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Abstract

State-of-the-art deep NLP models have achieved impressive
improvements on many tasks. However, they are found to be
vulnerable to some perturbations. In this paper, we design a
robustness enhancement method to defend against word sub-
stitution perturbation, whose basic idea is to fight perturba-
tion with perturbation. We find that: although many well-
trained deep models are not robust in the setting of the pres-
ence of adversarial samples, they satisfy weak robustness.
That means they can handle most non-crafted perturbations
well. Taking advantage of the weak robustness property of
deep models, we utilize non-crafted perturbations to resist
the adversarial perturbations crafted by attackers. Our method
contains two main stages. The first stage is using randomized
perturbation to conform the input to the data distribution. The
second stage is using randomized perturbation to eliminate
the instability of prediction results and enhance the robust-
ness guarantee. Experimental results show that our method
can significantly improve the ability of deep models to resist
the state-of-the-art adversarial attacks while maintaining the
prediction performance on the original clean data.

Introduction
Deep neural networks (DNNs) have been broadly applied
in various domains. However, they are vulnerable to ad-
versarial examples that are intentionally crafted by attack-
ers aiming at misleading the prediction result (Goodfel-
low, Shlens, and Szegedy 2015). The vulnerability of deep
neural networks has been exposed in many NLP tasks, in-
cluding text classification (Samanta and Mehta 2017; Liang
et al. 2018; Alzantot et al. 2018), machine translation (Zhao,
Dua, and Singh 2018; Cheng et al. 2020), dialogue sys-
tems (Cheng, Wei, and Hsieh 2019), reading comprehension
(Jia and Liang 2017), and dependency parsing (Zheng et al.
2020). In particular, as deep learning-based models are in-
creasingly used in safety-critical applications, the vulnera-
bility of deep models has raised concerns as a critical issue.

In recent years, a series of adversarial attack algorithms
have been proposed to interfere with the predictions of
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the network, ranging from character-level word misspelling,
word-level substitution, phrase-level insertion and removal,
to sentence-level paraphrasing. Unlike the image area, attack
approaches that result in illegal text sentences can be easily
detected and restored by spelling correction and grammar
error correction (Islam and Inkpen 2009; Sakaguchi, Post,
and Durme 2017; Pruthi, Dhingra, and Lipton 2019). Among
these attacks, word substitution attack is hard to be detected
at the grammatical level. The hacker will craft adversarial
examples by replacing words with their synonyms in an in-
put text to deceive the model while maintaining semantic
and fluency. Therefore, word substitution-based attacks have
attracted many researchers and continue to pose a profound
challenge for the robustness of deep NLP models.

Several empirical approaches have been proposed to de-
fend against word perturbation attacks. For example, adver-
sarial training (Wang et al. 2021) incorporates adversarial
examples into training and can maintain a greater degree of
accuracy in NLP. However, its defensive efficiency is very
limited and may fall when encountering stronger attacks.
Certified defense methods like interval bound propagation
(IBP) (Jia et al. 2019; Huang et al. 2019) and randomized
smoothing (Cohen, Rosenfeld, and Kolter 2019) have been
applied to improve the robustness of models in the worst
case, but they may reduce the prediction accuracy for clean
data to a notable extent. Many studies show that adversar-
ial robustness may be odd at accuracy (Raghunathan et al.
2020; Tsipras et al. 2019). Defending against attacks effec-
tively while maintaining clean accuracy is the main difficulty
for robustness improvement.

Although deep models are vulnerable to word substitu-
tion attacks, they generalize well to the noised input in prac-
tice. While investigating the adversarial examples from the
view of quantification, an interesting phenomenon appears.
That is, there is only a small proportion of adversarial exam-
ples in the perturbation space around the data distribution.
Take BERT trained on IMDB task as an example, it achieves
92.27% prediction accuracy but can be attacked with a high
probability of 87.1%. However, we find that less than 1/3
samples are adversarial examples for over 97.61% perturba-
tion spaces. We call this property weak robustness (Figure
1), which means the model is stable to most random pertur-
bations. Although the model is not robust enough to adver-
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sarial perturbation, the adversarial example itself may not be
robust to perturbation either. Inspired by fighting fire with
fire, we propose a defense framework, Fight Perturbation
with Perturbation (FPP), to enhance the weakly robust clas-
sifier f to a strong defense model F .

