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Abstract
We study graph-based approaches to span-based semantic role
labeling. This task is difficult due to the need to enumerate all
possible predicate-argument pairs and the high degree of im-
balance between positive and negative samples. Based on these
difficulties, high-order inference that considers interactions
between multiple arguments and predicates is often deemed
beneficial but has rarely been used in span-based semantic
role labeling. Because even for second-order inference, there
are already O(n5) parts for a sentence of length n, and exact
high-order inference is intractable. In this paper, we propose a
framework consisting of two networks: a predicate-agnostic ar-
gument pruning network that reduces the number of candidate
arguments to O(n), and a semantic role labeling network with
an optional second-order decoder that is unfolded from an ap-
proximate inference algorithm. Our experiments show that our
framework achieves significant and consistent improvement
over previous approaches.

Introduction
The task of semantic role labeling (SRL) aims to recognize
the predicate-argument structure of each predicate in a sen-
tence. Lots of previous work shows that the shallow semantic
structures found by SRL are beneficial to many downstream
natural language processing tasks, especially those involving
text understanding, such as machine reading comprehension
(Wang et al. 2015; Zhang et al. 2020), question answering
(Eckert and Neves 2018; Khashabi et al. 2018) and machine
translation (Marcheggiani, Bastings, and Titov 2018).

There are two annotation types of SRL, namely
dependency-based SRL where each argument is a single
token and span-based SRL where each argument is a span
that consists of one or more words. Span-based SRL is more
difficult than dependency-based SRL because it needs to not
only label semantic roles but also detect argument boundaries.
In this paper, we focus on span-based SRL.

Two main classes of approaches to span-based SRL are
sequence labeling approaches (Yang and Mitchell 2017; He
et al. 2017; Tan et al. 2018; Strubell et al. 2018) and graph-
based approaches (He et al. 2018; Li et al. 2019; Ouchi,
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Shindo, and Matsumoto 2018; Marcheggiani and Titov 2020).
Sequence labeling approaches often employ the BIO tagging
scheme and predict a BIO tag for each word in the input
sentence. In comparison, graph-based approaches directly
predict predicate-argument pairs, which can better leverage
span-level features. Besides, graph-based approaches can han-
dle multiple predicates in the same sentence, while sequence
labeling approaches cannot.

There are two major challenges faced by graph-based ap-
proaches. The first is that we need to enumerate all possi-
ble predicate-argument pairs, resulting in O(n3) complexity,
which is too computationally expensive. The second is that
a sentence typically contains only a few predicate-argument
pairs among O(n3) word-span pairs, leading to a severe data
imbalance problem in training and low recall in prediction.
These two challenges can be addressed with argument prun-
ing, which tries to remove unlikely arguments and produce a
much smaller and more balanced candidate argument set for
subsequent SRL prediction. Previous work trains the argu-
ment pruner jointly with the SRL predictor (He et al. 2018;
Li et al. 2019). However, joint training is problematic in that
the SRL training loss is defined over candidate arguments
produced by the pruner and hence when the pruner changes
during training, so does the SRL training loss, leading to a
moving target for training. In this paper, we propose to train
argument pruning independently from SRL prediction, lead-
ing to more stable training and better SRL performance. We
also propose a new argument pruning model that empirically
outperforms previous methods.

Utilizing high-order information has been proved bene-
ficial on many tasks such as dependency parsing (Wang,
Huang, and Tu 2019; Wang and Tu 2020; Zhang, Li, and
Zhang 2020) and dependency-based SRL (Lyu, Cohen, and
Titov 2019; Chen, Lyu, and Titov 2019; Li et al. 2020b). It
is often deemed beneficial to SRL prediction. For example,
in the sentence “We watch the musician who is respected by
many people playing violin on TV”, “musician” is far from
“playing” while “people” is adjacent to “playing”, which may
confuse an SRL model, but if we know “violin” is the ar-
gument (of role Arg1) of predicate “play”, then “musician”
becomes a more likely argument (of role Arg0) of “play”
than “people”. However, high-order inference on span-based
SRL is extremely difficult because of two challenges. First,

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

10822



for a sentence of length n, there are O(n2) possible spans, so
even for second-order inference which models interactions
between two related predicate-argument pairs, there are al-
ready O(n5) second-order parts. Second, even second-order
inference is NP-hard. We address the first challenge by using
our pruner to reduce the number of arguments to O(n) and
the second challenge by designing a second-order neural de-
coder that is unfolded from mean-field variational inference
(Wang, Huang, and Tu 2019).

