic, e.g.
different languages share the same entity via different sur-
face forms. This can introduce a huge amount of alignment
data to learn a better cross-lingual representation (Cao et al.
2018a). However, there are few existing works on explor-
ing the multilingual entity linking and relation in the cross-
lingual setting for pre-training (Huang et al. 2019; Yang
et al. 2020). For example, the de-facto cross-lingual pre-
training standard, i.e. MLM (Devlin et al. 2019) plus TLM
(Conneau and Lample 2019), learns the correspondences be-
tween the words or sentences across the languages, neglect-
ing the diverse background cross-lingual information behind
each entity.

To address this limitation, we propose XLM-K, a cross-
lingual language model incorporating multilingual knowl-
edge in pre-training. The knowledge is injected into the
XLM-K via two additional pre-trained tasks, i.e. masked en-
tity prediction task and object entailment task. These two
tasks are designed to capture the knowledge from two as-
pects: description semantics and structured semantics. De-
scription semantics encourage the contextualized entity em-
bedding in a sequence to be linked to the long entity de-
scription in the multilingual knowledge base (KB). Struc-
tured semantics, based on the triplet knowledge <subject,
relation, object>, connect cross-lingual subject and object
based on their relation and descriptions, in which the object
is entailed by the joint of the subject and the relation. The
object and subject are both represented by their description
from the KB. To facilitate the cross-lingual transfer ability,
on one hand, the entity and its description are from different
languages. On the other hand, the textual contents of the sub-
ject and object also come from a distinct language source.
We employ the contrastive learning (He et al. 2020) during
pre-training to make XLM-K distinguish a positive knowl-
edge example from a list of negative knowledge examples.

There are three main contributions in our work:
• As the first attempt, we achieve the combination be-
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tween the textual information and knowledge base in cross-
lingual pre-training by proposing two knowledge related and
cross-lingual pre-training tasks. The knowledge, connected
via different languages, introduces additional information
for learning a better multilingual representation.

• We evaluate XLM-K on the entity-knowledge related
downstream tasks, i.e. MLQA and NER, as well as the stan-
dard multilingual benchmark XNLI. Experimental results
show that XLM-K achieves new state-of-the-art results in
the setting without bilingual data resource. The improve-
ments in MLQA and NER show its superiority on knowl-
edge related scenarios. The results on XNLI demonstrate the
better cross-lingual transferability in XLM-K.

• We further perform a probing analysis (Petroni et al.
2019) on XLM-K, clearly reflecting the desired knowledge
in the pre-trained models.

Related Work
Cross-Lingual Pre-training Works on cross-lingual pre-
training have achieved a great success in multilingual tasks.
Multilingual BERT (Devlin et al. 2019) trains a BERT model
based on multilingual masked language modeling task on
the monolingual corpus. XLM-R (Conneau et al. 2020) fur-
ther extends the methods on a large scale corpus. These
models only use monolingual data from different languages.
To achieve cross-lingual token alignment, XLM (Conneau
and Lample 2019) proposes translation language model-
ing task on parallel corpora. Unicoder (Huang et al. 2019)
presents several pre-training tasks upon parallel corpora and
InfoXLM (Chi et al. 2021) encourages bilingual sentence
pair to be encoded more similar than the negative exam-
ples, while ERNIE-M (Ouyang et al. 2021) learns seman-
tic alignment among multiple languages on monolingual
corpora. These models leverage bilingual data to achieve
better cross-lingual capability between different languages.
Our method explores cross-lingual knowledge base as a new
cross-lingual supervision.

Knowledge-Aware Pre-training Recent monolingual
works, incorporating basic knowledge into monolingual
pre-trained models, result to a better performance in
downstream tasks (Rosset et al. 2020). For example, some
works introduce entity information via adding a knowledge
specific model structure (Broscheit 2019; Zhang et al. 2019;
Févry et al. 2020). Others consider the relation information
captured in the knowledge graph triples (Hayashi et al.
2020; Zhang et al. 2020; Wang et al. 2021a; Liu et al.
2020). Meanwhile, Xiong et al. (2020); Févry et al. (2020)
equip monolingual language model with diverse knowledge
without extra parameters. These works are almost in mono-
lingual domain without the consideration of cross-lingual
information, while the cross-lingual knowledge is learned
by our model via the proposed tasks. Moreover, the standard
operation of aforementioned works are mostly based on
the entity names. The entity names are masked and then
predicted by the model, namely the MLM task is conducted
on the masked entity names. While we predict the entity
description for the purpose of disambiguation of different
entities with the same entity name (detailed in above). It can

help our model learn more fine-grained knowledge.