FPP contains two steps: (1) Randomly perturb the user’s
input sequence X according to the n-gram frequency in-
formation in the data distribution. (2) Apply random word
substitutions to X and utilize the ensemble of samples to
make a prediction. These two steps are stochastic processes,
which increase the analysis difficulty for hackers in devel-
oping their attack methods. The purpose of the first step is
to conform the input to the data distribution and block the
transferability of adversarial inputs generated for the base
model or other models. (Mozes et al. 2021) shows that the
usual case for adversarial samples is replacing words with
the combination of their less frequent synonyms. The per-
turbation in the first step will block such a situation. The
second step is inspired by randomized smoothing (Cohen,
Rosenfeld, and Kolter 2019; Ye, Gong, and Liu 2020) which
is used to certify robustness. However, FPP does not calcu-
late the upper bound and lower bound of the probability of
each class. Our second step is to make predictions based on
the voting results of samples generated by random substitu-
tions. This step can reduce the randomness introduced in the
first step and obtain a rigorous robustness guarantee.

Overall, our robustness enhancement strategy has several
advantages: (1) It can be easily applied to various pre-trained
language models as long as they satisfy weak robustness
well. It is only based on the statistical properties of the
model and not on the structure. (2) It is scalable to large
deep neural networks. (3) Compared with some empirical
defense methods, it has good interpretability for robustness
enhancement.

We experiment on various model architectures and mul-
tiple data sets. The experimental results show that our ro-
bustness enhancement method FPP achieves better perfor-
mance in accuracy and defense capability compared with ex-
isting defense methods. In particular, for LSTM trained on
IMDB task, FPP can maintain prediction accuracy with only
a decrease of 0.64% and reduce the successful attacking ra-
tio to 3.7% (an improvement of 10.27% compared with the
existing defense methods) under a strong attacking method
TextFooler. With respect to the comprehensive robustness
accuracy, FPP achieves 91% with more than 14% improve-
ment compared with existing methods, indicating its supe-
riority in the trade-off between prediction accuracy and de-
fense capability.

Preliminary
Adversarial Example
Given a natural language classifier f : X → Y , which is
a mapping function from an input space to an output la-
bel space. The input space X contains all possible texts
X = w1, w2, ..., wn and output space Y = {y1, y2, ..., yc}
contains c possible predictions of an input. wi is usually a
word embedding or one-hot vector. fy(·) is the prediction
score for the y label. Let P = {p1, p2, ..., pm} be the set of

Figure 1: Diagram of Weak Robustness.

perturbable positions. For each perturbable position p ∈ P ,
there is a set S(X, p) which contains all candidate words for
substitution without changing the semantics (original word
wp is also in S(X, p)). Assuming that X ′ = w′1, w

′
2, ..., w

′
n

is a text generated by perturbing X and y∗ is the gold label
of X , then we say that X ′ is an adversarial example if:

f(X ′) 6= y∗

Robustness
Definition 1. A perturbation space Ωr(X) of an input se-
quence X is a set containing all perturbations X ′ gener-
ated by substituting the original word by candidate words
in S(X, p) for each perturbable position p ∈ P and
‖X ′ −X‖0 ≤ r, where ‖·‖0 denotes the number of sub-
stituted words.
Definition 2 (Strong Robustness). Consider a classifier
F (x). Given a sequence X with gold label y∗, classifier f
is said to be robust on the perturbation space Ωr(X) if the
following formula holds:

∀X ′. X ′ ∈ Ωr(X)⇒ f(X ′) = y∗ (1)

If formula (1) is proved to be true, the classifier f is safe
on Ωr(X). In other words, f is certified robust to all possible
perturbations at X . This is what a safe model pursues, but
sometimes quantifier ∀ is too strict. So we relax the ∀ in
formula 1 to a quantification version: weak robustness.
Definition 3 (Weak Robustness). If the value of PR > 2/3,
f is said to be weakly robust on the perturbation space
Ωr(X), where PR is defined as:

PR :=
|{X ′ : X ′ ∈ Ωr(X) ∧ f(X ′) = y∗}|

|Ωr(X)|
(2)

In fact, PR can be any value greater than 1/2. As 2/3 is
the simplest fractional number greater than 1/2, we choose
it. Besides, if a network can only identify samples in Ωr(X)
at a level just greater than 1/2, that means the network is not
confident about its results.