Our contributions can be summarized as follows: First,
we propose a new argument pruning model and train it inde-
pendently from SRL prediction, avoiding the drawback of
previous work and achieving better pruning accuracy. Sec-
ond, we are the first to propose second-order neural model of
span-based SRL, which is enabled by our argument pruning
model and an efficient second-order decoder. Third, we show
that the combination of independent argument pruning and
second-order inference achieves new state-of-the-art accu-
racies on span-based SRL. We provide our source code in
https://github.com/JZXXX/Span-srl.

Model
Our SRL framework contains two parts: a predicate-agnostic
argument pruning network (PAPN) and a semantic role label-
ing network (SRLN). PAPN filters out unlikely argument
spans and SRLN performs SRL prediction based on the
reduced argument candidate set. While many previous ap-
proaches assume that predicates are identified in the input
sentence, our model works with and without pre-identified
predicates. The overall architecture is shown in Figure 1.

The PAPN does not share any component with SRLN and
is trained independently from SRLN. After the training of
PAPN is done, we then train SRLN based on the argument
set filtered by PAPN. This is different from previous work
by He et al. (2018) that trains a single model for both argu-
ment pruning and SRL prediction. We empirically find that
separating the two makes learning much more stable and
efficient.

Predicate-Agnostic Argument Pruning Network
Given a sentence with n words w = w1, w2, ..., wn, we aim
to predict candidate spans that are potential arguments of
some predicate in this sentence while prune the rest of the
spans.

PAPN ignores predicates and focuses only on argument
identification, which makes the training and prediction much
more efficient and effective. Specifically, if we consider pred-
icates in PAPN, we would face the same challenges of SRL
prediction, i.e., O(n3) computational complexity and serious
data imbalance. Without considering predicates, we are able
to reduce the computational complexity to O(n2) and reduce
the degree of data imbalance to achieve high recall (so that
the predicted candidate set contains more true arguments).

Inspired by previous work on graph-based Name Entity
Recognition (Yu, Bohnet, and Poesio 2020), we cast span
prediction as predicting a dependency arc from the start word
to the end word of the span, and hence design our PAPN in
the form of a biaffine dependency parser (Dozat and Manning
2017, 2018).

Network Architecture We concatenate pretrained word
embeddings e(word)

i and character-based word embeddings
e
(char)
i and feed them into a multi-layer bi-directional LSTM

to produce contextualized word representations. Then two
single-layer feedforward neural networks (FNN) are used to
produce two vectors (h(start)

i and h
(end)
i ) for each word, one

representing the word being the start word of an argument
and the other representing it being the end word. Then a
biaffine function is applied to score each word pair.

xi =e
(word)
i ⊕ e

(char)
i

R =BiLSTM(X)

h
(start)
i =FNN(start)(ri)

h
(end)
i =FNN(end)(ri)

sij = h
(start)⊤
i W1h

(end)
j + b (i ≤ j)

where W1 is a square matrix, and b is a scalar.

Learning We train the PAPN by optimizing the cross-
entropy loss:

LPAPN = −
∑
i≤j

(
yij logSigmoid(sij) (1)

+ (1− yij) log(1− Sigmoid(sij))
)

where yij indicates whether span (wi, ..., wj) is indeed an
argument.

Pruning After training a PAPN, we rank spans by their
scores sij and choose the top-K spans as candidate argu-
ments. We set K = λn, where λ is a hyper-parameter con-
trolling the strength of pruning. In this way, we reduce the
number of candidate arguments from O(n2) to O(n).

