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Abstract

The goal of a summary is to concisely state the most impor-
tant information in a document. With this principle in mind,
we introduce new reference-free summary evaluation metrics
that use a pretrained language model to estimate the infor-
mation content shared between a document and its summary.
These metrics are a modern take on the Shannon Game, a
method for summary quality scoring proposed decades ago,
where we replace human annotators with language models.
We also view these metrics as an extension of BLANC, a re-
cently proposed approach to summary quality measurement
based on the performance of a language model with and with-
out the help of a summary. Using transformer based language
models, we empirically verify that our metrics achieve state-
of-the-art correlation with human judgement of the summary
quality dimensions of both coherence and relevance, as well
as competitive correlation with human judgement of consis-
tency and fluency.

1 Introduction

With the ever-expanding development of new summariza-
tion algorithms in the NLP community, metrics that reli-
ably measure summary quality are more important than ever.
And yet, the most popular method for summary quality es-
timation remains the ROUGE (Lin 2004) family of metrics,
which require human written reference summaries for com-
parison and measure summary quality through simple token
overlap, ignoring the syntax and semantics governing the
way humans use language.

The goal of a summary is to concisely state the most im-
portant information conveyed by a document. Examining
summarization through this lens, one should be able to deter-
mine summary quality by measuring how much information
from the document is represented in the summary. Put an-
other way, when comparing alternative summaries of simi-
lar length, the information we gain from reading the original
document should be minimal given the best summary.

The idea of measuring this difference in information con-
tent was proposed as the Shannon Game by Hovy and Lin
(1998): they assign 3 humans the task of guessing a doc-
ument letter by letter, where the first human is allowed to
look at the document, the second human is allowed to look
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at a summary of the document, and the third human is given
nothing at all. By measuring how many tries it takes the sec-
ond human to guess the document compared to the other
humans, you can evaluate how much information about the
document is communicated in the summary, and therefore
measure how good the summary is.

Contributions This paper proposes a new summarization
evaluation metric, the Shannon Score, that performs the
Shannon Game with a language model such as GPT-2 (Rad-
ford et al. 2019). By using a language model to autoregres-
sively generate a document both with and without a sum-
mary as a prompt, we measure the information provided by
the summary. One can view this method as a more theoreti-
cally driven extension to the recently proposed BLANC met-
ric (Vasilyev, Dharnidharka, and Bohannon 2020), which
measures the accuracy of unmasking document tokens with
and without a summary. In addition to the Shannon Score,
we also propose a variant we call Information Difference.

To understand the empirical performance of this method
as a summary evaluation technique, we performed experi-
ments to correlate our metrics against human judgement.
We found that our metrics perform strongly on the Sum-
mEval benchmark (Fabbri et al. 2021), achieving state-of-
the-art correlation with human judgement of summary co-
herence and relevance, and competitive correlation with hu-
man judgement of summary consistency and fluency.

2 Methods

2.1 Computing Information

Language models are probability distributions over docu-
ments, giving us p(D) for some document D. Autoregressive
language models do this by predicting next token probabili-
ties given prior tokens, modeling

p(.%'t|$1, DR axt—l)

where our input document is broken into tokens
{z1,...,2,}. The Shannon information content, or
surprisal, of event E with probability p(F) of happening
is defined as I(F) = —logp(F), so we can compute the
information of a document according to our language model
as

I(D) = —log p(x1) — logp(xa|z1) — ...
—logp(zp|z1, T2, .. Tp_1)



2.2 Conditional Information

Suppose we had a conditional language model p(D|S) that
gives us a probability distribution of documents that could
correspond to a given summary S. Using this conditional
language model, we could compute the conditional informa-
tion content I(D|S) as the amount of information we gain
from the document D if we are already given the information
of summary S.

If S is a satisfactory summary of D, then I(D|S) < I(D),
as documents that have little to do with the summary should
be much less likely than documents that are relevant to the
summary after conditioning the language model. If the sum-
mary fluently describes people, ideas, or relationships that
appear in the document, then that should decrease the infor-
mation one learns from subsequently reading the document.

Thus we can define an Information Difference metric of
summary quality as:

ID(D,S) = I(D) — I(D|S)

The Information Difference tells us the change in document
information between using the summary and not using the
summary, and it is equivalent to the log likelihood ratio be-
tween the document and the document given the summary.
While it is unbounded, it should be positive unless a sum-
mary does such a bad job that it makes the document more
confusing to read.