As exactly computing PR is time-consuming, we esti-
mate it via a Monte Carlo method (see website1). If P̂R is
the estimation value, we can ensure that the probability of
P̂R deviating from its real value PR by a certain amount ε
is less than δ. Table 1 shows the percentage of perturbation
spaces around the data in the test set that satisfies weak ro-
bustness. We set r to the 25% of the length of the sentence,
which is the maximum substitution ratio followed by most
attack methods.
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Model Dataset PR > 2/3

BiLSTM
MR 96.84%

IMDB 96.94%
SNLI 85.95%

BERT
MR 98.88%

IMDB 97.61%
SNLI 96.96%

Table 1: The percentage of perturbation spaces around the
data in the test set that neural network satisfies weak robust-
ness (η = 0.025, δ = 0.005).

Method
In Table 1, we show that although a well-trained model f is
not robust to adversarial attack, they can satisfy weak robust-
ness on most perturbation spaces. In this section, we make
full use of this property to enhance the robustness of the
models. The basic idea of our method is to fight fire with
fire: using perturbation to resist perturbation. It contains two
main steps: randomly perturbing input sequences according
to the n-gram frequency and enhancing the final prediction
by voting on all samples generated by random word substi-
tutions. The algorithm is presented in Algorithm 1.

Step1: Input Perturbation
We know that a normal input can become an adversarial
example via some substitutions. However, is the adversar-
ial example itself robust? An adversarial example is usually
generated by a subtle combination of several substitutions.
If such a combination is destroyed, the neural network will
have more chance to classify it correctly.

So, for an input sentence X = w1, w2, ..., wn, we first
randomly substitute some words based on the 1-gram and
2-gram frequency of the data distribution. The substitution
has two purposes: (1) Destroying the attacker’s perturbation
on the sentence. (2) Conforming the input X to the data dis-
tribution as much as possible. Besides, we also introduce
some randomness in this process. Most attack methods are
based on iteratively replacing words for searching adversar-
ial examples, and the decision of the next step is based on
the information of the current step. So, introducing random-
ness will increase the difficulty for an attacking algorithm to
make decisions.

We use P(w|D) to denote the frequency of w in the data
distribution D which is obtained from the training set. For
the position p of X , the 1-gram relative frequency of each
candidate ŵp in S(X, p) is denoted as:

P1(ŵp|D,X) :=
P(ŵp|D)∑

w∈S(X,p)

P(w|D)

We use P2(w,w′|D) to denote the frequency of 2-gram
(w,w′). The 2-gram relative frequency of each candidate
ŵp in S(X, p) is:

P2(ŵp|wp+1, D,X) :=
P(ŵp, wp+1|D)∑

w∈S(X,p)

P(w,wp+1|D)

Algorithm 1: Enhancement Classifier F
Input:X
Parameter: A base classifier f
Output: Prediction ỹ

1: for all p ∈ P do
2: s ∼ U(0, 1);
3: if ∆12(p) > s then
4: Xwp←wp∗ \\ Replace wp via wp∗
5: end if
6: end for
7: N ← −2 ln ε/(2 ∗ 2/3− 1)2

8: r ← κn
9: for i← 0 to N − 1 do

10: Xi ∼ Ωr(X);
11: li ← f(Xi);
12: end for
13: ỹ ← arg maxy∈Y

∑N−1
i=0 I(li = y)

14: return ỹ

Then we define P12(ŵp|D,X) (synthesized frequency)
to synthesize the relative frequency of 1-gram and 2-gram:

P12(ŵp|D,X) := (1− λ)P1(ŵp|D,X) + λP2(ŵp|wp+1, D,X)

where λ ∈ [0, 1]. Let wp∗ be:

wp∗ := arg max
ŵp∈S(X,p)

P12(ŵp|D,X)

which is the word with maximum synthesized frequency in
S(X, p). Let ∆12 be the difference of synthesized frequency
of wp∗ and wp:

∆12(p) := P12(wp ∗ |D,X)− P12(wp|D,X)

It is easy to know that ∆12(p) ∈ [0, 1]. Our algorithm
decides whether to replace the original word wp by wp∗
with probability ∆12(p). A larger value of ∆12(p) indicates
that X will be more consistent with the original distribution
when wp is replaced by wp∗. In such a situation, the algo-
rithm will replace wp with a higher probability.