Semantic Role Labeling Network
Given a sentence w and its candidate argument set Ā(w) =
{āij} provided by PAPN, we formulate SRL as predicting
labeled edges from words (as predicates) to candidate argu-
ments, with the edge labels indicating semantic roles. We
additionally formulate predicate identification as predicting
an edge with label V from a word to a candidate argument
containing only the word1. In the setting of given gold pred-
icates, we skip this additional formulation and only predict
edges from gold predicates. Our SRLN contains two par-
allel modules for edge existence prediction and edge label
prediction respectively, with a shared encoding layer.

Word Representation We concatenate pretrained word
embeddings and character-based word embeddings to rep-
resent words. In the setting of given gold predicates, we
additionally concatenate indicator embeddings and predicate
lemma embeddings. The indicator embedding of a binary
feature indicates if the word is a gold predicate or not. The
predicate lemma embedding represents the lemma of the

1This additional formulation is not necessary because the pre-
vious formulation already identifies predicates, but we empirically
find that it improves prediction accuracy.
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Figure 1: Overall architecture of our model. For clarity, we only show one possible predicate and one candidate argument as
examples.

word if it is a gold predicate, and is a fixed arbitrary embed-
ding if the word is not a gold predicate. We feed the word
representations into a multi-layer bi-directional LSTM and
denote the resulting contextualized word representations as
G = [g1;g2; . . . ;gn].

Span Representation We try different span embedding
methods discussed by Toshniwal et al. (2020) and find that
Coherent (Seo et al. 2019) has the best performance in our
model. Given an argument span āij = (wi, ..., wj), we
take the contextualized representations of its two endpoints
gi,gj ∈ Rd and split each representation into four parts:

gi =
[
g1
i ;g

2
i ;g

3
i ;g

4
i

]
gj =

[
g1
j ;g

2
j ;g

3
j ;g

4
j

]
Where g1

i ,g
2
j ∈ Ra, g3

i ,g
4
j ∈ Rb and 2(a + b) = d. Then

we represent this argument āij as:

aij =
[
g1
i ;g

2
j ;g

3
i · g4

j

]
(2)

The dot product g3
i ·g4

j produces a real number and is referred
to as the coherence term.

First-Order Scoring We use four FNNs to encode each
word wp as a predicate and each candidate argument āij for
our edge-module and label-module respectively.

z(edge−pred)
p = FNN(edge−pred)(gp)

z
(edge−arg)
ij = FNN(edge−arg)(aij)

z(label−pred)
p = FNN(label−pred)(gp)

z
(label−arg)
ij = FNN(label−arg)(aij)

where all the vectors are of dimension d. Then we score each
potential predicate-argument pair (wp, āij) and its possible
label with two biaffine functions:

score
(edge)
p,ij = z(edge−pred)⊤

p W2z
(edge−arg)
ij + b

score
(label)
p,ij = z(label−pred)⊤

p Uz
(label−arg)
ij + b

Here, W2 ∈ Rd×d and U ∈ Rd×R×d, where R is the size
of the label (semantic role) set. To reduce the number of
parameters, we follow the work of Dozat and Manning (2018)
and require the tensor U to be diagonal (i.e., ui,k,j = 0
wherever i ̸= j), which has been shown to not hurt the
performance.

Second-Order Scoring In order to model interactions be-
tween arguments, we score each pair of potential predicate-
argument pairs that share the same predicate. Such a pair
is called a sibling part in the dependency parsing literature.
There is another type of second-order parts, co-parent, which
consists of two predicates sharing an argument. Co-parent
parts are relatively rare in span-based SRL and we do not
empirically find them helpful. Without argument pruning,
there would be O(n5) sibling parts, making scoring and sub-
sequent inference infeasible in practice. However, with argu-
ment pruning by PAPN, there are only O(n) arguments left
and hence the number of sibling parts is reduced to O(n3).
We only apply second-order scoring and inference in the
edge-module, because there are typically dozens of labels
(semantic roles) and we find that scoring all the labels for all
the sibling parts in the label-module is too time and space
consuming.