Considering the fact that the summary that best preserves
the information of a document is the document itself, we can
view I(D|D) as a lower bound on I(D|S). Since this idea
of having a third evaluator who has the document itself as
help is inspired by the Shannon Game, we can compute the
Shannon Score metric as:

I(D) - I(D|S)

P8 = 1)~ 1D

The Shannon Score gives us the ratio between how helpful
the summary was and how helpful the document itself was.
While this formula in theory is unbounded, it usually should
be in the range 0 to 1, unless the summary makes the doc-
ument more confusing or somehow explains the document
better than the document itself.

2.3 Approximating Conditional Information

To the extent of our knowledge, there is no easy way to ex-
actly condition a pretrained language model such as GPT-2
on a summary, even though there has been work on con-
ditioning language models on fixed control codes (Keskar
et al. 2019), bags of words, or discriminators (Dathathri
et al. 2020). We also have a strong motivation not to train
such a model because we want our method to be universal
and robust, while summarization datasets are much smaller
and more restricted in domain than the massive datasets that
modern language models require.

We approximate p(D|S) by computing the probability
that D is generated when we provide $ as a prompt to a
language model. We intuitively justify this idea by the fact
that in real-world documents the most important information
is often summarized at the top as an introduction, and then
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described in more detail in body paragraphs. This setup re-
sembles the BLANC-help metric (Vasilyev, Dharnidharka,
and Bohannon 2020), which measures language model to-
ken unmasking accuracy for a document when a summary is
prepended. An alternative setup would be to finetune a lan-
guage model on the summary which was also explored by
Vasilyev, Dharnidharka, and Bohannon (2020), but we don’t
explore that method in this paper. We use the GPT-2 small
language model (Radford et al. 2019) for our experiments,
but investigate the use of other language models in section
5.1

An issue we run into when computing information with
GPT-2 is that the model can only be given a maximum of
1024 tokens, making many documents too large to fit in at
once. To get around this, we approximate document infor-
mation with an independence assumption between sentences
in the document, meaning that only the preceding tokens
within a sentence are provided when generating the next to-
ken in the sentence. In section 5.2, we investigate the effects
of prompting the language model with additional upstream
sentences of context.

3 Understanding Our Metrics
3.1 Information Visualization

A toy illustration of our methodology is shown in Figure 1.
We picked a document excerpt in the CNN/DailyMail (Her-
mann et al. 2015) dataset and paired it with two abstrac-
tive summaries we wrote. While both of these summaries
are grammatically correct and mostly consist of words from
the document, one of the summaries is of high quality and
the other is of low quality. The figure shows the information
content of each token in the document as estimated by GPT-
2 in 4 scenarios: I1(D) (the document on its own), I(D|D)
(the document given the document), I(D|S) (the document
given a summary) for the high quality summary, and I(D|S)
for the low quality summary. A darker background color de-
notes higher information according to the model.

As you can see, the model gained less information from
words like “gray” and “Varvara” after seeing those words
in the high quality summary. We can also see that words
like “Pacific” and “journey,” which do not appear in the high
quality summary, became more likely to appear in the docu-
ment due to their association with concepts in the summary.
The low quality summary may have helped the model pre-
dict words like “CNN,” but it is unhelpful for words like
“mammal” and “website” that are confusingly used in the
summary. Very little information was gained from reading
a document that was already read, except for the first token
or two for each sentence. This is an artifact of our autore-
gressive language modeling setup, so measuring I(D|D) is
useful for normalizing our Shannon Scores.

We used a truncated document and toy summaries here to
demonstrate the Shannon Score in a concise way, but we
included visualizations of real, full-length documents and
summaries from the SummEval dataset in the appendix.



I(D) = 580

(CNN ) A North Pacific gray whale has earned a spot in the record
books after completing the longest migration of a mammal ever
recorded . The whale , named Var v ara , sw am nearly 14 , 000 miles
(22, 500 kilometers ), according to a release from Oregon State
University , whose scientists helped conduct the whale - tracking
study . Var v ara , which is Russian for ” Bar bara ,” left her
primary feeding ground off Russia ’s S akh alin Island to cross the
Pacific Ocean and down the West Coast of the United States to B
aja , Mexico . Var v ara ’s journey surpassed a record listed on the
Guinness Worlds Records website . It said the previous record was
set by a hump back whale that sw am a mere 10, 190 - mile round
trip

I(D|D) = 52

(CNN ) A North Pacific gray whale has earned a spot in the record
books after completing the longest migration of a mammal ever
recorded . The whale , named Var v ara, sw am nearly 14, 000 miles
(22, 500 kilometers ), according to a release from Oregon State
University , whose scientists helped conduct the whale - tracking
study . Var v ara , which is Russian for ” Bar bara ,” left her
primary feeding ground off Russia ’s S akh alin Island to cross the
Pacific Ocean and down the West Coast of the United States to B
aja , Mexico . Var v ara ’s journey surpassed a record listed on the
Guinness Worlds Records website . It said the previous record was
set by a hump back whale that sw am a mere 10, 190 - mile round
trip

I(D|S) = 482 for this high quality summary:
Varvara the gray whale traveled from Russia to Mexico, a swim
of record breaking length.