Our first-stage perturbation is shown in lines 1-6 of Algo-
rithm 1. The randomness in this process increases the diffi-
culty for the attacker to analyze the system.

Step2: Voting
As shown in Table 1, a well-trained neural network can sat-
isfy weak robustness in most perturbation spaces around
data distribution. Inspired by the weak robustness property
and ensemble learning, we propose to enhance the predic-
tion result of an instance via the voting results of its random
perturbations. If we sample Xi uniformly from Ω(X), the
neural network f will make a correct decision (f(Xi) = y∗)
with a probability greater than PR. So we can utilize this
statistical property to eliminate the randomness introduced
in the first stage and obtain a robustness guarantee. Step2 is
presented in Line 7-14 of Algorithm 1.

Two popular voting methods can be utilized in this pro-
cess: majority voting and plurality voting.

Majority Voting: The final output class label ỹ is the one
that receives more than half of the votes. If none of the class
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labels receives more than half of the votes, a rejection option
will be given and F outputs no prediction. The ensemble
prediction is:

ỹ :=

{
y if y takes at least half of votes

Rejection else

Plurality Voting: In contrast to majority voting, which
requires the final winner to take at least half of the votes, plu-
rality voting takes the class label which receives the largest
number of votes as the final winner. That is, the output class
label of the ensemble is:

ỹ := arg max
y∈Y

N−1∑
i=0

I(f(Xi) = y)

For resisting adversarial attack, majority voting is safer
than plurality voting. During majority voting, the classifier
F will reject inputs located in the input space where the base
classifier f does not satisfy weak robustness. However, it
comes at the cost of not being able to process all the inputs.

Sample Size Each Xi is a random perturbation version of
X . So we regard this step as a second-stage perturbation.
To eliminate randomness and obtain robustness guarantee,
sample size N is important. The more samples are drawn,
the lower the probability that F commits an error. However,
it will consume more computation resources and time. So,
we need to calculate an appropriate sample size N .

The error rate (including majority voting and plurality
voting) of the ensemble with values of robustness metric PR
and sample size N is:

P(F (X) 6= y∗) ≤ P(
∑
y 6=y∗

N−1∑
i=0

I(f(Xi) = y) > N/2)

=

bN/2c∑
k=0

(
k

N

)
(1− PR)N−kPRk

≤ exp(−1

2
N(2PR− 1)2)

For majority voting, ‘≤’ can be rewritten as ‘=’ in the first
line of the derivation.

If we want the error rate of the voting result to be less than
some certain value ε, the following inequation must hold:

exp(−1

2
N(2PR− 1)2) < ε

Then we have:
N >

−2 ln ε

(2PR− 1)2

Theorem 1. If a base classifier f satisfies weak robustness
on perturbation space Ωr(X) and its robustness metric is
PR, then classifier F will output a wrong decision in the
voting process with probability less than ε when sample size
N is greater than (−2 ln ε/(2PR− 1)2).

This result also shows the reason why weak robustness
is defined as PR > 2/3. When PR → 1/2, it needs too
many samples to give a certified robustness result. When ε =
10−5, PR > 2/3, we have N > 207.

Base Classifier Improvement
We know that the robustness of the classifier F depends on
the weak robustness of the base classifier f . Sometimes f
does not satisfy weak robustness, or it still has room for im-
provement. In such a situation, we can use adversarial train-
ing to improve the weak robustness of the base classifier f .

Adversarial training is a popular paradigm to improve ro-
bustness. It can eliminate some adversarial examples in the
perturbation space. We propose to use adversarial training
to eliminate adversarial samples in regions that do not meet
the weak robustness criterion. It means that we only focus on
areas where weak robustness is not satisfied. Unlike previ-
ous adversarial training, adversarial examples are carefully
selected in our training. We provide two possible methods
here:
1) Adding adversarial examples to training set. These adver-

sarial examples are drawn from the area where robustness
score PR is less than 2/3 near the training data.