We use two FNNs to encode each word wp as a predicate
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and each candidate argument āij :

z(sib−pred)
p = FNN(sib−pred)(gp)

z
(sib−arg)
ij = FNN(sib−arg)(aij)

where all the vectors are of dimension d. We then use a
decomposed trilinear function to score a sibling part consist-
ing of one potential predicate and two argument candidates
(wp, āij , ākl).

z′p = U1z
(sib−pred)
p

z′ij = U2z
(sib−arg)
ij z′kl = U3z

(sib−arg)
kl

score
(sib)
p,ij,kl ≡ score

(sib)
p,kl,ij =

d∑
m=1

(z′p ◦ z′ij ◦ z′kl)m

where U1, U2 and U3 are three (d×d)-dimensional matrices,
◦ means element-wise product.

Inference In first-order inference, we first try to identify all
the predicate-argument pairs such that the sum of their first-
order edge scores is maximized, under the constraint that the
arguments of the same predicate do not overlap. We can find
the exact solution using dynamic programming. We then label
each predicate-argument pair by picking the highest-scoring
label.

In second-order inference, we want to identify a set of
predicate-argument pairs to maximize the sum of their first-
order edge scores and the scores of all the sibling parts
formed by these pairs. This is in general NP-hard. Inspired
by Wang, Huang, and Tu (2019), we formulate this problem
as MAP inference on a Conditional Random Field (CRF).
We define boolean variable Xp,ij to indicate whether span
āij is an argument of predicate p. We define a unary potential
ϕu(Xp,ij) for each variable Xp,ij :

ϕu(Xp,ij) =

{
exp(score

(edge)
p,ij ) Xp,ij = 1

1 Xp,ij = 0

For each pair of arguments āij and ākl, we define a binary
potential ϕb(Xp,ij , Xp,kl).

ϕb(Xp,ij , Xp,kl)

=

{
exp(score

(sib)
p,ij,kl) Xp,ij = Xp,kl = 1

1 Otherwise

We can use Mean Field Variational Inference for approxi-
mate inference on this CRF. The algorithm updates the fac-
torized posterior distribution Qp,ij(Xp,ij) of each variable
iteratively.

F (t−1)
p,ij =

∑
k ̸=i or l ̸=j

Q
(t−1)
p,kl (1)score

(sib)
p,ij,kl

Q
(t)
p,ij(0) ∝ 1

Q
(t)
p,ij(1) ∝ exp{score(edge)p,ij + F (t−1)

p,ij }

At t = 0, Q(0)
p,ij(Xp,ij) is initialized by normalizing the

unary potential. The iterative update steps can be unfolded as

recurrent neural network layers parameterized by first-order
and second-order scores. After a fixed T number of iterations,
we output Q(T )

p,ij(Xp,ij = 1), the estimated probability of a
predicate-argument pair. We then use dynamic programming
to identify all the predicate-argument pairs in a similar way
to first-order inference.

Learning Our SRLN is trained with the following loss
function using gradient descent. We use a tunable interpola-
tion constant α ∈ (0, 1) to balance the edge-module loss and
the label-module loss.

LSRLN = αL(label) + (1− α)L(edge) (3)

L(edge) = −
∑
p,ij

logP (y
(edge)
p,ij |w)

L(label) = −
∑
p,ij

1(y
(edge)
p,ij ) logP (y

(label)
p,ij |w)

where y
(edge)
p,ij and y

(label)
p,ij denote gold annotation of the

edge existence and label. The conditional distributions over
edge existence ŷedgep,ij with our first-order and second-order
inference are calculated as follows:

P (ŷ
(edge)
p,ij |w) = SoftMax([score

(edge)
p,ij ; 0])

P (ŷ
(edge)
p,ij |w) = Q

(T )
p,ij(Xp,ij)

The conditional distribution over the label ŷ(label)p,ij is:

P (ŷ
(label)
p,ij |w) = SoftMax(score

(label)
p,ij )

Experiments
Experiment Settings
We experiment on the CoNLL 2005 (Carreras and Màrquez
2005) and CoNLL 2012 (Pradhan et al. 2012) English
datasets following the official training-development-test split.
We evaluate the performance of our model using official
script on the micro-average F1 score for correctly predicting
(predicate, argument span, label) tuples.

