The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Incorporating Constituent Syntax for Coreference Resolution

Fan Jiang and Trevor Cohn

School of Computing and Information Systems
The University of Melbourne, Victoria, Australia
fan.jiang1 @student.unimelb.edu.au, t.cohn@unimelb.edu.au

Abstract

Syntax has been shown to benefit Coreference Resolution from
incorporating long-range dependencies and structured infor-
mation captured by syntax trees, either in traditional statistical
machine learning based systems or recently proposed neural
models. However, most leading systems use only dependency
trees. We argue that constituent trees also encode important
information, such as explicit span-boundary signals captured
by nested multi-word phrases, extra linguistic labels and hier-
archical structures useful for detecting anaphora. In this work,
we propose a simple yet effective graph-based method to in-
corporate constituent syntactic structures. Moreover, we also
explore to utilise higher-order neighbourhood information to
encode rich structures in constituent trees. A novel message
propagation mechanism is therefore proposed to enable infor-
mation flow among elements in syntax trees. Experiments on
the English and Chinese portions of OntoNotes 5.0 benchmark
show that our proposed model either beats a strong baseline or
achieves new state-of-the-art performance. Code is available
at https://github.com/Fantabulous-J/Coref-Constituent-Graph.

Introduction

As one of the most fundamental and important tasks in Nat-
ural Language Processing (NLP), Coreference Resolution
aims to group all mentions that refer to the same real-world
entity. This is framed as a span-level classification problem
over sequences of words, as illustrated in Figure 1. Recently,
neural models have achieved strong performance in corefer-
ence resolution (Lee, He, and Zettlemoyer 2018; Joshi et al.
2019, 2020; Wu et al. 2020) with the help of pretrained lan-
guage models (Peters et al. 2018; Devlin et al. 2019).
Syntax was widely used in early learning-based methods,
through the use of features derived from syntax trees, which
were shown to significantly improve statistical coreference
systems (Ge, Hale, and Charniak 1998; Bergsma and Lin
2006; Kong et al. 2010; Kong and Zhou 2011). However,
it is not clear whether these syntax-related features can im-
prove modern neural coreference models. Meanwhile, many
research in other tasks have got positive effects by intro-
ducing syntactic information into neural models. They nor-
mally apply graph neural networks (Schlichtkrull et al. 2017;
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DA: It’s because of what both of you are doing to have
things change. I think that’s what’s... Go ahead Linda.
LW: Thanks goes to you and to the media to help us.
DA: Absolutely.

LW: Obviously we couldn’t seem loud enough to bring the
attention, so our hat is off to all of you as well.

Figure 1: An example of coreference resolution (Pradhan
et al. 2012). Coreferent mentions are with the same colour.

Velickovi¢ et al. 2018) to automatically incorporate depen-
dency trees to better capture the non-local relationships be-
tween words (Marcheggiani and Titov 2017; Bastings et al.
2017; Schlichtkrull et al. 2017). A very recent work (Jiang
and Cohn 2021) shows that incorporating dependency syn-
tax together with semantic role features using heterogeneous
graph networks can significantly improve a strong neural
coreference model. However, few attempts have been made
for the application of constituent syntax, especially on neural
coreference models.

In this work, we aim to investigate the use of constituent
syntax in neural coreference models, and we argue that com-
pared to dependency syntax, incorporating constituent syntax
is more natural for coreference resolution. In constituent
trees, the information encoding boundaries of non-terminal
phrases is explicitly presented. By contrast, such information
is either implicitly encoded or not revealed in dependency
trees. Besides, gold mentions usually map to a limited range
of constituent types (See Section 4.5). We thus believe con-
stituent tree structures capture signals for mention detection
more effectively and explicitly, which we suspect is more
helpful to the overall coreference resolution task. Besides,
extra linguistic labels are also shown to reveal linguistic con-
straints for coreference resolution (Ng 2010) (e.g., indefinite
mentions are less likely to refer to any preceding mentions).

In order to effectively incorporate constituent syntax struc-
tures, we propose a graph-based neural coreference model.
Previous works (Trieu et al. 2019; Kong and Jian 2019) in-
troduced constituent trees as hard constraints to filter invalid
mentions, which helps obtain better mention detectors and
overall coreference resolvers. However, these methods do not
preserve the full structure of original trees, as a result of their



simplification of the tree as node traversal sequences with a
collection of path features, or by ignoring the hierarchical
structure entirely. In contrast, our method builds a graph con-
sisting of terminal and non-terminal nodes and applies graph
neural networks to encode such structures more flexibly.