Word Embedding and KB Joint Learning Many works
leverage word embedding from text corpus to generate bet-
ter KB embedding. Wang et al. 2014; Yamada et al. 2016;
Cao et al. 2017 utilize the texts with entity mention and en-
tity name to align word embedding and entity embedding.
Toutanova et al. 2015; Han, Liu, and Sun 2016; Wu et al.
2016; Wang and Li 2016 utilize the sentences with two entity
mentions as relation representation to generate better entity
and relation embedding. These works mainly target to gen-
erate better graph embedding with English corpus and each
entity will have a trainable embedding. Our methods focus
on training a better contextualized representation for multi-
ple languages. Meanwhile, the entity representation is gen-
erated by Transformer (Vaswani et al. 2017) model, which
could further align the textual and KB embedding, as well
as achieving the less trainable parameters. For cross-lingual
word embeddings, most of works rely on aligned words
or sentences (Ruder, Vulić, and Søgaard 2019). Cao et al.
2018b; Pan et al. 2019; Chen et al. 2021 replace the entity
mention to a special entity tag and regularize one entity’s
different mentions in different languages to have similar em-
bedding. Vulić and Moens 2013 use topic tag of Wikipedia
pages to improve the cross-lingual ability. We also utilize
entity mention in different languages as cross-lingual align-
ment supervision. Different from these works, we further
exploit relation information to enhance the entity represen-
tation. What’s more, we generate entity representation by
Transformer model instead of training the separate embed-
ding for special entity tag.

Methodology
We first present the knowledge construction strategy. Then,
we introduce our two knowledge-based pre-training tasks
and the training objective.

Knowledge Construction
We use Wikipedia and Wikidata (Vrandečić and Krötzsch
2014) as the data source.
Knowledge Graph A knowledge graph is a set of triplets
in form <subject, relation, object>. We use Wikidata as our
knowledge base. The triplets of Wikidata are extracted from
Wikipedia and each Wikipedia page corresponding to an en-
tity in WikiData. WikiData contains 85 million entities and
1304 relations. They formed 280 million triplets.
Entity Mention For a sentence with l words, X =
(x1, x2, ..., xl), a mention (s, t, e) means the sub-sequence
(xs, x(s+1), ..., xt) corresponding to entity e. In our work,
we use Wikipedia as data source. For each anchor in
Wikipedia, it provides the link to the Wikipedia page of this
entity, which can be further mapped to a unique entity in
Wikidata. Wikipedia pages are from 298 languages, and ev-
ery around 64 tokens contains an anchor.
Multilingual Entity Description We treat a Wikipedia page
as the description of its corresponding entity in WikiData.
Since Wikipedia contains multiple languages, an entity may
have multiple descriptions and they come from different lan-
guages. For each page, we only keep its first 256 tokens as
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(a) Masked Entity Prediction Task
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(b) Object Entailment Task

Figure 1: XLM-K mainly consists of two cross-lingual pre-training tasks: (a) Masked Entity Prediction recognizes the masked
entity with its knowledge description (the entity Apple is masked in sentence X); (b) Object Entailment predicts the textual
contents of object with the combination of subject and relation. All the Transformers are with shared parameters.

its description. As shown in Figure 1, N multilingual entity
descriptions form the candidate list Z = {Z1, Z2, ..., ZN}.

Masked Entity Prediction Task
Masked entity prediction task is to encourage the contextu-
alized entity embedding in a sequence to predict the long
entity description in the multilingual knowledge base (KB),
rather than the prediction of entity name. It can help the
disambiguation of the different entity with the same entity
name. For example, as shown in Figure 1.a, the entity name
of Apple and Apple Inc. are the same in Korean. It helps
XLM-K learn the diverse implicit knowledge behind the
mentioned words.