We report results of two SRL settings. In the predicted
predicates setting, our SRLN treats each word in a sentence
as a candidate predicate and predicts the existence and label
of each predicate-argument pair. In order to compare with
previous work, in the gold predicates setting, our SRLN takes
gold predicates as input and only needs to find semantic roles
of gold predicates. We repeat each experiment three times
and report the average results.

Network configuration We use randomly initialized
character-level embeddings and pretrained 300-dimensional
GloVe embeddings (Pennington, Socher, and Manning 2014)
for all experiments. We also follow the previous work to
evaluate our model with ELMo embeddings (Peters et al.
2018). In addition, following more recent work, we replace
ELMo embeddings with transformer-based pre-trained em-
beddings such as BERT (Devlin et al. 2019) and RoBERTa
(Liu et al. 2019). We fixed these contextualized embeddings
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Predicted predicate WSJ Brown CoNLL12 Avg.

GloVe embedding F1 F1 F1

He et al. (2017) 81.2 68.5 76.8 75.5
He et al. (2018) 82.5 70.8 79.8 77.7
Li et al. (2019) 83.0 - - -

Ours (1st order) 84.29 71.78 81.61 79.23
Ours (2nd order) 84.50 72.70 81.63 79.57
Strubell et al. (2018)* (LISA) 83.61 71.91 80.70 78.73
Zhou, Li, and Zhao (2020)* 84.56 72.55 - -

Contextualized embedding

He et al. (2018)▷ 86.0 76.1 82.9 81.7
Li et al. (2019)▷ 86.3 76.4 83.1 81.9

Ours (1st order) + ELMo 86.56 77.29 83.98 82.61
Ours (2nd order) + ELMo 86.61 77.45 83.87 82.64
Ours (1st order) + BERT 86.63 78.75 84.16 83.18
Ours (2nd order) + BERT 86.70 78.58 84.22 83.17
Ours (1st order) + RoBERTa 86.57 79.44 84.17 83.45
Ours (2nd order) + RoBERTa 87.03 79.71 84.33 83.69
Strubell et al. (2018)*▷ (LISA) 86.55 78.05 83.12 82.57
Zhou, Li, and Zhao (2020)*⋄ 87.62 80.34 - -
Mohammadshahi et al. (2021)*⋄ 87.57 80.53 - -

Table 1: Results with predicted predicates. We do signif-
icance test (p < 0.05) based on Almost Stochastic Dom-
inance (ASD) (Dror, Shlomov, and Reichart 2019) on F1
scores. Scores being boldfaced means that they are signif-
icantly better. * indicates syntax-aware models which are
shown only for reference. ▷ indicates ELMo embedding and
⋄ indicates BERT embedding.

during training. We tune the hyper-parameter λ of PAPN
between {0.8, 1.0, 1.5} and find λ does not have much effect
on the results because the recall of our PAPN is high. The
hyper-parameter a and b of span representation in SRLN are
set to 560 and 40 respectively, following the proportion of
a and b set by Seo et al. (2019). We do not tune these two
hyper-parameters.

Learning We use the Adam and AMSGrad optimizer
(Reddi, Kale, and Kumar 2018) to optimize our loss func-
tions (Eq.1 and Eq.3). We tune the constant α in Eq.3 between
{0.03, 0.05, 0.1, 0.2} with different experiment settings and
keep the values of most hyper-parameters the same as in
previous work (Dozat and Manning 2018).

Main Results
Our model does not use any syntactic information, so we
compare our results with previous syntax-agnostic neural
models on the CoNLL 2005 (in-domain WSJ and out-of-
domain Brown) and CoNLL 2012 test sets. The latest results
of syntax-aware models are also listed for reference.

Results with predicted predicates In Table 1, we report
results on the setting of predicted predicates with different
word embeddings. With GloVe embedding, our first-order
model has substantial advantages over all of the previous

Gold predicate WSJ Brown CoNLL12 Avg.