Our model consists of three parts: document encoder,
graph encoder and coreference layer. We use pretrained lan-
guage model such as SpanBERT (Joshi et al. 2020) as docu-
ment encoder. We propose a novel graph encoder by leverag-
ing graph attention networks (Velickovi¢ et al. 2018), which
encodes bidirectional graphs separately. Moreover, in order
to capture higher-order neighbourhood information and re-
duce the over-smoothing problem (Chen et al. 2020) of graph
neural networks by stacking too many layers, we addition-
ally add two-hop edges based on original constituent tree
structures. New message propagation mechanisms over the
underlying extended graph are therefore designed, where
constituent nodes are updated iteratively using bidirectional
graph attention networks, and explicit hierarchical syntax
and span boundary information are propagated to enhance
the contextualized token embeddings. We conduct experi-
ments on the English and Chinese portions of OntoNotes 5.0
benchmark, and show that our proposed model significantly
outperforms a strong baseline and achieves new state-of-the-
art performance on the Chinese dataset.

Baseline Model

Our model is based on the C2F-COREF+SpanBERT
model (Joshi et al. 2019), which improves over Lee, He,
and Zettlemoyer (2018) with the document encoder replaced
with SpanBERT model. It exhaustively enumerates all text
spans up to a certain length limit as candidate mentions and
aggressively prunes spans with low confidence. For each
mention ¢, the model will learn a distribution over its possible
antecedents )(i):

e5(1:y)
P(y) =

=~ Q) ey
Ey'ey(i) es(zvy )

where the scoring function s(¢, j) measures how likely span
1 and j comprise valid mentions and corefer to one another:

5(4,7) = sm(i) + sm(j) + (4, 7) 2
sm(i) = FFNN,,(g;) 3
s5.(1,j) = FFNN,(gi, g5, 81 © g5, 0(4,7)) 4

where g; and g; are span representations formed by the con-
catenation of contextualized embeddings of span endpoints,
head vector using attention mechanism and span width em-
beddings. FFINN represents a two-layers feedforward neu-
ral network with ReLLU activation function inside. g; © g;j is
the element-wise similarity between span ¢ and j. ¢(i, j) are
meta features including bucket span distances, genre infor-
mation and binary speaker features. s,,, means the predicted
mention score which will be used to prune unlikely candidate
mentions, while s, is the final pairwise coreference score.
As suggested by Xu and Choi (2020), we further discard
the higher-order based span refinement module, which uses
antecedent distribution P(y) as the attention mechanism to
obtain the weighted average sum of antecedent embeddings,
when replicating the baseline model.
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Figure 2: The architecture of our proposed model.

Proposed Model
Document Encoder

In order to fit long documents, Joshi et al. (2019) chooses to
split documents into independent segments. But the drawback
is that it has limited modelling capacity as tokens can only
attend to other tokens within the same segment, especially
for tokens at the boundary of each segment (Joshi et al. 2019).
Instead, we choose to create overlapped segments and treat
speakers (speaker’s name of each utterance) as part of the
input (Wu et al. 2020). Specifically, we use a sliding-window
approach to create 7T-sized segments with a stride of % to-
kens and insert speakers into the beginning of their belonged
utterances. Overlapped segments with attached speaker infor-
mation are then encoded by SpanBERT (Joshi et al. 2020) to
obtain contextualized representations, which can be denoted
as H, = (hy,hy,...,h,), where h; € R? and n is the
document length.

Graph Construction

For each sentence in the document, we have an associated
constituent tree which consists of words (terminals) and con-
stituents (non-terminals). Therefore, we have two types of
nodes in our graph: token nodes (W = {wy, wa, ..., wy})
and constituent nodes (C' = {c1, co, . .., ¢ }), where n and
m are the number of token and constituent nodes, respec-
tively. For a given constituent node c;, we use START(c;)



and END(c;) to denotes its start and end token indices.

Node Initialization Token node representations are ini-
tialized using the contextualized token representations H,,
from the document encoder. Span boundary information has
been shown to be extremely important to span-based tasks.
Therefore, a novel span yield enhanced method is proposed
to initialize each constituent node ¢; € C:

h., = [hstarr(c;); DEND(c1); €type(Ci)] (5
where hgrarr(c;) and hgnp(c,) are the embeddings of start
and end tokens of constituent ¢;. eype(c;) is the constituent
type embeddings obtained from a randomly initialized look-
up table, which will be optimized during the training process.
Thus, we can obtain a set of initialized constituent node
representations: H. = {h.,,h.,,..., h. }.

