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Abstract
Recent methods in speech and language technology pretrain
very large models which are fine-tuned for specific tasks.
However, the benefits of such large models are often lim-
ited to a few resource rich languages of the world. In this
work, we make multiple contributions towards building ASR
systems for low resource languages from the Indian subcon-
tinent. First, we curate 17,000 hours of raw speech data for
40 Indian languages from a wide variety of domains includ-
ing education, news, technology, and finance. Second, using
this raw speech data we pretrain several variants of wav2vec
style models for 40 Indian languages. Third, we analyze the
pretrained models to find key features: codebook vectors of
similar sounding phonemes are shared across languages, rep-
resentations across layers are discriminative of the language
family, and attention heads often pay attention within small
local windows. Fourth, we fine-tune this model for down-
stream ASR for 9 languages and obtain state-of-the-art re-
sults on 3 public datasets, including on very low-resource lan-
guages such as Sinhala and Nepali. Our work establishes that
multilingual pretraining is an effective strategy for building
ASR systems for the linguistically diverse speakers of the In-
dian subcontinent.

Introduction
The Indian subcontinent is one of the most linguistically di-
verse regions in the world as well as one of the most pop-
ulous regions in the world - little wonder that is called a
‘subcontinent’. It is home to around 2 billion people from 7
countries who speak 100+ major languages (and thousands
of minority languages and dialects) belonging to four major
language families1,2. Of these the Indo-Aryan and Dravidian
languages are spoken by a large section of the population.
These language families have intermingled over a large pe-
riod of time giving rise to the Indian linguistic area/sprach-
bund where languages across these families share many fea-
tures (Emeneau 1956; Subbārāo 2012; Kunchukuttan and
Bhattacharyya 2020).

Building high-quality ASR models for such a large and
diverse pool of languages is challenging, even if we re-
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1https://en.wikipedia.org/wiki/Languages of South Asia
2https://en.wikipedia.org/wiki/Languages of India

strict ourselves to 30 odd languages which have more than a
million speakers. Many modern ASR models rely on large
amounts of labeled data for each language to build high-
quality ASR systems. Such approaches are expensive and
not scalable, thus limiting the reach of ASR technologies to
some languages and a section of the population. In addition
to these challenges on availability of labeled data, Indian
languages also face a set of common challenges that need
to be addressed. Collection on unlabeled data for pretraining
can be undertaken as a joint effort since many sources might
be shared amongst these languages. Most Indic scripts have
a larger character set than English which can be addressed in
a uniform way. The complex inflectional systems of Indian
languages would make modelling phonotactics more chal-
lenging. The rich inflectional/agglutinative nature of Indian
languages result in larger vocabulary sizes, presenting chal-
lenges to incorporating language models. At the same time
there are opportunities from a unified perspective. A largely
overlapping phoneme inventory, logically overlapping char-
acter sets and syntactic similarity can help utilize linguis-
tic similarity at various levels to build multilingual models
where transfer learning can be effective.

In this context, it is important to take note of recent work
that has demonstrated the benefits of unsupervised pretrain-
ing and multilingual fine-tuning to significantly improve
ASR quality for low-resource languages (Baevski et al.
2020; Conneau et al. 2020a). In particular, the wav2vec
model has established two key results for English ASR.
One, an end-to-end DNN architecture borrowing the pop-
ular Transformer architecture from NLP establishes SOTA
results. And two, pretraining on a large corpus of data re-
duces the requirement for labeled fine-tuning from hundreds
of hours to few hours and to even tens of minutes. It is worth-
while to explore if these findings from English ASR trans-
fer to Indic ASR, especially given the diversity and above
mentioned challenges with Indic languages. More specifi-
cally, would a wav2vec-like model establish SOTA results
on available benchmarks across Indic languages? Further,
would large pretraining preclude the need for collecting
large amounts of labeled data? And finally, would pretrain-
ing a multilingual model across Indian languages provide
positive benefits across these related languages? In order to
answer these questions, we make the following contribu-
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tions:
• We curate 17,314 hours of raw audio data for pretraining
across 40 languages from 4 language families, making it one
of the largest and most diverse collections of Indic language
data. This data has been curated in a short time frame from
public sources which have a permissive license. It indicates
that the feasibility of collecting large amount of pretraining
data and further efforts can be made to significantly expand
this collection.
• Starting from the wav2vec 2.0 model, we perform exten-
sive ablation studies on architecture choices, pretraining and
fine-tuning strategies, language models and choice of lexi-
con to arrive at a training and decoding regimen that works
well for Indian languages.
• Our ASR models achieve SOTA performance on 9 In-
dian languages on 3 publicly available benchmarks with
small fine-tuning datasets. These results indicate that end-
to-end ASR systems based on multilingual pretraining with
the wav2vec model hold promise for Indic languages.
• Our ablation studies reveal that the accuracy of the ASR
system on Indic languages sensitively depends on size of the
pretraining corpus, amount of labelled data for fine-tuning,
and access to task-specific lexicon.