Given a sentence X = (x1, x2, ..., xl) from the cross-
lingual corpus, where X is a sentence with l words from lan-
guage ulg (e.g. ulg is en, shown in Figure 1.a), and a masked
mention (s, t, e) (replaced by [MASK]), the task is to recog-
nize the positive example Z+ from a candidate list Z , which
contains distracting pages from multiple languages but as-
sociated with other entities. Z+ = (z1, z2, ..., zm) is the de-
scription of entity e with m words from language tlg (e.g.
tlg is ar, shown in Figure 1.a). Note that the description Z+

(with a maximum 256 tokens) is extracted from the related
Wikipedia page of entity e. After X being fed into the Trans-
former encoder, the final hidden state of xs, denotes xt

s, and

the [CLS] from Z+, denotes z̃, are further fed into a non-
linear projection layer (Chen et al. 2020), respectively:

zq = W2ReLU(W1x
t
s) (1)

z+ = W4ReLU(W3z̃) (2)

where W1,W3 ∈ Rdw×dp and W2,W4 ∈ Rdp×dw . Then the
masked entity prediction loss Le can be calculated by Eq. 5.

Object Entailment Task
The masked entity prediction task enriches XLM-K with
sentence-level semantic knowledge, while object entailment
task is designed to enhance the structured relation knowl-
edge. As shown in Figure 1.b, given the subject and relation,
the model is forced to select the object from the candidate
list. For the purpose of entity disambiguation, the represen-
tations of subject and object are also from the long entity
description.

Formally, given the subject entity’s description sentence
S = (s1, s2, ..., sl) with l words from language ulg (e.g.
ulg is hi, shown in Figure 1.b), the object entity’s descrip-
tion sentence Z+ = (z1, z2, ..., zm) with m words from lan-
guage tlg (e.g. tlg is en, shown in Figure 1.b) and their re-
lation r (language agnostic), the task is to predict the object
Z+ from a cross-lingual candidate list Z , based on S and
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r. Firstly, the relation r is fed into the Relation Encoder (a
look-up layer to output the relation embedding), and subject
entity description sentence S and object entity description
sentence Z+ is fed into a separate Transformer encoder. We
can get the encoded relation r̃, the whole representation of
subject entity description sentence s̃ and object entity de-
scription sentence z̃, based on their [CLS] in the last layer.
The joint embedding of s̃ and r̃ is constructed as follows:

zq = W6ReLU(W5(s̃+ r̃)) (3)

where W5 ∈ Rdw×dp and W6 ∈ Rdp×dw are trainable
weights. The object z̃ is also encoded by a non-linear pro-
jection layer:

z+ = W8ReLU(W7z̃) (4)

where W7 ∈ Rdw×dp and W8 ∈ Rdp×dw . The object entail-
ment loss Lo is calculated by Eq. 5.

Joint Pre-training Objective
Although we can have different loss functions to optimise
XLM-K, we choose contrastive learning due to its promis-
ing results in both visual representations (He et al. 2020;
Chen et al. 2020) and cross-lingual pre-training (Chi et al.
2021; Pan et al. 2021). Intuitively, by distinguishing the pos-
itive sample from the negative samples using the contrastive
loss, the model stores expressive knowledge acquired from
the structure data. Formally, the loss can be calculated as:

Le(and Lo) = −log
exp(zqz+)∑N
k=1 exp(z

qzk)
(5)

where z+ is the positive sample, zk is the k-th candidate
sample (encoded by the same way like z+) and N is the size
of the candidate list Z . To avoid catastrophic forgetting of
the learned knowledge from the previous training stage, we
preserve the multilingual masked language modeling objec-
tive (MLM) (Devlin et al. 2019), denotes LMLM. As a result,
the optimization objective of XLM-K is defined as:

L = LMLM + Le + Lo (6)

Experiments
In this section, we will introduce implementation details of
XLM-K, then, evaluate the performance of XLM-K on the
downstream tasks. Lastly, we conduct probing experiments
on the pre-trained models to verify the knowledge can be
stored via the proposed tasks.