Edge Construction

Constituent-Constituent We design two categories of
edges in our graph, namely parent-child and grandparent-
grandchild, to capture longer-range dependencies. For each
edge category, we further add reciprocal edges for each edge
in the graph and label them with forward and backward types,
respectively. Additionally, self-loop edges are added to each
node in the graph. Thus, the edges are constructed based on
following rules:

(1). A pair of parent-child and child-parent edges be-
tween node c; and c; are constructed if they are directly
connected in the constituent tree.

(2). A pair of grandparent-grandchild and grandchild-
grandparent edges between node ¢; and c; are constructed
if node ¢; can reach node c; using two hops, and vice versa.

Constituent-Token A token node wj is linked to c; if it
is the left or rightmost token in the yield of ¢;. Such edges
are made unidirectional to make sure that information can
only be propagated from constituent nodes to token nodes,
which aims to enrich basic token representations with span
boundary information and the hierarchical syntax structures.

Graph Encoder

We use a Graph Attention Network (Velickovié et al. 2018) to
update the representation of constituent nodes and propagate
syntactic information to basic token nodes. For a node ¢,
the attention mechanism allows it to selectively incorporate
information from its neighbour nodes:
ij = softmax(o(a’ [Wh;; Wh;])) (6)
b} = [{ZiReLU(Y | oy W'hy) @
J
where K is the number of heads, h; and h; are embeddings
of node i and j, a”, W and W* are trainable parameters. o
is the LeakyReLU activation function (Xu et al. 2015). || and
[; ] means concatenation. Egs. 6 and 7 are designated as an
operation h = GAT(h;, h;|j € N;), where ; is the set of
target node 4’s neighbours, h; and h; are the embeddings of
target and neighbour node. b/ is the updated embedding of
target node.
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Bidirectional GAT Layer We design a bidirectional GAT
layer to model the constituent-constituent edges. Specifically,
for a given constituent node c;, we obtain its neighbour nodes
with edge type ¢ in forward (outgoing) and backward (incom-
ing) directions: !/ and NV?, respectively. Then we use two
separate GAT encoders to derive the updated representation
of node ¢; in different directions:

h!/ = GAT(h,,, h,|c; € NI) (8)

h!’ = GAT(h,,, h,,|c; € N?) )

Then the updated representation of constituent node c; is
obtained by the summation of the representations of two
directions: h! = h'/ + h’.

Multi-type Integration Layer In order to aggregate up-
dated node representations using different types of edges, we
use the self-attentive mechanism (Lee et al. 2017):

o, + = softmax(FFNN(h,, )) (10)
T

h), = o bl (11)
t=1

where T is the number of edge types and FFNN is a two-
layer feedforward neural network with ReL U function in-
side. An operation is designated to summarise Eqs. § to 11:
h) = Multi-BiGAT (h,,, h.,|c; € N,,).

Message Propagation

The message propagation mechanism is defined to enable
information flow from constituent nodes to basic token nodes.
First, we update the constituent node representation using
our defined bidirectional GAT layer with multi-type edges:

hi' = Multi-BiGAT (b, b |c; € V;,)  (12)

where thi is the constituent node representation from previ-
ous layer [ and hgi is the initial constituent node embedding.

Then the updated constituent node representations prop-
agate information to update the token node embeddings
through constituent-token edges:

h{™' = GAT(h}, hl'|c; € ) (13)

where h! is the token representation from layer [ and h? is
the encoding from document encoder.

The updated token representation is then used to recon-
struct the updated constituent node embeddings using Eq. 5,
which will be employed in the next graph encoder layer. Af-
ter L iterations, we could obtain the final constituent syntax
enhanced token representations, which are denoted as H, .

Finally, we use a gating mechanism to infuse the syntax-
enhanced token representation dynamically:

f= U(Wg : [Hw; HE] + bg) (14)
H,=foH,+((1-f)0H (15)

where W, and by, are trainable parameters, ® and o are
element-wise multiplication and sigmoid function respec-
tively.

The enhanced token representations H! will be used to
form span embeddings and compute coreference scores (Lee,
He, and Zettlemoyer 2018) (See Section 2).