In summary, we establish that the recent advances of pre-
training wav2vec models transfer to Indic ASR and achieve
SOTA results against models proposed over multiple years.
However, unlike in the reported results of English ASR, we
observe that the WER reported for Indic ASR is significantly
higher and sensitively depends on availability of resources:
pretraining corpus, fine-tuning data, and task-specific lan-
guage information. This suggests that the ASR task on Indic
languages remains far from being solved and requires model
innovation and continued efforts on curating resources. We
have publicly released all the artifacts of our work3 to spur
further work in the area of Indic ASR. This includes: (a)
sources of pretraining data along scripts for their collection
and pre-processing, (b) pretraining, fine-tuning and decod-
ing scripts, and (c) our best ASR models.

Curating Speech Data for Indian Languages
As mentioned earlier, existing wav2vec models for English
(Baevski et al. 2020) and some other languages (Conneau
et al. 2020a; Wang et al. 2021a) have been trained using
1000s of hours of curated raw audio data in these languages.
However, for Indian languages there is no such publicly
available repository of audio data. Hence, as our first task,
we curate audio data from online sources such as YouTube.

We hired native speakers in each of the 22 constitution-
ally recognised Indian languages to help us with this task.
These workers were employees of a data collection agency
which specializes in creating and curating text and speech
data in Indian languages. In particular, each worker had prior
experience of working on similar tasks. The workers were
asked to discover channels, playlists or individual videos on
YouTube by using a wide variety of keywords from differ-
ent domains such as education, news, technology, sports and
finance. Once the content was discovered, they were asked

3https://github.com/AI4Bharat/IndicWav2Vec

Language NoA YT Language NoA YT

assamese 667 176 ladakhi 121 0
balti 7 0 lepcha 52 0
bengali 740 295 maithili 37 1
bhojpuri 62 0 malayalam 625 232
bhutia 42 0 manipuri 374 90
bodo 53 11 marathi 387 667
chhatisgar 73 0 mizo 304 0
dogri 606 8 nagamese 210 0
garo 63 0 nepali 374 333
gojri 197 0 odia 716 302
gujarati 375 686 pahari 24 0
hindi 353 722 punjabi 562 301
english 408 0 rajasthani 134 0
jaintia 57 0 sambalpuri 192 0
kannada 425 587 sanskrit 152 348
karbi 56 0 santali 0 9
kashmiri 417 19 sindhi 77 30
khasi 85 0 tamil 815 197
kokborok 185 0 telugu 395 657
konkani 471 28 urdu 359 362

Table 1: Number of hours audio data per language af-
ter applying the preprocessing steps. Here NoA refers to
newsonair data, YT refers to YouTube data.

to ensure that the audio was clean, i.e., it did not contain
any background music and the content was predominantly in
the target language. Note that some amount of code-mixing
with English is unavoidable in Indian speech content but the
workers manually checked that the audio was largely in the
target language. The workers were also instructed to ensure
speaker diversity by not taking a large amount of content
from a single channel. Lastly, the workers were asked to en-
sure that the video was available under a Creative Commons
License. This was important to ensure that we can freely
share the URLs with the research community, ensuring re-
producibility of our work although this significantly limited
the amount of data we could collect, especially in the low
resource Indian languages. For each video which cleared the
above checks, the workers were asked to copy the URL in
an excel sheet and mention the target language.

Apart from YouTube, we also curated content from
newsonair4 which is a radio news channel run by the
Govt. of India and broadcasts news in multiple Indian lan-
guages. We did not need any of the above manual checks for
newsonair as being a national news channel, the content
there was already clean (e.g., the language of the audio was
clearly mentioned and the audio files were largely free of
any background music). We crawled their website to get the
URLs of audio files in 40 Indian languages.