2) Modifying the training loss function as:

L̃(θ,X, y) :=

{
L(θ,X, y) if PR > 2/3

αL(θ,X, y) + (1− α)L(θ,Xadv, y)

The adversarial example Xadv is generated from the input
sentenceX while measuring the value of PR. The loss func-
tion is denoted as L(·) and coefficient is used to trade off the
loss generated by normal samples and adversarial samples.

These two methods are similar in essence. As the training
process is to pursue the global optimization of the loss func-
tion, increasing adversarial examples without choice may
obscure the impact of important adversarial examples on
network training. We make the network more focused on the
region that does not meet the weak robustness criterion via
these selected adversarial examples. Besides, our adversar-
ial training method does not rely on adversarial attack algo-
rithms, which are not efficient enough especially for attack-
ing large-scale training data.

Experiments
We conduct experiments on two important NLP tasks:
text classification and natural language inference. BiLSTM
(Conneau et al. 2017) and BERT (Devlin et al. 2019), which
represent two popular architectures of deep neural networks,
were used to evaluate our robustness enhancement method1

under two representative attack algorithms.

Data Set MR (Pang and Lee 2005), IMDB (Maas et al.
2011) and SNLI (Bowman et al. 2015) are chosen as data
sets. MR and IMDB are classical data sets for sentence-
level and document-level sentiment classification respec-
tively. They are binary classification tasks with an average
sentence length of 20 and 215 words respectively. Following
(Jin et al. 2020), 90% of the MR data is used as the training
set and 10% is the test set. SNLI (Bowman et al. 2015) is
the data set that is used to learn to judge the relationship
between two sentences: whether the second sentence (hy-
pothesis) can be derived from the first sentence (premise)

1Code is available at https://github.com/YANG-Yuting/fight-
perturbation-with-perturbation
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Dataset Method
LSTM BERT

Acc Textfooler SemPSO Acc Textfooler SemPSO
Suc↓ Rob Suc↓ Rob Suc↓ Rob Suc↓ Rob

MR

f 82.47 69.70 25.00 81.82 15.00 89.60 48.35 47.00 73.63 24.00
Adv 79.85 65.82 27.00 82.27 14.00 88.00 35.91 58.00 73.08 24.50
FGWS 78.73 56.60 34.50 76.73 18.50 83.88 23.98 65.00 56.14 37.50
SAFER 77.60 22.08 60.00 27.10 56.50 86.32 7.30 82.00 13.50 67.50
F 81.16 14.65 67.00 25.79 59.00 87.72 8.89 82.00 10.87 72.50

IMDB

f 89.94 86.24 13.00 99.45 0.50 93.68 82.63 16.5 92.51 7.00
Adv 87.64 71.03 25.50 99.95 0.50 91.00 38.95 58.00 58.42 41.00
FGWS 85.70 77.84 19.50 92.61 6.50 89.60 62.30 34.50 88.52 40.50
SAFER 86.60 13.97 77.00 25.28 66.50 88.00 7.07 85.50 - -
F 89.30 3.70 91.00 9.89 82.00 93.40 3.11 93.50 - -

SNLI

f 84.35 72.05 22.50 50.93 39.50 86.77 69.94 26.00 71.10 25.00
Adv 84.35 75.16 20.00 60.87 31.50 82.53 52.98 39.50 54.17 38.50
FGWS 72.40 38.06 41.50 37.31 42.00 75.60 44.06 40.00 44.76 39.50
SAFER 56.60 19.66 47.00 17.24 48.00 67.00 26.90 53.00 27.08 52.50
F 80.27 22.22 59.50 26.53 54.00 83.90 15.34 69.00 24.84 59.00

Table 2: Robustness evaluation results of different defense methods. Acc is the clean accuracy on test set. Suc is the successful
attacking ratio. Rob is the robustness accuracy. Only for Suc, the lower the value, the better the defense capability of the model.
It is noted with ↓. The numbers in bold denote the best performance for the metric.

with entailment, contradiction, or neutral relationship. It is a
multi-classification task with an average of 8 words and the
adversary is only allowed to change the hypothesis.