MUC B’ CEAF,

P R F1 P R F1 P R F1 Avg. F1
E2E-COREF (Lee et al. 2017) 784 734 758 68.6 61.8 650 62.7 59.0 60.8 67.2
C2F-COREF (Lee, He, and Zettlemoyer 2018) 81.4 79.5 804 722 69.5 70.8 682 67.1 67.6 73.0
SpanBERT-base (Joshi et al. 2020) 84.3 83.1 83.7 762 753 758 74.6 712 729 77.4

Our baseline + SpanBERT-base* " 839 842 84.0 762 769 766 743 73.1 737 78.1(x0.1)

) Jiang and Cohn (2021) + SpanBERT-base 8 85.3 85.0 8.2 779 777 718 75.6 74.1 748 79.3(40.2)

English | oyr model + SpanBERT-base 85.6 858 857 782 79.0 78.6 763 748 755 80.0(£0.2)
CorefQA (Wu et al. 2020) + SpanBERT-baseY 852 87.4 86.3 78.7 765 77.6 760 75.6 75.8 79.9
SpanBERT-large (Joshi et al. 2020) 85.8 84.8 853 783 779 78.1 764 742 753 79.6

Our baseline + SpanBERT-large™ 86.0 86.0 86.0 79.6 79.6 79.6 77.2 75.8 76.5 80.7(%0.1)

Jiang and Cohn (2021) + SpanBERT-large 8 872 867 87.0 81.1 80.5 80.8 78.6 77.0 77.8 81.8(+0.2)

Our model + SpanBERT-large® 87.3 87.1 872 81.1 809 81.0 788 77.2 78.0 82.1(+0.2)
CorefQA (Wu et al. 2020) + SpanBERT-largeY  88.6 87.4 88.0 824 82.0 822 79.9 783 79.1 83.1
Clark and Manning (2016) 739 654 694 675 564 61.5 628 57.6 60.1 63.7
Kong and Jian (2019)® 770 64.6 702 70.6 547 61.6 649 554 59.8 63.9

Chinese Our baseline + BERT-wwm-base* 76.7 709 73.7 683 624 652 674 60.8 639 67.6(£0.3)

Our model + BERT-wwm-base® 84.1 78.6 813 774 715 744 76,5 70.0 73.1 76.3 (£0.2)

Our baseline + RoOBERTa-wwm-ext-large* | 799 722 758 71.6 643 67.7 70.8 62.8 66.5 70.0(%0.3)

Our model+ROBERTa-wwm-ext-largeJr§ 85.8 809 833 798 745 77.0 787 729 757 78.7(40.2)

Table 1: The results on the test set of the OntoNotes English and Chinese shared task compared with previous systems when
using gold constituent trees. * indicates our replicated baseline. § indicates methods using gold features. § indicates methods
using substantial training resources and extra datasets for pretraining. T means averaged performance over 5 runs. I means results
obtained by running the publicly released code of Jiang and Cohn (2021) with the document encoding method in Section 3.1.

Experiments
Dataset

Our model is evaluated on the English and Chinese por-
tions of OntoNotes 5.0 dataset (Pradhan et al. 2012). The
English corpus consists of 2802, 343 and 348 documents in
the training, development and test splits, respectively, while
the Chinese corpus contains 1810, 252 and 218 documents
for train/dev/test splits. The model is evaluated using three
coreference metrics: MUC, B3 and CEAF¢, and the average
F1 score (Avg. F1) of the three are reported. We use the lat-
est version of the official evaluation scripts (version 8.01),!
which implements the original definitions of the metrics.

Experimental Settings

We reimplement the C2F-COREF+SpanBERT? baseline using
PyTorch. For English model, we use SpanBERT-base and
large model to encode documents;? while for Chinese, we use
BERT-wwm-base and ROBERTa-wwm-ext-large* as the doc-
ument encoders. Graph attention networks and the message
propagation module are implemented based on Deep Graph
Library (Wang et al. 2019). Gold constituent trees annotated
on the datasets are used in this experiment for consistent
comparison with previous work.