Once the URLs were available, we used the youtube-dl
library5 to download the videos from YouTube. We then
used the FFmpeg library6 to extract the audio data from the
videos. For newsonair, these two steps were not needed

4http://newsonair.com/
5https://github.com/tpikonen/youtube-dl
6https://ffmpeg.org/
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as we could simply download the audio files from the URLs.
We noted that existing speech datasets typically contain
mono channel audio data sampled at a sampling frequency
of 16kHz. However, in our case, since the data was curated
from diverse sources, some of the content was not mono
channel and the sampling frequency varied from 8kHz to 44
kHz. To standardise the data, we once again used the FFm-
peg library to (i) upsample (downsample) the data which was
originally sampled at a frequency lesser (greater) than 16
kHz and (ii) reduce the number of audio channels to 1. We
further refined the data by removing long silences in the au-
dio clips using the py-webrtcvad7 library which is a python
interface to the popular WebRTC VAD (Voice Activity De-
tection) module developed by Google8. The VAD algorithm
filters out non-speech content and allows us to set an aggres-
siveness parameter, which is an integer between 0 and 3 (0
is the least aggressive about filtering out non-speech, 3 is the
most aggressive). We found that setting this parameter to 2
worked best for our data. Next, to avoid including highly
noisy content in our data, we used Waveform Amplitude
Distribution Analysis (WADA-SNR) (Kim and Stern 2008)
and filtered out audio clips which had a signal-to-noise-ratio
(SNR) less than 15 dB. This threshold was chosen after ex-
perimenting with a subset of the audio data. Finally, as a
standard practice, we chunked audio files so that the maxi-
mum duration of any audio file was only 25 secs.

The final statistics of the data thus obtained in each lan-
guage are summarised in Table 1. The uncompressed size
of the data is 1.5 TB. The URLs of all the audio files as
well as the scripts used for downloading, standardising and
cleaning the data have been made publicly available on our
GitHub repository.

IndicWav2Vec: A Multilingual ASR Model for
Indian Languages

In this section, we describe the methodology followed for
pretraining a Wav2Vec ASR model for Indian languages us-
ing the raw audio data described in the previous section. In
particular, we describe (i) the model architecture, (ii) the
pretraining procedure, and (iii) the fine-tuning and decod-
ing procedure. Note that, for all of the above, we closely
follow the procedure described in (Baevski et al. 2020) for
building an English ASR system. However, we provide the
details here for the sake of completeness and reproducibility.

Model Architecture
We use the same architecture as wav2vec 2.0 which con-
sists of (i) a feature encoder for encoding raw audio into
a sequence of T latent representations, (ii) a transformer
for learning contextualised representations for each of the
T units, and (iii) a quantizer for discretizing the represen-
tations learnt by the feature encoder to obtain the targets
for self-supervised learning. The feature encoder is a mul-
tilayered convolutional neural network which takes raw au-
dio signal as input and outputs a sequence of frames Z =

7https://github.com/wiseman/py-webrtcvad
8https://webrtc.org/

{z1, z2, . . . , zT } where T is the number of timesteps and
zi ∈ Rd. The output Z of the encoder is fed to a trans-
former based context network which computes a contextu-
alised representation for each of the T units in the input
as C = {c1, c2, . . . , cT }, where ci is the contextual rep-
resentation for the i-th input (i.e., zi). Following standard
practice, we augment the zi’s with positional information
before feeding them to the context network using a convo-
lutional layer similar to that used in (Baevski et al. 2020;
Mohamed, Okhonko, and Zettlemoyer 2020; Baevski, Auli,
and Mohamed 2020; Wu et al. 2019). The final compo-
nent of the architecture is a quantizer which takes Z as in-
put and discretizes it to a finite set of representations us-
ing product quantization (Jégou, Douze, and Schmid 2011).
The output of the quantizer is a sequence of representations
Q = {q1,q2, . . . ,qT } where qi is the contextual represen-
tation for the i-th input (i.e., zi).

Pretraining Objectives and Data Sampling
To train the model, we mask a certain fraction of the T input
representations before feeding them to the context network.
However the inputs to the quantizer are not masked since
they serve as the target for the self-supervised objective. This
objective is implemented as minimizing a contrastive loss
(Graves et al. 2006) that involves maximizing the similarity
of the context network’s output to the quantized representa-
tion for masked input at time t, while minimizing the simi-
larity with quantized representations of other masked inputs.
In addition to the above contrastive loss, we also use a diver-
sity loss (Baevski et al. 2020) which ensures better utilisa-
tion of the codebook.
Data Sampling. While pretraining multilingual models in-
volving a large number of languages with different amounts
of training data in each language, it is important to ensure
that all languages get a fair representation in the training.
In particular, languages which account for a larger share of
the training data should not dominate the training. We use
temperature based sampling (Arivazhagan et al. 2019; Con-
neau et al. 2020a; Wang et al. 2021b) to form multilingual
batches (Devlin et al. 2019; Conneau and Lample 2019) dur-
ing pretraining. Let L be the set of all languages used for
pretraining. For each language l ∈ L, we draw audio sam-
ples from a multinomial distribution pl ∼

(
nl

N

)α
where nl is

the number of hours of pretraining data in language l, N is
the total number of hours of pretraining data across all lan-
guages, and α ∈ [0, 1]. Smaller the value of α, more is the
upsampling for the lower resource languages.