Implementation Details
Data and Model Structure For the multilingual masked
language modeling task, we use Common Crawl dataset
(Wenzek et al. 2020). The Common Crawl dataset is crawled
from the whole web without restriction, which contains all
the corpus from the Wikipedia. For the proposed two tasks,
we use the corpus for the top 100 languages with the largest
Wikipedias. The settings to balance the instances from dif-
ferent languages are the same as XLM-Rbase (Conneau et al.
2020). The architecture of XLM-K is set as follows: 768 hid-
den units, 12 heads, 12 layers, GELU activation, a dropout

rate of 0.1, with a maximal input length of 256 for the pro-
posed knowledge tasks, and 512 for MLM task.
Details of Pre-training We initialize the model with XLM-
Rbase (Conneau et al. 2020) (was trained on Common
Crawl), and conduct continual pre-training with the gradient
accumulation of 8,192 batch size. We utilize Adam (Kingma
and Ba 2015) as our optimizer. The learning rate starts with
10k warm-up steps and the peak learning rate is set to 3e-5.
The size of candidate list size N = 32k. The candidate list is
implemented as a queue, randomly initialized at the begin-
ning of the training stage and updated by the newly encoded
entities. The pre-training experiments are conducted using
16 V100 GPUs.
Details of Fine-Tuning We follow Liang et al. 2020 in these
fine-tuning settings. In detail, we use Adam optimizer with
warm-up and only fine-tune XLM-K on the English training
set. For MLQA, we fine-tune 2 epochs, with the learning
rate set as 3e-5 and batch size of 12. For NER, we fine-tune
20 epochs, with the learning rate set as 5e-6 and batch size of
32. For XNLI, we fine-tune 10 epochs and the other settings
are the same as for NER. We test all the fine-tuned models
on dev split of all languages for each fine-tuning epoch and
select the model based on the best average performance on
the dev split of all languages. To achieve a convincing com-
parison, we run the fine-tuning experiments with 4 random
seeds and report both the average and maximum results on
all downstream tasks. We also run our baseline XLM-Rbase

with the same 4 seeds and report average results.
Details of Probing Following Petroni et al. (2019), we con-
duct probing analysis directly on the pre-trained models
without any fine-tuning. The probing corpus are from four
sources: Google-RE1, T-REx (Elsahar et al. 2018), Con-
ceptNet (Speer and Havasi 2012) and SQuAD (Rajpurkar
et al. 2016). Except that ConceptNet tests for commonsense
knowledge, others are all designed to probe Wiki-related
knowledge.

Downstream Task Evaluation
To evaluate the performance of our model using downstream
tasks, we conduct experiments on MLQA, NER and XNLI.
MLQA and NER are entity-related tasks, and XNLI is a
widely-used cross-lingual benchmark. Without using bilin-
gual data in pre-training, we achieve new state-of-the-art re-
sults on these three tasks. For the convenience of reference,
we display the results of the bilingual data relevant meth-
ods, namely the recently released models InfoXLM (Chi
et al. 2021) and ERNIE-M (Ouyang et al. 2021), in Table
1 and Table 3 and omit the analysis. Applying bilingual data
resources to XLM-K is left as future work. In the follow-
ing section, MEP means the ablation model of Masked En-
tity Prediction + MLM and OE means Object Entailment +
MLM.
MLQA MLQA (Lewis et al. 2020) is a multilingual ques-
tion answering dataset, which covers 7 languages including
English, Spanish, German, Arabic, Hindi, Vietnamese and
Chinese. As a big portion of questions in MLQA are factual

1https://code.google.com/archive/p/relation-extraction-corpus/
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Model en es de ar hi vi zh Avg
mBERT 77.7/65.2 64.3/46.6 57.9/44.3 45.7/29.8 43.8/29.7 57.1/38.6 57.5/37.3 57.7/41.6
XLM 74.9/62.4 68.0/49.8 62.2/47.6 54.8/36.3 48.8/27.3 61.4/41.8 61.1/39.6 61.6/43.5
mBERT + PPA † 79.8/ - 67.7/ - 62.3/ - 53.8/ - 57.9/ - - / - 61.5/ - 63.8/ -
Unicoder 80.6/ - 68.6/ - 62.7/ - 57.8/ - 62.7/ - 67.5/ - 62.1/ - 66.0/ -
XLM-Rbase 80.1/67.0 67.9/49.9 62.1/47.7 56.4/37.2 60.5/44.0 67.1/46.3 61.4/38.5 65.1/47.2
MEP (avg) 80.6/67.5 68.7/50.9 62.8/48.2 59.0/39.9 63.1/46.1 68.2/47.5 62.1/38.1 66.4/48.3
OE (avg) 80.8/67.8 69.1/51.2 63.2/48.6 59.0/39.6 63.7/46.3 68.5/47.3 63.0/39.5 66.7/48.6
XLM-K (avg) 80.8/67.7 69.3/51.6 63.2/48.9 59.8/40.5 64.3/46.9 69.0/48.0 63.1/38.8 67.1/48.9
XLM-K (max) 80.8/67.9 69.2/52.1 63.8/49.2 60.0/41.1 65.3/47.6 70.1/48.6 63.8/39.7 67.7/49.5
with Bilingual Data
InfoXLM 81.3/68.2 69.9/51.9 64.2/49.6 60.1/40.9 65.0/47.5 70.0/48.6 64.7/41.2 67.9/49.7
ERNIE-M 81.6/68.5 70.9/52.6 65.8/50.7 61.8/41.9 65.4/47.5 70.0/49.2 65.6/41.0 68.7/50.2