Most hyperparameters are adopted from Joshi et al.
(2019) and newly introduced hyperparameters are determined

'http://conll.cemantix.org/2012/software.html
Zhttps://github.com/mandarjoshi90/coref
3https://github.com/facebookresearch/SpanBERT
*https://github.com/ymcui/Chinese-BERT-wwm

through grid search. The learning rates of finetuning base and
large model are 2 x 10~° and 1 x 10~°. The learning rates
of task-specific parameters are 3 x 10~ and 5 x 10~* for
English, and 5 x 10~ for Chinese when using base and large
model, respectively. Both BERT and task parameters are
trained using Adam optimizer (Kingma and Ba 2015), with a
warmup learning scheduler for the first 10% of training steps
and linear decay scheduler decreasing to 0, respectively. The
number of heads is set to 4 and 8 for base and large models.
The size of constituent type embeddings is 300. We set the
number of graph attention layers as 2. For all experiments,
we choose the best model according to Avg. F1 on dev set,
which is then evaluated on the test set.

Baselines and State-of-the-Art

We compare our proposed model with a variety of previous
competitive models: Clark and Manning (2016) is a neural
network based model which incorporates entity-level infor-
mation. E2E-COREF (Lee et al. 2017) is the first end-to-end
neural model for coreference resolution which jointly detects
and groups entity mention spans. Kong and Jian (2019) im-
proves the E2E-COREF model by treating constituent trees as
constraints to filter invalid candidate mentions and encoding
the node traversal sequences of parse trees to enhance docu-
ment representations. C2F-COREF (Lee, He, and Zettlemoyer
2018) extends the E2E-COREF model by introducing a coarse-
to-fine candidate mention pruning strategy and a higher-order
span refinement mechanism. Joshi et al. (2020) improves
over C2F-COREF with the document encoder replaced by
SpanBERT. CorefQA (Wu et al. 2020) employs the machine
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reading comprehension framework to recast the coreference
resolution problem as a query-based span-prediction task,
which achieves current state-of-the-art performance. Jiang
and Cohn (2021) enhances neural coreference resolution by
incorporating dependency syntax and semantic role labels
using heterogeneous graph attention networks.

Overall Results

Table 1 shows the results of our model compared with a range
of high-performing neural coreference resolution models on
English and Chinese. For English, we observe that our repli-
cated baseline surpasses the SpanBERT baseline (Joshi et al.
2020) by 0.7% and 1.1%, demonstrating the effectiveness of
the sliding-window based document encoding approach and
modified representations of speaker identities. Our model
further improves the replicated baseline significantly with im-
provements of 1.9% and 1.4%, respectively, a result which is
also comparable to the state-of-the-art performance of Core-
fQA (Wu et al. 2020).5 Improvements can also be observed
over Jiang and Cohn (2021) (0.7% with p < 0.002 and 0.3%
with p < 0.06).° For Chinese, our replicated baseline has
already achieved state-of-the-art performance. With the help
of constituent syntax, our model again beats the baseline
model with significant improvements of 8.7%. This indicates
that constituent syntax is far more useful to Chinese than En-
glish, and we suspect that word-level segmentation encoded
in constituent trees brings extra benefits in Chinese.

Analysis

Effects of Constituency Quality To evaluate how the qual-
ity of constituent trees affects the performance, we test two
off-the-shelf parsers (Zhang, Zhou, and Li 2020) (achieving
95.26% and 91.40% F1 score on PTB and CTB7) to obtain
predicted trees. When using predicted trees with our base
model, we get Avg. F1 of 78.7% (+0.6% with p < 0.05) and
73.0% (+5.4%) on both languages, consistently outperform-
ing the baseline. Similarly, the effects in large models are
also noticeable, resulting in Avg. F1 of 8§1.0% (+0.3% with
p < 0.05) and 75.0% (+5.0%) respectively. However, the
performance is still worse than using gold trees, indicating
the necessity of high-quality constituency parsers.

Ablation Study We modify several components of our model
to validate their effects. Results are reported in Table 2 for
the following ablations: 1) Using vanilla constituent trees
by only keeping parent-child edges; 2) Removing the gating
mechanism and directly use representations from the graph
encoder; 3) Changing the way of representing constituent
node to initialize only with type embeddings; 4) Using the
independent setting (Joshi et al. 2019) for document encod-
ing; 5) Using the similar way as in this paper to incorporate
dependency trees; 6) Using the same method to encode con-
stituent and dependency syntax as in this paper alongside the

SWe do not use their model as a baseline mainly due to hard-
ware limitations, as it requires 128G GPU memory for training. It
can also be easily incorporated with our method by adding the pro-
posed graph encoder on top of their document encoder with minor
modification, which we expect would lead to further improvements.