Fine-tuning
Once the model is pretrained, we fine-tune it for ASR using
task-specific supervised data. To do so, we add a randomly
initialised projection layer on top of the context network.
This layer maps each d dimensional output of the context
network, into a C dimensional output where C is the size of
the vocabulary. We then use the softmax function to compute
a distribution over the vocabulary. In our case, the vocabu-
lary contains all the unique characters in the language. The
model can either be jointly fine-tuned using data from all the
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languages or individually fine-tuned for a given a specific
language. We tried both and for multilingual fine-tuning,
we converted the text data into a single script, i.e., the De-
vanagari script. Though each of these scripts have their own
Unicode codepoint range, it is possible to get a 1-1 map-
ping between characters in these different scripts since the
Unicode standard accounts for the similarities between these
scripts (Kunchukuttan 2020). This results in a smaller, com-
pact output vocabulary while enabling better transfer across
languages (Shetty and Umesh 2021). We fine-tune the model
using the standard CTC loss function (Graves et al. 2006;
Baevski et al. 2020; Baevski, Auli, and Mohamed 2020).
Following (Baevski et al. 2020), we augment data with a
modified version of SpecAugment (Park et al. 2019).

Decoding
To decode the emissions from the softmax layer, we use a
lexicon and a separately trained word-level n-gram language
model. Let y = {y1, y2, . . . , yM} be a candidate sequence.
Further, let pAM (y) and pLM (y) be the probability assigned
to the sequence y by the fine-tuned network and the lan-
guage model respectively. We select the optimal word se-
quence y∗ as follows:

y∗ = argmaxy log pAM (y) + α log pLM (y) + β|y| (1)

where |y| is the length of the sequence and α and β are
hyperparameters. We use an efficient beam search decoder
(Pratap et al. 2019; Liptchinsky, Synnaeve, and Collobert
2019) to search candidates while combining network scores,
LM scores and word insertion bonuses.

Experimental Setup
In this section we describe (i) the datasets used for our ex-
periments, (ii) the hyperparameters used for pretraining and
fine-tuning, and (iii) the corpora and hyperparameters used
for training the language models.
Datasets We experiment with 3 ASR datasets covering 9
Indian languages. These include the MSR (Microsoft Re-
search) dataset which was released as a part of the Low Re-
source Speech Recognition Challenge for Indian Languages
(Srivastava et al. 2018), the MUCS2021 dataset which was
released as a part of the Multilingual and code-switching
ASR challenges for low resource Indian languages (Diwan
et al. 2021), and a subset of the OpenSLR dataset (Kjar-
tansson et al. 2018) obtained from the authors of Shetty and
Umesh (2021).
Pretraining Setup We pretrain two variants of the model,
viz., BASE and LARGE. Similar to the base model
in Baevski et al. (2020), our BASE model contains 7
convolutional layers each with 512 channels, strides of
(5,2,2,2,2,2,2) and kernel widths (10,3,3,3,3,2,2). The BASE
model has 12 transformer blocks with model dimension 768,
and FFN dimension 3072 with 8 attention heads. Similarly,
same as Baevski et al. (2020), our LARGE model shares
the same CNN encoder as the BASE model and differs only
in the transformer architecture. The LARGE model has 24
transformer blocks with model dimension 1024 and FFN di-
mension 4096 with 16 attention heads. For both the archi-

tectures, we use G = 2 (codebooks) with V = 320 en-
tries per codebook in the quantization module. Instead of
pretraining the models from scratch we start with the pre-
trained checkpoint of the corresponding (BASE or LARGE)
English wav2vec2.0 model9. We then further pretrain the
model using the data we curated for Indian languages. As
mentioned earlier, to account for the skew in the amount
of data across different languages, we used temperature
based sampling. We experiment with three different values
of α ∈ {0.5, 0.7, 1} and found that 0.7 works best in terms
of model accuracy in distinguishing the correct masked unit
from the distractor units.