GloVe embedding F1 F1 F1

He et al. (2017) 83.10 72.10 81.70 78.97
Tan et al. (2018) 84.80 74.10 82.70 80.53
He et al. (2018) 83.90 73.70 82.10 79.90
Ouchi et al. (2018) 83.50 73.10 83.00 79.87
Swayamdipta et al. (2018) - - 83.80 -
Shi et al. (2020) - - 83.20 -

Ours (1st order) 86.17 75.58 84.75 82.17
Ours (2nd order) 86.22 75.64 84.85 82.24
Strubell et al. (2018)* (LISA) 84.64 74.55 - -
Marcheggiani and Titov (2020)* 85.40 75.50 84.40 81.77
Zhou, Li, and Zhao (2020)* 85.84 75.72 - -

Contextualized embedding

Peters et al. (2018)▷ - - 84.60 -
He et al. (2018)▷ 87.40 80.40 85.50 84.43
Ouchi et al. (2018)▷ 87.60 78.70 86.20 84.17
Li et al. (2019)▷ 87.70 80.50 86.00 84.73
Li et al. (2020a)◦ 88.03 79.80 86.61 84.81
Conia and Navigli (2020)⋄ - - 87.30 -
Shi et al. (2020)⋄ - - 85.80 -
Fei et al. (2021)◦ 87.60 79.82 86.40 84.61

Ours (1st order) + ELMo 88.00 80.23 86.72 84.98
Ours (2nd order) + ELMo 87.91 80.29 86.72 84.97
Ours (1st order) + BERT 88.15 81.77 87.08 85.67
Ours (2nd order) + BERT 88.25 81.90 87.18 85.78
Ours (1st order) + RoBERTa 88.17 81.92 87.12 85.74
Ours (2nd order) + RoBERTa 88.51 82.12 87.36 86.00
Wang et al. (2019)*▷ 88.20 79.30 86.40 84.63
Marcheggiani and Titov (2020)*◦ 87.90 80.60 86.80 85.10
Zhou, Li, and Zhao (2020)*⋄ 88.91 81.43 - -
Fei et al. (2021)*◦ 89.04 83.67 88.59 87.10
Mohammadshahi et al. (2021)*⋄ 88.93 83.21 - -

Table 2: Results with gold predicates. We do significance test
(p < 0.05) based on Almost Stochastic Dominance (ASD)
(Dror, Shlomov, and Reichart 2019) on F1 scores. Scores
being boldfaced means that they are significantly better. *
indicates syntax-aware models which are shown only for
reference. ▷ indicates ELMo embedding, ⋄ indicates BERT
embedding, and ◦ indicates RoBERTa embedding.

syntax-agnostic models on all the datasets (over 1.29% F1
on the WSJ and 0.98% on the Brown test sets, and over
1.81% F1 on the CoNLL 2012 test set), which shows the
effectiveness of our framework. Our second-order model
further improves the performance and is even comparable
with syntax-aware models on the CoNLL05 test sets. These
results demonstrate the strength of our approaches when rich
features, e.g., gold predicates, contextualized embeddings,
and syntactic information, are not available.

With contextualized embeddings, we can see that our first-
order model still performs better on all the test sets than
previous work and our second-order model still outperforms
our first-order model in most cases.
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CoNLL 2005 CoNLL 2012

λ P R P R

MLP, GloVe 1.0 14.35 99.04 15.07 98.70
1.5 8.68 99.40 10.19 99.37

Biaffine, GloVe 1.0 20.52 99.77 22.33 99.52
1.5 13.82 99.93 15.04 99.82

MLP, ELMo 1.0 14.43 99.61 15.14 99.21
1.5 9.71 99.73 10.21 99.59

Biaffine, ELMo 1.0 20.53 99.86 22.37 99.72
1.5 13.81 99.92 15.05 99.90

Table 3: Performance of PAPN with different scorers on
development sets. MLP represents that we first get span rep-
resentation as in Eq. 2, then feed them into a MLP to get the
predicated argument scores for pruning. Biaffine represents
our model.