Pitman’s permutation statistical test (Dror et al. 2018).
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English Chinese
Variants Avg.F1 AF1 Avg.F1 AF1
- 80.0 - 76.3 -
Vanilla Tree 797  -03 759 04
No Gate 713 27 75.1  -1.2
Only Type Embedding 795  -05 755 0.8
No Sliding Window 79.6 -04 760 -0.3
Dependency Syntax 792 -0.8 70.8  -55
Constituent & Dependency 797 -03 753 -1.0

Table 2: Results when ablating different modules compared
to our base model on English and Chinese datasets.

Mention Length

Dataset Model 122 34 57 810 11+ Overall
Enolisy Daseline  90.3 828 783 751 659 87.0
NEMSN - ur method 90.5 84.3 80.1 79.2 74.0 88.1
Chinese Pascline  85.1 79.0 71.0 69.1 664 80.1
! our method 88.5 85.0 78.3 80.0 73.6 85.1

Table 3: The F1 score based on mention length on English
and Chinese development sets when using base model.

method in Jiang and Cohn (2021) for attention fusion of the
dependency-syntax and constituent-syntax representations.
From Table 2 we observe that: 1) The bidirectional graph
and higher-order edges show positive impacts in capturing
long-range dependencies; 2) Removing the gate mechanism
leads to significant performance degradation, especially in
English. We believe that the gate mechanism plays an impor-
tant role in dynamically choosing useful information from
original sequential representations and graph-enhanced rep-
resentations, and keeping information such as position em-
beddings from being lost after the graph attention network;
3) Although only using type embeddings to initialize con-
stituent node representations also yields competitive perfor-
mance, our span yield enhanced initialization method can
capture span-boundary information more effectively; 4) Split-
ting documents into independent segments is less beneficial,
especially for tokens at the boundary of their segment; 5)
Incorporating dependency syntax achieves inferior perfor-
mance, showing that explicit span-boundary information en-
coded in constituent trees is more beneficial; 6) Combining
both types of syntax is better than using dependency syntax
solely but is inferior to only using constituent syntax.
Mentions With Different Lengths Table 3 shows the per-
formance comparison in terms of different mention lengths
on both datasets. As shown in the table, we can observe that
our proposed model consistently outperforms the baseline
model for both two languages. This indicates that the im-
proved overall performance in the coreference resolution task
has benefited largely from better mention detectors, which
is consistent with our hypothesis. The performance gain is
more significant for mentions with longer length on both lan-
guages, demonstrating that leveraging constituent syntax is
highly effective for modelling long-range dependencies and
becomes more crucial when entity length becomes longer.



Doc length #Docs Baseline Ours +AF1
0-128 57 82.8 86.1 433
129-256 73 81.3 832 +19
257-512 78 82.0 837 +1.7
513-768 71 78.3 79.0 +0.7
769-1152 52 71.5 789  +14
1153+ 12 68.0 70.7  +2.7
All 343 78.2 797  +1.5

Table 4: The Avg. F1 on the English dev set when using base
model, broken down by document length.

Dataset ~ Methods Avg.F1 AF1
Baseline 78.1 -

English ~ Our Method 80.0 +1.9
Baseline + Mention Filter 77.3 -0.8
Baseline 67.6 -

Chinese  Our Method 76.3 +8.7
Baseline + Mention Filter 71.8 +4.2

Table 5: Results when utilising syntactic parse trees as men-
tion filter compared to the baseline and our base model.

Document Length In Table 4, we show that the performance
of our model against the baseline on the English develop-
ment set as a function of document lengths. As expected,
our model consistently outperforms the baseline model on
all document sizes, especially for documents with length
larger than 1153 tokens. This demonstrates that the incor-
porated constituent syntax and our modelling choices are
beneficial for capturing longer-range dependencies. Besides,
the improvements on short documents (<128 tokens) are
also significant. We find that most anaphoric mentions have
very short distances between their nearest antecedents. The
Binding Theory (Chomsky 1988) argues that constituent syn-
tax is more effective in keeping anaphoric mentions locally
bounded by short-distance antecedents. Thus, it is possible
that our model implicitly learns this principle, which results
in better performance. Nevertheless, our model shows similar
pattern as the baseline model, performing distinctly worse as
document length increases. This indicates that the sentence-
level syntax used in this work are not sufficient enough to
tackle the deficiency of modelling long-range dependency.
One possible solution is to incorporate document-level fea-
tures such as hierarchical discourse structures.