For the BASE model, we crop audio segments to 250k
samples or 15.6 seconds of audio. We restrict the max to-
kens per GPU to 3M and train the model on 24 A100 GPUs
with gradient accumulation of 2 steps making the effective
batch size as 3.2 hours. We used Adam optimizer with learn-
ing rate set to 0.0005 and decayed the learning rate polyno-
mially after a warmup for 32k steps. We trained the model
for 160k steps. For the LARGE model we crop audio seg-
ments to 320k samples or 20 seconds of audio. We restrict
the max tokens per GPU to 1.2M and train the model on 24
A100 GPUs with gradient accumulation of 6 steps making
the effective batch size as 3 hours. We again used the Adam
optimizer but with learning rate set to 0.005 and and de-
cayed the learning rate polynomially without any warmup.
We trained the model for 110k steps. We set the random seed
to 1 for all experiments. All other hyper-parameters are set to
the default values from the original wav2vec2.0 code base.
Our BASE and LARGE models have 95M and 317M param-
eters respectively. Our models are implemented in fairseq
(Ott et al. 2019) and we use fp1610 operations to speed up
training and reduce memory usage.
Fine-tuning Setup During fine-tuning, we update all the pa-
rameters of the network except the parameters of the con-
volutional feature encoder. For both, the base and the large
model, we used Adam optimiser with a learning rate of 1e-
4 and tri-stage learning rate schedule: the learning rate is
warmed up for first 10% of the steps, then held constant for
the the next 40% steps and finally exponentially decayed
for the remaining steps. We set the maximum number of
frames per GPU to 1M and fine-tune the models on 8 A100
GPUs without any gradient accumulation, making our ef-
fective batch size as 8M samples or 500 secs. We trained the
BASE model for 80k steps and the LARGE model for 120k
steps. For the first 200 steps, we only update the parame-
ters in the final layer and then update all the parameters in
the model (except those in the feature encoder). As a data
augmentation, strategy, we mask the outputs of the feature
encoder, similar to SpecAugment (Park et al. 2019). We set
the masking probability to 0.05 and the LayerDrop rate as
0.1 for both the models. For the other hyper-parameters, de-
fault values were taken from the wav2vec2.0 code reposi-
tory. Further we use early stopping with the patience set to
12 epochs. We used fairseq (Ott et al. 2019) for our fine-

9https://github.com/pytorch/fairseq/tree/master/examples/
wav2vec#pre-trained-models

10https://github.com/NVIDIA/apex
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tuning experiments.
Language Model Setup As mentioned earlier, we use
a lexicon-based beam search decoder as implemented in
Flashlight11 library along with a language model to obtain
predictions. For each language, we train 6-gram KenLM lan-
guage model(s) (Heafield 2011) with pruning for singletons
of order 5 and doubletons of order 6. We consider three op-
tions for the corpus used for training the language model:
(i) the IndicCorp corpus (Kakwani et al. 2020) which con-
tains 836M, 1,860M, 551M, 719M, 582M, 674M, 107M to-
kens in Bengali, Hindi, Marathi, Gujarati, Tamil, Telugu and
Odia, respectively, (ii) the transcriptions available in the re-
spective ASR datasets for each language, and (iii) a com-
bination of the earlier two options. Similarly, we considered
three choices for the lexicon: (i) using the top 180K most fre-
quent words from IndicCorp, and (ii) using the task-specific
lexicon provided by the challenge organizers and (iii) com-
bination of above two. Later, in section 2, we will show that
the choice of lexicon and training corpus have a significant
impact on the performance of the ASR system. We tune hy-
perparameters α and β in eq.1 using grid search with values
ranging from -4 to +4 and 0 to 5 for α and β, respectively.
During this grid search, we use a beam size of 64. Note that
α and β are tuned independently for each language. Once
the best value of α and β are found, we use these for the test
data and increase the beam size to 1024.

All the models developed as a part of this work, viz., the
pretrained model, the language-specific fine-tuned models
and the language models along with the Fairseq and KenLM
scripts and configuration files used for building them have
been publicly released. We hope that these models will help
in advancing the state of the art for Indian Speech Technol-
ogy.

Results and Discussions
Ablation Studies on Pretraining
We first discuss the effect of pretraining as well as various
choices made during pretraining.
No Pretraining In row 1 of Table 2, we present the results
for an ASR model which has the same architecture as our
base model but was trained from scratch (i.e., the weights
were not initialised using pretraining). Comparing this to
row 2, which is a model with the same architecture but is
fine-tuned after pretraining, we see that pretraining signif-
icantly improves the performance. These results are con-
sistent with similar results reported for English models in
speech (Baevski et al. 2020) as well as multilingual models
in NLP (Conneau and Lample 2019). In a separate set of ex-
periments (not included in Table 2) we found that pretraining
is even more important when the model size is large. For ex-
ample, training the large model from scratch was highly un-
stable and even after 180K steps, the WER on the validation
set was significantly higher as compared to a large model
which was initialised using pretraining (82.18 v/s 24.62).
Role of Pretraining Corpus Gupta et al. (2021) released
a pretrained wave2vec model for 23 Indian languages us-
ing 9800 hours of speech data. In contrast, our model uses