Table 1: The results of MLQA F1/EM (exact match) scores on each language († means Post-Pre-training Alignment). The
models in the second block are our ablation models MEP and OE. We run our model and ablation models four times with
different seeds, where avg means the average results and max means the maximum results selected by the Avg metrics.

Model en es de nl Avg
mBERT † 90.6 75.4 69.2 77.9 78.2
XLM-Rbase

† 90.9 75.2 70.4 79.5 79.0
MEP (avg) 90.6 75.6 72.3 80.2 79.6
OE (avg) 90.9 76.0 72.7 80.1 79.9
XLM-K (avg) 90.7 75.2 72.9 80.3 79.8
XLM-K (max) 90.7 76.6 73.3 80.0 80.1

Table 2: The results of NER F1 scores on each language,
where † means the results from (Liang et al. 2020). The mod-
els in the second block are our ablation models. The meaning
of avg and max are the same as Table 1.

ones, we use it to evaluate XLM-K that is pre-trained using
the multilingual knowledge.

The results on MLQA are shown in Table 1, we compare
our model with mBERT (Lewis et al. 2020), XLM (Lewis
et al. 2020), mBERT + PPA (Pan et al. 2021), Unicoder
(Huang et al. 2019) and XLM-Rbase (Conneau et al. 2020).
Since F1 and EM scores have similar observations, we take
F1 scores for analysis:

(1) The Effectiveness of XLM-K. For the avg report, XLM-
K achieves 67.1 averaged accuracy on F1 score, outper-
forming the baseline model XLM-Rbase by 2.0. For the
max report, the model can further obtain 0.6 additional gain
over the avg report. This clearly illustrate the superiority of
XLM-K on MLQA. In addition, the model MEP and OE
provide 1.3 and 1.6 improvements over XLM-Rbase, respec-
tively, which reveals that each task can capture MLQA’s
task-specific knowledge successfully.

(2) The Ablation Analysis of XLM-K. The models in the
second block are the ablation models. Compared with the
ablation models, XLM-K outperforms each model by 0.7
and 0.4 on Avg metrics. It indicates that the masked entity
prediction and object entailment has complementary advan-
tages on MLQA task, and the best result is achieved when
using them together.
NER The cross-lingual NER (Liang et al. 2020) dataset cov-
ers 4 languages, including English, Spanish, German and
Dutch, and 4 types of named entities, namely Person, Lo-

cation, Organization and Miscellaneous. As shown in Table
2, compared with baseline model XLM-Rbase, XLM-K im-
proves the Avg score to 79.8 on average and 80.1 on maxi-
mum. It verifies the effectiveness of XLM-K when solving
NER task. Meanwhile, the results of MEP and OE are also
increased by 0.6 and 0.9 on Avg F1 score. It displays that the
entity-related pre-training task has significant improvements
on the entity-related downstream tasks.
XNLI The XNLI (Conneau et al. 2018) is a popular eval-
uation dataset for cross-lingual NLI which contains 15 lan-
guages. It’s a textual inference tasks and not rerely relied
on knowledge base. We present the results, comparing with
mBERT (Conneau et al. 2020), XLM (Conneau et al. 2020),
Unicoder (Huang et al. 2019), AMBER (Hu et al. 2021) and
XLM-Rbase (Conneau et al. 2020), in Table 3 with following
observations:

(1) The Effectiveness of XLM-K. Although XNLI is not
an entity or relation -aware multilingual task, our model
obtains a 0.6 gain comparing to the baseline model XLM-
Rbase. Each ablation model of MEP and OE improve by
0.4. These gains are marginal compared to MLQA and NER.
This shows that our model is mainly works on knowledge-
aware tasks. On other tasks, it won’t harm the performance
and even could marginally help.