Models For each task, we choose two widely used and
representative models, word-based long-short term mem-
ory (BiLSTM) and the state-of-the-art Bidirectional Encoder
Representations from Transformers (BERT) to do experi-
ments. For BiLSTM, we used a 1-layer bidirectional LSTM
with 150 hidden units, and 300-dimensional pre-trained
GloVe word embeddings (Pennington, Socher, and Manning
2014). We used the 12-layer based version of BERT model
with 768 hidden units and 12 heads, with 110M parameters.
All models are trained on cross-entropy loss, and we use
Adam (Loshchilov and Hutter 2017) as our optimizer.

Perturbation Set The candidate set for the perturbated
position is generated based on HowNet (Dong and Dong
2006) and similarities of word embeddings. We first uti-
lize Stanford POS tagger (Ratnaparkhi 1996) to get part-
of-speech and then look up the corresponding synonyms in
HowNet, which is arranged by the sememe and can find the
potential semantic-preserving words. Then, top η (η = 5)
synonyms are reserved as final candidates for each position
ranked according to the cosine similarity of GloVe word em-
bedding space.

Attacking Methods We use two SOTA adversarial at-
tacking methods involving different search paradigms:
TextFooler (Jin et al. 2020) and SemPSO (Zang et al.
2020). TextFooler represents SOTA greedy algorithm based
on the word importance which is measured as the predic-
tion change before and after deleting the word in a sen-
tence. SemPSO represents SOTA attacks based on evolu-

tionary computation (Wolsey and Nemhauser 1999). It re-
gards word-level attacking as a combinatorial optimization
problem and introduces particle swarm optimization-based
search algorithm. Compared with genetic algorithms, it has
a higher attack success rate. On different tasks and models,
they have been verified to have strong attack ability. The ad-
versarial examples with modification rates less than 25% are
considered valid. Attacking is conducted on the randomly
sampled 200 test data.

Defense Baselines Three recent defense methods are uti-
lized as baselines (Adv, FGWS (Mozes et al. 2021) and
SAFER (Ye, Gong, and Liu 2020)). Adv denotes the adver-
sarial training by data augmentation. We retrain the model
by original data and the adversarial examples. FGWS is
based on identifying adversarial examples via the frequency
properties of adversarial word substitutions. It will generate
a sequence X ′ from the input sequence X by replacing all
words with their synonyms which have higher occurrence
frequencies in the corpus. Then it will decide whether X is
an adversarial example via the difference of prediction confi-
dence on class y before and after transformation exceeds the
threshold. SAFER is a certified robustness defense method
based on randomized smoothing. SAFER will take the cor-
rupted copies of each input sentence as inputs, in which ev-
ery word of the sentence is randomly replaced with one of
its synonyms, then it will make a decision by the difference
between the prediction with the highest probability and the
second-highest prediction. As our second stage is similar
to randomized smoothing, we choose it as the baseline for
comparison. Especially, our second stage reduces the num-
ber of ensembles to 256 instead of 5000 used in SAFER.
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This reduction will greatly improve the efficiency of large
models at the inference time.

Setting For our defense method, we set λ = 0.5, κ = 0.25
and sample size N is 256. Based on Theorem 1, if N is
greater than 207, the error rate ε is less than 10−5. For a fair
comparison, plurality voting is applied in our method as it
will not reject an input.

Evaluation Metrics Clean acc (Acc) is the prediction ac-
curacy and (Suc) is the ratio of successful attacking. Attacks
are performed on texts classified correctly. We also utilize
robustness accuracy (Rob) to estimate the prediction accu-
racy for a model under attack. It actually can be seen as
a comprehensive indicator considering both clean accuracy
and successful attacking ratio.

Results of Defense Methods
The experimental results for different defense methods on
randomly sampled 200 test data are presented in Table 2
where f is the base classifier and F is our robustness en-
hancement version. The results of SemPSO on SAFER and
F are not shown since the attack time for an instance ex-
ceeds 3h. We find that:
• Compared with all the baselines, F achieves the highest

robustness accuracy on all three data sets and two dif-
ferent models. It indicates that fighting perturbation with
perturbation is a promising method to improve adversar-
ial robustness.