Gold predicates WSJ Brown

P R F1 P R F1

PAPN, GloVe 86.89 85.47 86.17 77.90 73.40 75.58
w/o PAPN, GloVe 87.55 82.02 83.43 79.51 66.16 72.22

PAPN, ELMo 88.20 87.80 88.00 81.09 79.39 80.23
w/o PAPN, ELMo 87.84 85.63 86.72 81.72 76.24 78.88

Table 4: Comparison of the results of our first-order model
with and without PAPN on CoNLL 2005 test sets.

Results with gold predicates As shown in Table 2, with
GloVe embedding, both our first-order and second-order mod-
els perform much better than the syntax-agnostic state-of-the-
art models on all the test sets and even outperform some of
the syntax-aware models. These results again demonstrate
the effectiveness of our framework when using weak word
features.

Similar to the case of predicted predicates, when using
contextualized embeddings, our second-order model with
RoBERTa embedding performs the best.

Analysis
Effectiveness of PAPN In Table 3, we show the effective-
ness of our PAPN in argument detection. With λ = 1.0, our
PAPN can keep most of the gold argument spans. The recall
would further increase if we increase λ, but the precision
would decrease, putting more negative examples into the
candidate set.

In Table 4, we compare the performance of our first-order
model with and without PAPN (note that second-order infer-
ence is infeasible without PAPN). Without PAPN, the SRLN
faces much more negative samples, so its recall is signifi-
cantly reduced while its precision is moderately increased in
some cases, leading to a lower F1 score, as shown in the re-
sults. With PAPN, our second-order method becomes feasible,
and its inference is only slightly slower than our first-order
method. In addition, the running time of the first-order SRLN
without PAPN is around twice of that with PAPN.

ELMo Predicted predicates Gold Predicates

WSJ Brown WSJ Brown

He et al. (2018)† 86.00 76.10 87.40 80.40
He et al. (2018) ‡ 85.94 76.51 87.34 79.01
Li et al. (2019)† 86.30 76.40 87.70 80.50
Li et al. (2019)‡ 85.69 75.48 87.21 78.05

JointL 86.15 76.84 87.78 79.83
Ours 86.56 77.29 88.00 80.23

Table 5: Comparison of separate and joint learning of PAPN.
†: their reported results; ‡: the average results of our 5 runs
using their published code and configuration (we also tune
some of the hyper-parameters based on their configuration
but some of the results are still below the reported results).

WSJ Brown

first second first second

ELMo w/o self-loop 86.48 86.46 77.18 77.26
ours 86.56 86.61 77.29 77.45

GloVe w/o self-loop 84.34 84.46 71.79 72.28
ours 84.29 84.5 71.78 72.7

Table 6: F1 scores of our first-order and second-order models
with and without predicting self-loop edge for each possible
predicate.

Independent and joint learning In Table 5, we compare
independent PAPN and SRLN training (our framework) with
joint training of the two with shared embedding and LSTM
layers. The table also shows results of previous state-of-the-
art methods (He et al. 2018; Li et al. 2019) which perform
joint training. We only show the results of our first-order
model because we empirically find that the second-order
model cannot converge with joint training. We can see that
independent training has better performance. As to the run-
ning time, our framework can finish training in no more than
one day in all the cases, but the models of He et al. (2018)
and Li et al. (2019) need more than 36 hours for training on
the TITAN V GPU with their provided settings.

Performance on different sentence lengths We study the
performance gap between our first-order and second-order
models on sentences of different lengths. Figure 2 shows
that advantage of our second-order model over the first-order
model generally increases as test sentences become longer.
One possible reason is that SRL on longer sentences is harder
and hence requires more sophisticated decoding.

Self-loop edges We show the utility of additionally formu-
lating predicate identification as predicting a self-loop edge
with label V of each word. From Table 6, we can see that
adding self-loop edges is beneficial in general, except for the
first-order model with GloVe embedding.

Error correction analysis From Figure 3(a), we can see
that the errors are fairly balanced in our first-order model. Fig-
ure 3(b) shows that our second-order model not only corrects
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Figure 2: Relative improvements of our second-order model
over our first-order model on sentences of different lengths.
g and p in the legend represent the settings of gold predicates
and predicted predicates respectively.