(CNN ) A North Pacific gray whale has earned a spot in the record
books after completing the longest migration of a mammal ever
recorded . The whale , named Var v ara , sw am nearly 14 , 000 miles
(22, 500 kilometers ), according to a release from Oregon State
University , whose scientists helped conduct the whale - tracking
study . Var v ara , which is Russian for ” Bar bara ,” left her
primary feeding ground off Russia ’s S akh alin Island to cross the
Pacific Ocean and down the West Coast of the United States to B
aja , Mexico . Var v ara ’s journey surpassed a record listed on the
Guinness Worlds Records website . It said the previous record was
set by a hump back whale that sw am a mere 10, 190 - mile round
trip

I(D|S) = 540 for this low quality summary:

The round humpback has told CNN mammals that Baja was a
previous Pacific website for ”Guinness.”

(CNN ) A North Pacific gray whale has earned a spot in the record
books after completing the longest migration of a mammal ever
recorded . The whale , named Var v ara, sw am nearly 14 , 000 miles

(22, 500 kilometers ), according to a release from Oregon State
University , whose scientists helped conduct the whale - tracking
study . Var v ara , which is Russian for ” Bar bara ,” left her

primary feeding ground off Russia ’s S akh alin Island to cross the

Pacific Ocean and down the West Coast of the United States to B
aja , Mexico . Var v ara ’s journey surpassed a record listed on the
Guinness Worlds Records website . It said the previous record was
set by a hump back whale that sw am a mere 10, 190 - mile round
trip

Figure 1: A comparison of token-wise information content within a document as estimated by GPT-2 in 4 scenarios: the
document on its own, the document given the document, the document given a high quality summary, and the document given
a low quality summary. Tokens with a darker background color have more information.

3.2 Baseline Validation

As a simple validation of our information-based metrics, we
sampled 100 documents with their corresponding reference
summaries from the CNN/DailyMail dataset (Hermann et al.
2015), and created two “bad” summaries per document: a
version of the reference summary with all the words ran-
domly shuffled, and a reference summary for a different doc-
ument in the dataset.

Figure 2 shows the distributions of the Shannon Score
and Information Difference for these three summaries. As
expected, the original summaries have the highest scores,
followed by shuffled summaries and wrong summaries. It
is good to see that there is full separation between origi-
nal summaries and wrong summaries for both metrics. The
fact that the original summaries and shuffled summaries are
almost completely separated demonstrates the importance
of syntax to our metrics, a quality that metrics like the
Jensen-Shannon divergence (Louis and Nenkova 2009) and
ROUGE-1 (Lin 2004) lack.

We also verified that there are no documents for which
the shuffled summary or wrong summary score better than
the original summary for either of the metrics. Despite the
fact that the Shannon Score has no lower bound, we can see

that it doesn’t go far below zero for even the most unrea-
sonable of summaries. And despite the fact that the Shannon
Score has no upper bound, even high quality human refer-
ence summaries are unable to achieve a score above 0.4.

4 Evaluation of Our Metrics
4.1 SummEval

The SummEval (Fabbri et al. 2021) benchmark was estab-
lished as a comprehensive evaluation tool for summary eval-
uation metrics. It consists of 100 English-language docu-
ments from the CNN/DailyMail dataset, each paired with
system summaries from 17 different summarization sys-
tems: 3 extractive models, 13 abstractive models, and a lead-
3 baseline. All models were published in 2017 or later. Each
of these 1700 system summaries were scored by a panel of 3
experts in the field of summarization on the qualities of co-
herence (the collective quality of all sentences), consistency
(the factual alignment between the summary and document),
fluency (the quality of individual sentences), and relevance
(selection of important content from the source). The experts
achieved an inter-annotator agreement kappa coefficient of
0.7127.
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Figure 2: Distributions of Shannon Score and Information
Difference on 100 summaries from the CNN/DailyMail
dataset. Three different summaries are used: the original hu-
man written reference summary (in blue), the original sum-
mary with words scrambled (in orange), and a reference
summary for a different document in the dataset (in green).