11https://github.com/flashlight/flashlight

over 17,000 hours of pretraining data for 40 languages, with
at least 500 hours of data in 15 languages. Comparing rows
M2 and M3 of Table 2, we observe that our model trained on
larger and more diverse data consistently improves over the
model reported in Gupta et al. (2021). In particular, we get
an average improvement of 1.44 WER across all languages
with a maximum improvement of 6.75 WER for Sinhala and
a minimum improvement of 0.09 WER for Hindi. The im-
provements on Sinhala are noteworthy given that Sinhala is
not present in the pretraining data of both the models. We
believe that since our pretraining data has more diversity
(40 languages as opposed to 23) and a better distribution
of pretraining data across languages, it generalises better
for languages not seen during pretraining. This is also evi-
dent given that our model performs better on Hindi despite a
much smaller amount of Hindi pretraining data in our model
(1075 v/s 4564 hours). These results establish importance of
the larger pretraining dataset released as a part of this work.
Effect of Model Size Several works (Conneau et al. 2020b;
Baevski et al. 2020) have shown that large models pretrained
on large amount of pretraining data outperform smaller
models in downstream tasks. However, in the context of
speech models for Indian languages, the right thresholds for
data size and model size are not known. For example, with
16000 hours of pretraining data would a large model (317M
parameters) outperform a base model (95M parameters). To
answer this question we compare rows 3 and 4 of Table 2
which only differ in the model size. We observe that the
large model consistently outperforms the base model with
an average improvement of 2.08 WER across all languages,
a maximum improvement of 7.22 WER for Marathi and a
minimum improvement of 1.9 WER for Hindi.
Effect of Model Initialization As mentioned earlier, for
pretraining our models we started with the pretrained En-
glish models released by (Baevski et al. 2020). This is in
line with similar efforts in multilingual NLP where models
pretrained for a larger set of languages are initialised with
weights from a model pretrained for a smaller set of lan-
guages (Tang et al. 2020). To assess if this is needed for
Indian speech models, we pretrained a large model from
scratch instead of initialising with the weights from the En-
glish model. We found this to be very expensive as even after
120k steps (which corresponds to 95 hours of training on 24
GPUs) this model had a loss of 2.17 on the validation data as
opposed to the english-initialised model which had a loss of
1.82 after just 110k steps. This is an important finding as it
suggests that as we expand to more low resource languages
(beyond the 40 covered in our model), we should be able to
leverage the pretrained checkpoints of our model and save
costs on expensive GPU resources. This may seem trivial
but is extremely important in the context of low resource lan-
guages such languages typically have scarce computational
resources.

Ablation Studies on Fine-tuning and Decoding
The previous section focused on discovering the right
choices for pretraining. In this section, we focus on differ-
ent choices for fine-tuning and decoding.
Choice of Language Model As mentioned earlier, language
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MSR MUCS OpenSLR

gu ta te gu hi mr or ta te bn ne si

M0: No pretraining 46.0 37.5 35.5 53.2 48.1 87.1 73.4 44.8 44.7 36.0 78.8 37.0
M1: IndicW2Vb (EkStep data) 23.4 24.0 25.8 30.3 18.0 26.5 28.7 29.9 33.2 19.7 14.4 31.0
M2: IndicW2Vb (our data) 22.8 23.7 24.9 29.4 17.8 24.3 27.2 29.3 31.9 18.1 13.8 24.3
M3: IndicW2Vl (our data) 20.5 22.1 22.9 26.2 16.0 19.3 25.6 27.3 29.3 16.6 11.9 24.8
M4: + LMsmall 16.6 14.9 14.4 18.0 16.3 14.8 19.0 25.4 22.4 14.3 13.0 18.6
M5: + LMlarge 11.7 13.6 11.0 17.2 14.7 13.8 17.2 25.0 20.5 13.6 13.6 -
M6: + augmented lexicon 12.3 15.1 12.4 14.8 10.5 12.2 21.9 20.0 15.2 10.6 9.7 -
M7: + Multi. FT 16.7 22.0 18.5 15.2 12.6 20.7 27.4 21.3 15.6 - - -

Table 2: Comparison of different choices for pretraining, fine-tuning, and decoding. IndicW2Vb and IndicW2Vl refer to our base
and large models respectively. LMsmall refers to the language model trained using transcripts from the training and validation
data and LMlarge refers to the one trained using IndicCorp in addition to the transcripts.