(2) The Ablation Analysis of XLM-K. The ablation models
of XLM-K on XNLI have similar results on XNLI, which in-
creasing by 0.4 compared to the XLM-Rbase baseline 74.2. It
proves each task has its own contribution to the overall im-
provements. Meanwhile, the ablation models still have 0.2
gap to the XLM-K, which implies the advantages towards
the combination of these two tasks.

Ablation Study
The ablation analysis mentioned above demonstrates the su-
periority of the combination scheme of the proposed two
pre-training tasks. In this section, we investigate the effec-
tiveness of our key components.
The Effectiveness of Knowledge Tasks Our baseline model
XLM-Rbase (Conneau et al. 2020) was trained on Common
Crawl dataset (Wenzek et al. 2020), which covers our train-
ing data Wikipedia. As shown in Table 1, 2, 3 and 5, our
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Model en fr es de el bg ru tr ar vi th zh hi sw ur Avg
mBERT 82.1 73.8 74.3 71.1 66.4 68.9 69.0 61.6 64.9 69.5 55.8 69.3 60.0 50.4 58.0 66.3
XLM 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 75.1
Unicoder 82.9 74.7 75.0 71.6 71.6 73.2 70.6 68.7 68.5 71.2 67.0 69.7 66.0 64.1 62.5 70.5
AMBER 84.7 76.6 76.9 74.2 72.5 74.3 73.3 73.2 70.2 73.4 65.7 71.6 66.2 59.9 61.0 71.6
XLM-Rbase 84.6 78.2 79.2 77.0 75.9 77.5 75.5 72.9 72.1 74.8 71.6 73.7 69.8 64.7 65.1 74.2
MEP † 84.9 78.5 78.8 77.0 76.2 78.1 76.1 73.4 72.0 75.2 72.4 74.7 69.8 65.7 66.0 74.6
OE † 84.4 78.1 78.8 77.1 75.9 78.0 75.9 73.1 72.5 75.3 73.0 74.5 70.1 65.4 67.3 74.6
XLM-K † 84.5 78.2 78.8 77.1 76.2 78.2 76.1 73.3 72.5 75.7 72.8 74.9 70.3 65.7 67.4 74.8
XLM-K ∗ 84.9 79.1 79.2 77.9 77.2 78.8 77.4 73.7 73.3 76.8 73.1 75.6 72.0 65.8 68.0 75.5
with Bilingual Data
InfoXLM 86.4 80.6 80.8 78.9 77.8 78.9 77.6 75.6 74.0 77.0 73.7 76.7 72.0 66.4 67.1 76.2
ERNIE-M 85.5 80.1 81.2 79.2 79.1 80.4 78.1 76.8 76.3 78.3 75.8 77.4 72.9 69.5 68.8 77.3

Table 3: The results of XNLI test accuracy on 15 languages. The models in the second block are our ablation models, where †
means avg results and ∗ means max results. The meaning of avg and max are the same as Table 1.

Model MLQA NER XNLI
XLM-Rbase 65.1 79.0 74.2
XLM-K w/o knowledge tasks 65.6 79.0 74.5
MEP w/o multilingual description 65.9 79.3 74.5
MEP 66.4 79.6 74.6
OE w/o contrastive loss 65.7 79.6 74.5
OE 66.7 79.9 74.6
XLM-K 67.1 79.8 74.8

Table 4: The ablation results on MLQA (F1 scores), NER
(F1 scores) and XNLI (test accuracy) upon Avg. All the re-
sults are the avg mentioned in Table 1.