Constituent Tree as Mention Filter An alternative use of
syntax is through constraining mention types. We use the
constituent parse tree as hard constraints on top of the base-
line to filter out invalid candidate mentions, assuming that
only candidate mentions that have matched phrases in the
parse tree are valid. We observe that about 99% of gold men-
tions correspond to a small set of syntactic phrases and POS
types.” We thus use these two phrase sets as filters to prune

en: the set of phrases tagged with NP, NML, PRP, PRP$, WP,
WDT, WRB, NNP, VB, VBD, VBN, VBG, VBZ, VBP (Wu and
Gardner 2020) includes 99.63% gold mentions. zh: the set of VV,
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unlikely candidate mentions. Table 5 shows the correspond-
ing results. We can find that the syntactic constraint harms
the performance slightly on the English baseline (-0.8%) but
improves the Chinese baseline by 4.2%. However, in both
cases this constrained baseline is substantially worse than
using the syntax tree as part of our neural model, as proposed
in this paper (with scores of 2.7% and 4.5% lower for English
and Chinese, respectively).

Resolution Classes

To further understand the behaviour of our proposed model,
we follow Stoyanov et al. (2009) and Lu and Ng (2020) to
classify gold mentions into different resolution classes and
compare it with the baseline on each of them.

Proper Names Gold mentions associated with named entity
types belong to this class, and four sub-classes are defined
accordingly. 1) exact string match (e): at least one preceding
mention in a proper name’s gold cluster exactly has the same
string; 2) partial string match (p): at least one preceding
mention in a proper name’s gold cluster shares some words;
3) no string match (n): no preceding mention in a proper
name’s gold cluster shares some words; 4) non-anaphoric
(na): a proper name does not refer to any preceding mention.
Common NPs Gold mentions without named entity types
belong to this class, with four sub-classes as in proper names.
Pronouns Five pronoun sub-classes are defined. 1) 1/2: 1st
and 2nd person pronouns (e.g., you); 2) G3: gendered 3rd
person pronouns (e.g., she); 3) U3: ungendered 3rd person
pronouns (e.g., they); 4) oa: any anaphoric pronouns not
in 1), 2), and 3) (e.g., demonstrative pronouns); 5) na: non-
anaphoric pronouns (e.g., pleonastic pronouns).

Results For performance measurements, we follow Lu and
Ng (2020) to use mention detection recall (MD) and reso-
lution accuracy (RA). For MD, we count the percentage of
gold mentions that are correctly detected in each resolution
class; while for RA, we compute the percentage of correctly
detected mentions that are correctly resolved.

Table 6 shows the performance of the baseline and our
proposed model on each resolution class. Firstly, we can see
that both models perform the best on proper names, followed
by common nouns and pronouns. Secondly, by analysing the
fine-grained classes, the exact match class in proper names
and common nouns are easier than the partial match one,
which is easier than the no string match class. For pronouns,
the 3rd person gendered pronoun is the easiest one, followed
by the 1st/2nd person noun, while both models find it difficult
to resolve other pronouns such as reflective pronouns. Thirdly,
we find that our model gains significant improvements on
non-anaphoric mentions, showing its superiority in dealing
with the difficulty of anaphoricity determination, with im-
provements up to 2.7% and 8.0% RA in English and Chinese,
respectively. Moreover, considerable improvements on 3rd
ungendered pronouns (2.0% and 1.4%) are also observed.
Constituent syntax is also especially helpful in detecting par-
tial and no string match classes for proper names (8.7% and
8.3%) and common NPs (6.2% and 3.4%) in Chinese. These
demonstrate that the harder a resolution class is, the more

NT, PN, DFL, NR, NP, QP, NN covers 99.79% gold mentions.



OntoNotes 5.0 English

OntoNotes 5.0 Chinese

Baseline Ours Baseline Ours
Class Size % | RA MD | RA MD | Size% | RA MD | RA MD
PN-e 1552 | 964 94.0 | 96.5 94.3 15.05 | 975 93,5 | 97.3 959
PN-p 6.06 90.0 86.3 | 92.6 89.1 2.81 76.0 847 | 84.7 88.2
PN-n 6.63 857 89.1 | 86.4 89.5 0.47 359 59.1 | 44.2 65.2
PN-na 6.74 95,5 83.0 | 959 85.8 6.05 85.1 784 | 85.7 854
CN-e 6.17 96.7 90.8 | 96.9 91.9 16.01 91.5 80.1 | 93.5 85.8
CN-p 8.60 83.8 80.5 | 85.9 82.3 1199 | 70.0 65.1 | 76.2 71.7
CN-n 3.39 724  68.6 | 73.6 70.7 4.55 62.8 68.7 | 66.2 73.2
CN-na 1547 | 91.8 69.7 | 92.6 722 | 2688 | 671 652 | 659 74.3
PR-1/2 11.64 | 93.8 951 | 93.9 949 8.12 857 97.5 | 88.0 95.7
PR-G3 5.99 96.5 99.6 | 97.0 99.7 491 879 994 | 89.0 99.3
PR-UG3 10.14 | 86.8 95.2 | 88.8 94.8 1.02 72,5 91.0 | 73.9 958
PR-o0a 1.45 63.0 68.2 | 67.8 639 0.83 70.7 63.6 | 70.2 48.3
PR-na 2.20 547 853 | 574 85.1 1.33 624 87.8 | 70.4 84.6