hi gu mr or ta te

Baseline 27.45 25.98 20.41 31.28 35.82 29.35

CSTR 14.33 20.59 15.79 25.34 23.16 21.88
BSA 16.59 21.30 15.65 17.81 28.59 25.37
EM 17.54 20.11 20.15 19.99 28.52 26.08
EkStep 12.24 30.65 39.74 27.10 27.20 22.43
Uniphore 22.79 22.79 14.9 29.55 18.8 28.69
Lottery 17.81 23.62 58.78 17.74 30.69 27.67
IIITH 31.11 26.94 33.8 37.19 35.03 17.00

M5: 14.7 17.2 13.8 17.2 25.0 20.5
M6: 10.5 14.8 12.2 21.9 20.0 15.2

Table 3: Comparison of our best models (M5, M6) with the
the top performers from the MUCS 2021 leaderboard. Indi-
vidual best models from the leaderboard are underlined.

gu ta te

Baseline (Srivastava et al. 2018) 19.8 19.4 22.6

Jilebi (Pulugundla et al. 2018) 14.0 13.9 14.7
Cogknit (Fathima et al. 2018) 17.7 16.0 17.1
CSALT-LEAP
(Srivastava et al. 2018) - 16.3 17.6

ISI-Billa (Billa 2018) 19.3 19.6 20.9
MTL-SOL (Sailor and Hain 2020) 18.4 16.3 18.6
Reed (Sen et al. 2021) 16.1 19.9 20.2
CNN + Context temporal features
(Sen et al. 2020) 18.4 24.3 25.2

EkStep model∗ 19.5 22.1 21.9

M5: 11.7 13.6 11.0
M6: 12.3 15.1 12.4

Table 4: Comparison of our best models (M5, M6) with the
the top performers from the MSR 2018 leaderboard as well
as other recent state of the art methods.

model (LM) and an accompanying lexicon play a crucial
role in decoding the emissions of the acoustic model. Keep-
ing the lexicon fixed (as extracted from the transcripts for the
training and validation set), we consider two choices for the

Fine-tuning data ta gu te

1 Hour 38.8 35.9 42.6
+LMlarge+aug. lex. 20.6 19.9 20.3

10 Hours 26.5 25.4 28.1
+LMlarge+aug. lex. 16.9 15.1 15.2

20 Hours 24.0 23.0 25.4
+LMlarge+aug. lex. 16.2 13.8 13.8

40 Hour 22.1 20.9 22.9
+LMlarge+aug. lex. 15.5 13.1 12.9

Table 5: Comparison of model performance across varying
amounts of fine-tuning data. We used a beam size of 128
keeping all other hyperparameters same as M6.

bn ne si

Baseline (Shetty and Umesh 2021) 17.9 12.9 21.8

Ekstep model∗ 15.2 13.8 20.0

M5: 14.0 13.6 -
M6: 10.6 9.7 -

Table 6: Comparison of our best models (M4, M6) with
state-of-the-art results reported in the literature. * The Ek-
step model was fine-tuned by us.