model XLM-K outperforms XLM-Rbase consistently. More-
over, we replace Le and Lo in Eq. 6 with the MLM loss on
multilingual Wikipedia entity descriptions. The results are
shown in the second block of Table 4. Without the knowl-
edge tasks, the performance of XLM-K w/o knowledge tasks
drops by 1.5, 0.8 and 0.3 on MLQA, NER and XNLI re-
spectively. It proves that the improvements are from the de-
signed knowledge tasks, rather than the domain adaptation
to Wikipedia. We will design more knowledge-related tasks
in the future.
The Effectiveness of Multilingual Entity Description As
mentioned in above, the entity knowledge, i.e. the entity-
related Wikipedia page, is converted to different language
resources compared to the given entity. The same operation
is conducted on the subject and object in triplets, leading
to the multilingual resources between the subject and the
object. To study how this operation affects model perfor-
mance, we report the results on the third block of Table 4.
Without multilingual entity description operation, the per-
formance of MEP w/o multilingual description drops by 0.5,
0.3 and 0.1 on MLQA, NER and XNLI respectively. It illus-
trates that the effectiveness of multilingual entity descrip-
tion. On the other hand, compared to baseline XLM-Rbase,
the model MEP w/o multilingual description still achieves
0.8, 0.3 and 0.3 improvements on MLQA, NER and XNLI,
respectively, which reflects that applying entity description
expansion without cross-lingual information in pre-training
is still consistently effective for all downstream tasks.

The Effectiveness of Optimization Strategy A natural idea
to introducing structural knowledge into the pre-trained lan-
guage model is to classify the relation by the subject and ob-
ject from the triplets. Motivated by this opinion, we display
the results on the forth block in Table 4. The model of OE
w/o contrastive loss classifies the relation by the concate-
nation of subject and object with Cross Entropy loss. With-
out contrastive loss, the performance drops by 1.0, 0.3 and
0.1 on MLQA, NER and XNLI respectively. This indicates
the advantages of utilizing the contrastive learning towards
a better cross-lingual model. We conjecture contrastive loss
introduces a more challenging task than classification task.
On the other hand, OE w/o contrastive loss improves the per-
formance of baseline model XLM-Rbase from 65.1 to 65.7,
79.0 to 79.6 and 74.2 to 74.5 in MLQA, NER and XNLI,
respectively. This observation certifies the importance of the
structure knowledge in cross-lingual pre-training, though via
an ordinary optimization strategy.

Probing Analysis
We conduct a knowledge-aware probing task based on
LAMA (Petroni et al. 2019). Note that the Probing is an
analysis experiment to evaluate how well the pre-trained
language model can store the desired (Wiki) knowledge, and
to explain the reason for the improvements on downstream
tasks by the proposed tasks. It means that the probing is not
the SOTA comparison experiment. We leave the analysis
on recent multilingual LAMA (Jiang et al. 2020; Kassner,
Dufter, and Schütze 2021) as our future work.

In LAMA, factual knowledge, such as <Jack, born-in,
Canada>, is firstly converted into cloze test question, such
as “Jack was born in ”. Then, a pre-trained language
model is asked to predict the answer by filling in the blank
of the question. There are 4 sub-tasks in the LAMA dataset.
The first is Google-RE, which contains questions generated
based on around 60k facts extracted from Wikidata and cov-
ers 3 relations. The second is T-REx, which contains ques-
tions generated based on a subset of Wikidata triples as
well, but covers more relations (i.e. 41 relations in total).
The third is ConceptNet, which contains questions gener-
ated based on a commonsense knowledge base (Speer, Chin,
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Corpus Relation Statistics XLM-Rbase XLM-K w/o K MEP OE XLM-K
# Facts # Rel P@1 P@1 P@1 P@1 P@1

Google-RE

birth-place 2937 1 9.3 9.8 10.1 15.0 15.6
birth-date 1825 1 0.6 0.7 0.7 0.9 1.0

death-place 765 1 8.0 9.1 13.4 13.8 17.0
Total 5527 3 7.4 7.8 8.0 9.9 11.2

T-REx

1-1 937 2 48.4 49.9 52.5 50.5 62.0
N-1 20006 23 22.0 25.1 27.3 21.9 29.4
N-M 13096 16 17.9 21.5 25.6 22.1 26.1
Total 34039 41 21.7 22.8 27.9 23.4 29.7

ConceptNet Total 11458 16 18.8 14.2 12.0 17.6 15.7
SQuAD Total 305 - 5.5 6.4 10.1 9.7 11.5

Table 5: The results of LAMA probing mean precision at one (P@1) for the baseline XLM-Rbase, XLM-K w/o K (XLM-K w/o
knowledge tasks), MEP, OE and XLM-K. We also reported the statistics of the facts number and relation types involved by the
referred corpus.

and Havasi 2017). The last is a popular open-domain ques-
tion answering dataset SQuAD. The number of facts and
relation types covered by the each sub-task are shown in the
Table 5 column Statistics.