• Our method has a good trade-off between clean accuracy
and robustness. F always maintains the accuracy with
a decrease of less than 4% and reduces the attack suc-
cess rate with a ratio larger than 40% compared with the
base classifier f . Take the BERT trained on MR task as
an instance, adversarial training (Adv) can almost main-
tain the clean accuracy (88.00% with 1.6% decrease) but
is attacked successfully with 73.08% under SemPSO at-
tack. Thus, it achieves a very low robustness accuracy
(24.50%). The opposite one, SAFER, which performs
well in defending attacks with only 13.50% Suc, ignores
the clean accuracy which drops from 89.60% to 86.32%.
It also indicates the difficulty of trading off between clean
accuracy and robustness accuracy.

• Consistent with our theoretical analysis, weak robustness
has a great impact on strengthening the classifier F . Take
the BERT-IMDB as an instance, more than 97.61% re-
gions are weakly robust, so its enhancement classifier F
will not drop too much in clean accuracy (0.28%) and
performs well in robustness accuracy. For LSTM-SNLI,
enhancement classifier F drops the most in both clean
accuracy and robustness accuracy, which is attributed to
its worst performance in weak robustness as shown in Ta-
ble 1. As the weak robustness of BERT-SNLI (f) is better
than LSTM-SNLI (f), BERT-SNLI (F) performs better
than LSTM-SNLI (F) in defense attacks. For all tasks,
the weak robustness of BERT is better, so the robustness
of its enhancement classifier is more satisfactory.

• Under the attacking from the relatively weak attack
method (TextFooler) to a stronger one (SemPSO), al-

Figure 2: The effect of λ on clean accuracy and robustness
of accuracy.x-axis is the value of λ. Left y-axis is the value
of clean accuracy and right y-axis is the value of robustness
accuracy.

though the robustness accuracy of F drops, it still per-
forms better than the other three baselines. The reason for
decreasing in robustness accuracy is that the perturbation
in the first stage cannot conform some specific inputs to
the data distribution. There is still room for improvement
in the first stage.

The influence of hyperparameter λ Figure 2 shows the
impact of the value of λ on accuracy and robustness. When
λ = 0, the first stage perturbation only considers 1-gram
information. When λ = 1, the first stage perturbation
only uses 2-gram information. We can see that, with λ in-
creases, the clean accuracy of the enhancement classifier
F increases, but the robustness decreases. So we choose
λ = 0.5 to balance defense performance and clean accuracy.

Influence of Improving Base Classifier

Then, we investigate the effect of our adversarial train-
ing method on the robustness improvement. In this exper-
iment, we fix the outer enhancement framework and substi-
tute the inner base classifier f with the other two versions:
f+Adv (retraining f with traditional adversarial data aug-
mentation) and f+AdvPR (retraining f with our adversar-
ial data augmentation). For Adv, the number of adversar-
ial samples added is 25% of the original training set. Our
training method AdvPR has two advantages over Adv: (1)
As it only adds adversarial examples to areas that have not
reached weak robustness, fewer adversarial examples will be
added during adversarial training. (2) It does not rely on ad-
versarial attack algorithms and is more efficient. Since two
models of IMDB have good weak robustness, we do not re-
train their base classifiers.

From the results shown in Table 3, we observe that Adver-
sarial training is helpful for improving weak robustness. In
most cases, using the base classifier after adversarial training
can obtain a more robust F . Besides, our adversarial train-
ing achieves a competitive result with less adversarial ex-
amples. AdvPR always achieves a lower value of Suc and a
higher value of Rob compared with Adv. It indicates the ef-
fect of the adversarial training we proposed, which precisely
focuses on the weakly robust parts and improves them.
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Dataset Method
LSTM BERT

Acc Textfooler SemPSO Acc Textfooler SemPSO
Suc↓ Rob Suc↓ Rob Suc↓ Rob Suc↓ Rob

MR
F (f ) 81.16 14.65 67.00 25.79 59.00 87.72 8.89 82.00 10.87 72.50
F ′(f+Adv) 79.30 16.35 66.50 31.64 54.00 87.82 9.84 82.50 5.31 68.03
F ′′(f+AdvPR) 80.70 14.11 70.00 25.25 62.00 87.06 9.30 82.50 4.05 73.50

SNLI
F (f ) 80.27 22.22 59.50 26.53 54.00 83.90 15.34 69.00 24.84 59.00
F ′(f+Adv) 80.16 20.41 58.50 25.85 54.50 82.05 16.27 69.50 20.13 61.50
F ′′(f+AdvPR) 79.54 16.89 61.50 21.05 60.00 81.90 12.96 70.50 15.09 67.50

Table 3: Robustness evaluation results of different inner classifiers to be enhanced. f is the base classifier. f+Adv denotes re-
training base classifier f with traditional adversarial training. f+AdvPR denotes retraining base classifier f with our adversarial
training. These classifiers are enhanced by FPP.