Fabbri et al. (2021) scored each summary using these
evaluation metrics: ROUGE (Lin 2004), ROUGE-WE (Ng
and Abrecht 2015), S3 (Peyrard, Botschen, and Gurevych
2017), BertScore (Zhang et al. 2020), MoverScore (Zhao
et al. 2019), Sentence Mover’s Similarity (SMS) (Clark,
Celikyilmaz, and Smith 2019), SummaQA (Scialom et al.
2019), BLANC (Vasilyev, Dharnidharka, and Bohannon
2020), SUPERT (Gao, Zhao, and Eger 2020), BLEU (Pap-
ineni et al. 2002), CHRF (Popovi¢ 2015), METEOR (Lavie
and Agarwal 2007), and CIDEr (Vedantam, Lawrence Zit-
nick, and Parikh 2015). They also measure the Grusky, Naa-
man, and Artzi (2018) statistics of summary length, extrac-
tive fragment coverage (coverage), compression ratio, aver-
age length of extractive fragments (density), proportion of
n-grams in summary that aren’t in the document (novel n),
and n-grams repeated in summary (repeat n).

Table 1 shows the correlation between expert annota-
tions and the automated evaluation metrics. Following Fab-
bri et al. (2021), we use Kendall tau-b system-level corre-
lation for comparison. Our metrics of Shannon Score and
Information Difference are the only metrics to be in the top
5 for every category of summary quality. Additionally, our
metrics achieve state-of-the-art performance for the qualities
of coherence and relevance.

4.2 Coverage

The coverage score (Lin and Hovy 2003) is a human evalua-
tion method that measures a system summary’s recall of se-
mantic units that appeared in a reference summary, weighed
by how well the system summary was able to capture each
semantic unit as judged by the human labeler. The 2001 and
2002 Document Understanding Conferences (DUC) provide
datasets of English-language system and reference sum-
maries for news documents with human coverage labels, on
both single-document and multi-document levels.

Table 2 shows the correlation of various metrics to
these coverage scores for the single-document summaries.
System-level Spearman correlation is used following Louis
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Metric Coher. Consi. Fluen. Relev.
Shannon” 0.4118 0.6324 0.5240 0.6029
Info Dift" 0.4706 0.6324 0.5683 0.6618
rouge-1 0.2500 0.5294 0.5240 0.4118
rouge-2 0.1618 0.5882 0.4797 0.2941
rouge-3 0.2206 0.7059 0.5092 0.3529
rouge-4 0.3088 0.5882 0.5535 0.4118
rouge-L 0.0735 0.1471 0.2583 0.2353
rouge-su* 0.1912 0.2941 0.4354 0.3235
rouge-w 0.0000 0.3971 0.3764 0.1618
rouge-we-1  0.2647 0.4559 0.5092 0.4265
rouge-we-2 -0.0147 0.5000 0.3026 0.1176
rouge-we-3  0.0294 0.3676 0.3026 0.1912
S3-pyr -0.0294 0.5147 0.3173 0.1324
S3-resp -0.0147 0.5000 0.3321 0.1471
BertScore-p 0.0588 -0.1912 0.0074 0.1618
BertScore-r 0.1471 0.6618 0.4945 0.3088
BertScore-f 0.2059 0.0441 0.2435 0.4265
MoverScore 0.1912 -0.0294 0.2583 0.2941
SMS 0.1618 0.5588 0.3616 0.2353
SummaQA”~ 0.1176 0.6029 0.4059 0.2206
BLANC® 0.0735 0.5588 0.3616 0.2647
SuPERT" 0.1029 0.5882 0.4207 0.2353
BLEU 0.1176 0.0735 0.3321 0.2206
CHRF 0.3971 0.5294 0.4649 0.5882
CIDEr 0.1176 -0.1912 -0.0221 0.1912
METEOR  0.2353 0.6324 0.6126 0.4265
Length® -0.0294 0.4265 0.2583 0.1618
Novel 1* 0.1471 -0.2206 -0.1402 0.1029
Novel 2° 0.0294 -0.5441 -0.3469 -0.1029
Novel 3* 0.0294 -0.5735 -0.3469 -0.1324
Repeat 1" -0.3824 0.1029 -0.0664 -0.3676
Repeat 2° -0.3824 -0.0147 -0.2435 -0.4559
Repeat 3" -0.2206 0.1471 -0.0221 -0.2647
Coverage™ -0.1324 0.3529 0.1550 -0.0294
Compress™ 0.1176 -0.4265 -0.2288 -0.0147
Density” 0.1618 0.6471 0.3911 0.2941