(a) first-order (b) error correction matrix

Figure 3: Confusion matrix of the main roles. (a) our first-
order model with GloVe on WSJ. (b) our second-order model
relative to the first-order model. We do not have statistics on
Null-Null.

the errors of the first-order model in role type predictions,
but also correctly predicts arguments that are not predicted
by our first-order model (as shown by the first column of the
error correction matrix).

Related Work
There are two main styles of SRL annotation: PropBank-style
(Palmer, Gildea, and Kingsbury 2005) and FrameNet-style
(Baker, Fillmore, and Lowe 1998). We focus on PropBank-
style SRL in this paper. PropBank-style SRL contains two
argument annotation settings. One is span-based SRL (Car-
reras and Màrquez 2005; Pradhan et al. 2012) which we
focus on in this work, and the other is dependency-based
SRL (Hajič et al. 2009).

Recently, graph-based models achieved strong perfor-
mance for their ability to leverage argument representations.
Ouchi, Shindo, and Matsumoto (2018) directly took into ac-
count all possible predicate-argument pairs and scored their
labels. He et al. (2018) proposed an end-to-end approach
that can jointly predict predicates, arguments, and their re-
lations. Their model was extended by Li et al. (2019) with
a biaffine scorer and applied to both span-based SRL and
dependency-based SRL. They both used pruning to reduce
the high complexity caused by enumerating spans. Our first-

order model is similar to these two approaches, but differs
from them in the pruning method. Specifically, our argument
pruning network is a stand-alone model with different scor-
ing functions and independent training from the downstream
SRL prediction network. We find that it makes learning more
efficient and produces better performance. Pruning methods
have also been explored in dependency-based SRL. He, Li,
and Zhao (2019) prune arguments guided by syntactic rules.
Our argument pruning method may also benefit from con-
stituency syntactic parsing, which we leave for future work.

Enhanced models with high-order information have been
proved effective by lots of previous work on syntactic de-
pendency parsing (Ma and Zhao 2012; Gormley, Dredze,
and Eisner 2015; Wang and Tu 2020; Zhang, Li, and Zhang
2020). In the semantic analysis field, Wang, Huang, and Tu
(2019) considered three types of second-order parts of seman-
tic dependencies and approximate decoding with mean field
variational inference or loopy belief propagation. Recently,
there are two approaches that modeled interactions between
argument labeling decisions on dependency-based SRL using
structure refinement. Lyu, Cohen, and Titov (2019) proposed
a refinement network that iteratively refines an output pro-
duced by a factorized SRL model and designed a restricted
network architecture capturing non-local interactions. Chen,
Lyu, and Titov (2019) used a capsule network which mod-
els each proposition as a tuple of capsules, one capsule per
argument type. The capsules interact with each other and
with representations of words at each layer, and based on
these capsules, predictions about the SRL structure are up-
dated iteratively. Besides these approaches, Li et al. (2020b)
applied second-order decoding to dependency-based SRL.
Our work differs from these previous approaches in that
we consider span-based SRL and therefore model interac-
tions between predicate-span pairs rather than interactions
between predicate-word pairs. Consequently, the computa-
tional complexity of second-order decoding is much higher,
which necessitates effective pruning.

Our approximate second-order inference algorithm is in-
spired by Wang, Huang, and Tu (2019), whose techniques
were also employed by Li et al. (2020b) for dependency-
based SRL. One difference between our method and theirs
is that we use self-loop edges to indicate predicates and thus
integrate predicate prediction and predicate-argument predic-
tion within the same high-order inference process. In contrast,
Li et al. (2020b) predicted predicates with a sequence label-
ing process that is independent of their predicate-argument
labeling process.

Conclusion
In this paper, we propose a novel graph-based approach
to span-based SRL. Our approach consists of a predicate-
agnostic argument pruning network and an SRL network.
The argument pruning network reduces the number of can-
didate arguments to O(n). The SRL network can perform
both first-order decoding and second-order decoding using
recurrent neural networks unfolded from mean-field varia-
tional inference. Our experiments show that our approach
achieves significant and consistent improvement over previ-
ous approaches.
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