Evaluation on LAMA Probing Task The LAMA prob-
ing task is conducted on the baseline model XLM-Rbase,
our two ablation models MEP (Masked Entity Prediction +
MLM) and OE (Object Entailment + MLM), XLM-K w/o
knowledge tasks, and our full model XLM-K. The results
are shown in Table 5.

• Comparison Results
The XLM-K w/o knowledge tasks improves the per-

formance slightly (in Google-RE, T-REx and SQuAD). It
proves the improvements are from the designed tasks, rather
than the domain adaptation to Wikipedia. We will detail the
observations of the results on each corpus.

Google-RE XLM-K outperforms all the other models by
a substantial margin, especially the baseline model XLM-
Rbase. It is worth noting that the two ablation models,
namely MEP and OE in Table 5, realizes 0.6 and 2.5 gain re-
spectively, which proves each knowledge-aware pre-training
task can independently help pre-trained models to embed
factual knowledge in a better way.

T-REx This task contains more facts and relations com-
pared to Google-RE. XLM-K boosts the Total metrics from
21.7 to 29.7. The model MEP and model OE improves the
scores by 6.2 and 1.7, respectively. These results further
demonstrate the effectiveness of XLM-K on knowledge-
aware tasks.

ConceptNet The ConceptNet corpus calls for the com-
monsense knowledge, which is a different knowledge source
from Wikipedia. In this work, we mainly take Wikipedia
knowledge into consideration, which can explain the worse
performance on ConceptNet. Extending our model to cap-
ture more knowledge resources, such as commonsense
knowledge, is our future work. Meanwhile, we notice that
the performance of model OE decreases slightly compared
to model MEP and XLM-K. The reason for this phe-
nomenon may lie in that the ConceptNet is collected as the
triplets-style and the relation prediction task has a great skill
to handle the relation structure knowledge.

Cloze Statement XLM-Rbase XLM-K
Phones may be made of . metal plastic

Gnocchi is a kind of . beer food
Tasila Mwale (born ). in 1984

Table 6: Case study of LAMA probing, where the object la-
bel is the ground truth of the given statement. We compare
the prediciton from our baseline XLM-Rbase and our full
model XLM-K. The subject is highlighted with bold and
the object is highlighted with italic.

SQuAD To investigate the performance of our model
on open-domain cloze-style question answering corpus, we
further evaluate the results on SQuAD. Again, our model
achieves a great success on SQuAD. In detail, XLM-K
achieves 11.5, which has a 6.0 gain over XLM-Rbase.
• Case Study
To make the analysis more explicit, as shown in Table 6,

we study three cases. Take the last two cases for example, to
fill in the blank of “Gnoccchi is a kind of .”, XLM-Rbase

fails to answer the question, while XLM-K successfully ac-
complishes the blank with “food”. In the last case “Tasila
Mwale (born ).”, XLM-Rbase has no idea towards this
fact and only predicts the answer with “in” to complete the
phrase “born in”. XLM-K answers this question excellently
via the prediction of “1984”. It confirms that the XLM-K is
indeed equipped with more specific knowledge.

Conclusion
In this work, we present a new cross-lingual language model
XLM-K to associate pre-training language model with more
specific knowledge across multiple languages. Specifically,
the knowledge is obtained via two knowledge-related tasks:
maksed entity prediction and object entailment. Experimen-
tal results on three benchmark datasets clearly demonstrate
the superiority of XLM-K. Our systematic analysis of the
XLM-K advocates that XLM-K has great advantages in
knowledge intensive tasks. Incorporating more diverse mul-
tilingual knowledge and jointing more advanced pre-training
schemes will be addressed in future work.
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Vrandečić, D.; and Krötzsch, M. 2014. Wikidata: a free
collaborative knowledgebase. Communications of the ACM,
57(10): 78–85.
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