language model: (i) a LM trained using only the transcripts
for the training and validation data and (ii) a LM trained
on much larger data from IndicCorp in addition to the tran-
scripts for the training and validation data. Comparing rows
5 and 6 of Table 2 we observe that integrating a LM trained
on larger generic data outperforms a LM trained on smaller
task specific data. We also observe the significant improve-
ment in the WER by integrating a LM (using small data or
large data) as compared to the WER of the acoustic model
(row 4). These two observations combined together lead to
an interesting insight for developing ASR systems for low
resource languages: build better LMs using (relatively) eas-
ily available raw text corpora in these languages.
Effect of Lexicon Having established the importance of us-
ing LMs trained on larger data, we now fix the LM and
change the lexicon. In particular, instead of using a lexi-
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con which is only extracted from the transcripts of the train
and validation data, we augment the lexicon with top 180K
most frequent words from IndicCorp. The hope is that this
augmented lexicon may reduce the number of OOVs during
testing. Comparing rows 6 and 7 of Table 2, we observe that
results are a bit mixed with a drop in WER for the MUCS
and OpenSLR dataset but an increase in WER for the MSR
dataser. To investigate this further, we did an oracle exper-
iment where we further augmented the lexicon with words
from the test set. We refer to this as an oracle experiment,
because in practice we would not have access to the lexicon
from the test set. We observed that this further reduces the
WER with an average reduction of 1.36 WER across all lan-
guages and all 3 datasets. We do not report these numbers
in the Table 2 as it would be unfair to compare this with the
other results. This leads to another insight: the right lexicon
for the target domain can significantly help in low resource
scenarios. Of course, the lexicon should not be taken from
the test set but independently curated.
Monolingual vs Multilingual Fine-tuning Some works
(Conneau et al. 2020b) have shown that jointly fine-tuning
a multilingual model using the task specific data in all lan-
guages leads to better performance. Motivated by these re-
sults, we jointly fine-tune the pretrained model by combin-
ing the training data from all the languages. We used temper-
ature based sampling to ensure that all languages get a fair
representation during fine-tuning. We did this experiment
only for the MUCS and MSR datasets. During decoding we
use individual language specific LMs and lexicons. Com-
paring the last two rows of Table 2, which only differ in the
fine-tuning strategy (monolingual v/s multilingual), we ob-
serve that there is a consistent drop in the performance of the
multilingual model across all the languages. In multilingual
NLP, we typically see good gains due to a shared encoder
(e.g. many-to-one translation) and less gains due to shared
decoder (e.g. one-to-many translation) (Arivazhagan et al.
2019). Note that in our ASR models, encoder and decoder
components are conflated. This difference in the behaviour
of speech and NLP models needs further investigation.
Impact of Fine-tuning Dataset Size A significant result re-
ported in Baevski et al. (2020) was that pretraining a model
using a large amount of unlabeled data significantly reduces
the amount of fine-tuning data needed for building ASR
models. In particular, they showed that starting with a pre-
trained model, using just 10 mins of finet-tuning data, they
were able to obtain single digit WERs for English. This is
a significant result in the context of low resource languages.
To check if the same holds true for Indian languages, we
vary the amount of training data provided to the model from
1 to 10 to 40 hours. Quite disappointingly, our results as re-
ported in Table 5, show that using just 1 hour of fine-tuning
data leads to very poor performance. Further, we see gains
in increasing the data from 20 hours to 40 hours, suggest-
ing that adding more fine-tuning data would be beneficial.
Lastly, note that we do not get a single digit WER for any
of the languages compared to the results on English ASR in
(Baevski et al. 2020). This indicates that developing ASR
systems for Indic languages with their richer phoneme/char-
acter sets and vocabulary is more challenging than English.

Comparison with Existing Baselines
We now compare with existing models on the three datasets.
For each dataset, we compare with the following models:
• Baseline. This is the baseline model as reported by authors
of the dataset (OpenSLR) or the organisers of the challenge
(MUCS/MSR). Often, this is a Time delay neural network
(TDNN) model (Peddinti, Povey, and Khudanpur 2015).
• Top3 Entries from the Leaderboard. For the MUCS12

and MSR13 challenge, we include results for the Top 3 en-
tries from the leaderboard of the challenge. Note that the
MUCS challenge has only recently concluded and the sys-
tem papers written by the participating teams are not yet
available.
• Best per Language. For the MUCS challenge, we ob-
served that some systems did poorly when considering the
average performance across all languages, but did very well
on a specific language (and hence did not appear in the top3
entries on the leaderboard). For example, one participant
Uniphore got an average WER of 22.92 ranking 4th on the
leadeboard but had the best performance for Tamil WER of
18.8. For a comprehensive comparison, for every language
we report the best individual system for that language even
if its performance was very poor on other languages.
• Other SOTA Systems. Given that the MSR challenge was
launched in 2018, there are some follow-up works (Sailor
and Hain 2020; Sen et al. 2021, 2020) which have reported
results on this dataset. We report the numbers as it is from
these works. Similarly, for OpenSLR, we compare with the
results reported in Shetty and Umesh (2021).
• EkStep. As mentioned earlier, this is the recently released
pretrained model covering 23 Indian languages (Gupta et al.
2021).

The above results are summarised in Table 3, 4, 6. Across
all the datasets and all the languages (except MUCS-Tamil),
we establish new state of the art results. Even for MUCS-
Tamil, we outperform the top3 models on the leaderboard.
These results clearly establish the recipe for developing ASR
systems for Indian languages: multilingual pretraining fol-
lowed by monolingual fine-tuning combined with language
models trained on large corpora with good lexicons.

Conclusion
We report results of applying two recent and successful ideas
from English ASR to Indic ASR: use of wav2vec like model
architecture and use of unlabelled data to pretrain the model.
We implement this with a curated dataset on Indic languages
and a range of ablation studies on architecture, pretrain-
ing, fine-tuning, and decoding choices. Through this, we
obtain state-of-the-art results on 9 Indic languages across 3
datasets. While advancing ASR systems for the next billion
users from the sub-continent, our results highlight the need
for larger resources and benchmarks across more languages.

12https://navana-tech.github.io/MUCS2021/leaderboard.html
13https://www.microsoft.com/en-us/research/event/interspeech-

2018-special-session-low-resource-speech-recognition-challenge-
indian-languages/#!leaderboard
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