Related Work
Adversarial Attack In recent years, synonyms substitu-
tion is one of the most popular approaches to attack ad-
vanced pre-trained neural models (Ren et al. 2019; Jin et al.
2020; Li et al. 2020; Garg and Ramakrishnan 2020). An at-
tacker deliberately perturbs certain words by their synonyms
to mislead the prediction of the target model. At the same
time, a high-quality adversarial sample should be impercep-
tible to humans, which means maintaining grammatical cor-
rectness and semantic consistency. Current word-level at-
tacks adopt heuristic algorithms to craft adversarial exam-
ples. In each decision step, the algorithm will first pick a
vulnerable token to be perturbed, and then choose a suitable
synonym to replace them.

Defense Methods For image, adversarial training (Good-
fellow, Shlens, and Szegedy 2015; Athalye, Carlini, and
Wagner 2018) is widely adopted to mitigate the adversar-
ial effect. However, (Alzantot et al. 2018; Jin et al. 2020)
showed that this method has limitations to improve the ro-
bustness of NLP model to defend word substitution attack. A
retraining model with a limited number of adversarial exam-
ples cannot guarantee to eliminate all adversarial examples
in the perturbation space. Besides, synonym substitution-
based attack methods are usually much less efficient to be in-
corporated into adversarial training or generate a large num-
ber of adversarial examples for large pre-trained models.

Some verification methods like Interval Bound Propaga-
tion (IBP), originally proposed for images (Gowal et al.
2019), have been introduced to certify and improve robust-
ness against adversarial word substitution (Jia et al. 2019;
Huang et al. 2019). (Shi et al. 2020) and (Xu et al. 2020)
proposed the robustness verification and training method for
transformers based on linear relaxation-based perturbation
analysis. Although these over-approximate methods have
rigorous soundness guarantees, they often lead to loose up-
per bounds for arbitrary networks and result in a higher cost
of clean accuracy. Furthermore, due to the computational
difficulty of verification, certified defense methods are usu-
ally not scalable to large and deep neural networks. To scale
up to large models, (Ye, Gong, and Liu 2020) proposed a cer-
tified robust method called SAFER which is inspired by ran-
domized smoothing (Cohen, Rosenfeld, and Kolter 2019).

Although it can provide a rigorous robustness guarantee on
some input space, as shown in our experiments, there is still
much room for improvement in resisting attacks. Random-
ized smoothing methods are promising but very much under-
explored in NLP field. One reason is that word substitutions
are discrete and the perturbation is not defined on `2 norm.

In recent years, some empirical defense methods like
FGWS (frequency-guided word substitution) (Mozes et al.
2021) and DISP (learning to discriminate perturbations)
(Zhou et al. 2019) have been proposed. FGWS exploits the
frequency properties of adversarial word substitutions for
the detection of adversarial examples. DISP learns a per-
turbation discriminator to identify malicious perturbations
and block adversarial attacks. However, black-box attack al-
gorithms can still successfully break the defense when the
model and detector are considered as a whole.

Conclusion
In this paper, we investigate the possibility to enhance the
robustness of deep NLP models via fighting perturbation
with perturbation, which is inspired by fighting fire with fire.
We first implement our idea to improve the word-level ro-
bustness of the models. Our methods only have two steps.
The first is to perturb input sequence via 1-gram and 2-
gram frequency. The second step is to randomly perturb the
sequence and vote for an ensemble result. Our method is
structure-free, scalable and simple, which can be incorpo-
rated with little effort in various deep models as long as
they have weak robustness. Extensive experiments demon-
strate that our method can enhance the robustness without
sacrificing their performance too much on clean data. Be-
sides, our defense method has good interpretability. Overall,
we show that using perturbation to resist perturbation is a
promising framework for robustness enhancement. We will
transfer this idea to defend other types of attacking for NLP
models in future work.
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