Table 6: The results of resolution classes in the development set of OntoNotes English and Chinese dataset.

significant our model’s improvement is. Besides, this also
shows that the incorporated constituent syntax help resolve
traditionally difficult anaphors. Overall, by maintaining com-
parable performance in other easier classes simultaneously,
our model has achieved significantly better final results on
these two languages compared with the baseline.

Related Work

Syntax for Coreference Resolution Syntactic features de-
rived from syntactic parse trees were dominant in early re-
search for coreference resolution. Ge, Hale, and Charniak
(1998) proposes Hobbs distances to encode the rank of candi-
date antecedents of a given pronoun based on Hobbs’s syntax
parse tree based pronoun resolution algorithm (Hobbs 1978).
Bergsma and Lin (2006) implements path-related features
based on syntactic parse trees, where the sequence of words
and dependency labels in the path between a given pronoun
and its candidate antecedent is utilised. Statistical information
collected from such paths is used to measuring the likelihood
of being coreferent for the pronoun and antecedent. Syntactic
information has also been applied in the anaphoricity deter-
mination task by using tree-kernel-based methods: Kong et al.
(2010) and Kong and Zhou (2011) design various kinds of
path-related features such as root path between the root node
and current mention. By contrast, few attempts have been
made to evaluate the utility of syntax for neural coreference
models. Trieu et al. (2019) and Kong and Jian (2019) treated
constituent trees as signals to filter invalid candidate mentions
for coreference resolution. Nevertheless, their methods either
ignore the hierarchical structures of constituent trees or fail
to well preserve tree structures by encoding constituent trees
using node traversal sequences. To fill this gap, we propose
a novel graph-based method to fully model constituent tree
structures more flexibly.

Enhancing Neural Models with Syntax External syntax
has long been used for enhancing neural models. Mainstream
methods typically use graph neural networks to capture the

10837

structural information encoded in dependency trees. Marcheg-
giani and Titov (2017) and Bastings et al. (2017) applied
Graph Convolutional Networks (GCNs) (Schlichtkrull et al.
2017) to incorporate dependency trees to capture the non-
local relationships between words. Wang et al. (2020) em-
ployed reshaped dependency trees using relational graph
attention networks to effectively capture long-range depen-
dencies while ignoring noisy relations.

Compared to dependency syntax, the utility of constituent
syntax in neural models is less well studied. Some early
work utilised recursive neural networks to incorporate con-
stituent trees by recursively updating the representation of
constituent phrases (Socher et al. 2013; Tai, Socher, and Man-
ning 2015). Nevertheless, such a method is less efficient than
applying graph neural networks since the recursive way of
encoding means that later steps should depend on earlier
ones. The most similar method to our own is Marcheggiani
and Titov (2020), who developed a neural model of semantic
role labelling based on GCN encoding of a constituency tree
with a message propagation mechanism. Nevertheless, our
method differs in extending plain parse trees with higher-
order edges and bidirectional graphs to capture longer-range
neighbourhood information. We also proposes a novel span
yield enhanced method to represent constituent nodes instead
of initializing them with zero vectors, which is better suited to
conference resolution and similar to the way of representing
mention spans. Our work also differs in terms of the task: we
consider coreference resolution rather than SRL, a document-
level task requiring modelling inter-sentence phenomena.

Conclusion

In this paper, we successfully incorporated constituent trees
with added higher-order edges and bidirectional graphs,
which are encoded via our designed bidirectional graph at-
tention networks and message propagation mechanism. Em-
perical results on a English and Chinese benchmark confirm
the superiority of our proposed method, significantly beating
a strong baseline and achieving state-of-the-art performance.
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