Table 1: Kendall tau-b system-level correlation between ex-
pert annotations of coherence, consistency, fluency, and rel-
evance and various automated metrics, adapted from Fabbri
et al. (2021). " denotes reference-free metrics. The five high-
est correlations per column are in bold, with ties for con-
sistency and relevance. Coefficients with a magnitude above
0.36 are significant at the o = 0.05 level.

and Nenkova (2013). The reference-free metrics perform
similarly, except for Jensen-Shannon Divergence (Louis and
Nenkova 2009) which performs particularly well on DUC
2001 and Info Diff which performs particularly poorly on
DUC 2002. The metrics using references benefit from the
bias that the coverage itself was measured with respect to
the reference summary, so as expected, they have higher cor-
relations with the coverage than the reference-free metrics
for this dataset. A fair comparison would involve a cover-
age measured with respect to the document itself. One can



Metric DUC 2001 DUC 2002
Shannon Score 0.2909 0.5714
Info Diff 0.3000 0.4835
Jensen-Shannon 0.4455 0.5440
BLANC-help 0.2727 0.5769
ROUGE-1 0.9636 0.9066
ROUGE-2 0.8273 0.9121
ROUGE-L 0.7455 0.9176
ROUGE-Lsum 0.9455 0.9066
BERTScore-P 0.4636 0.5989
BERTScore-R 0.8545 0.9451
BERTScore-F1 0.6091 0.7308

Table 2: System-level Spearman correlation of various sum-
mary quality metrics with human-judged coverage scores on
the DUC 2001 and 2002 single-document summary datasets.
The last seven metrics make use of reference summaries,
while the first four metrics have to rely only on the origi-
nal document itself. DUC 2001 coefficients above 0.60 and
DUC 2002 coefficients above 0.55 are significant at the
a = 0.05 level.

also see that most metrics perform better on DUC 2002 than
DUC 2001: this was also observed by Sun and Nenkova
(2019), who suggested that this can be explained by the fact
that DUC 2001 systems are more similar to each other and
worse than DUC 2002 systems on average.

4.3 Maetric Biases

To understand the biases of our metrics, we measured the
correlation between our metrics and the SummEval statis-
tics describing summaries described in section 4.1 across
the 1700 SummEval summaries. For comparison, we also
correlated the expert summary quality judgements with the
statistics. These correlations are shown in table 3.

Both of our metrics have significant positive correlation
with summary length, which is expected since longer sum-
maries can contain more information. Our metrics have bias
against more abstractive summaries (based on novel n-gram,
coverage, and density), but we are generally less biased
against abstractive summaries than humans judging consis-
tency are: we suspect this is because abstractive summaries
are more likely to hallucinate factual errors. The Shan-
non Score is biased against highly compressed summaries,
which is not shared by Information Difference.

S Metric Variations
5.1 Choice of Language Model or Model Size

In the previous sections, we used GPT-2 small as our lan-
guage model of choice when computing the Shannon Score
and Information Difference. To understand how well our
method generalizes to other language models, we computed
the Shannon Score and Information Difference metrics us-
ing the three other GPT-2 sizes (medium, large, and extra-
large), and three other language models with autoregressive
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Model Coher. Consi. Fluen. Relev.
Shannon Score
GPT-2 S 0.4118 0.6324 0.5240 0.6029
GPT-2M 0.3529 0.6618 0.4945 0.5441
GPT-2L 03676 0.6471 0.5092 0.5588
GPT-2 XL 0.3824 0.6324 0.4945 0.5735
GPT 0.0294 0.5147 0.3469 0.1912
XLNet 0.4265 0.5882 0.4945 0.6471
TransfoXL 0.3529 0.5441 0.4502 0.5441
Information Difference
GPT-2 S 0.4706 0.6324 0.5683 0.6618
GPT-2M 0.3971 0.6765 0.5092 0.5882
GPT-2L 0.3824 0.6324 0.4945 0.5735
GPT-2 XL 0.3971 0.6471 0.5092 0.5882
GPT 0.0441 0.5294 0.3616 0.2059
XLNet 0.4559 0.5882 0.5240 0.6765
TransfoXL  0.3529 0.5441 0.4502 0.5441

Table 4: Kendall tau-b system-level correlations between ex-
pert annotations of coherence, consistency, fluency, and rel-
evance and our Shannon Score and Information Difference
metrics with the choice of different language models on the
SummEval dataset. Scores at least as high as GPT-2 S are
bold. Coefficients above 0.36 are significant at the o = 0.05
level.
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Figure 3: The average document information and document
information given summary as estimated by different sizes
of GPT-2 for the SummEval dataset.

pretraining objectives: GPT (Radford et al. 2018), XLNet
(Yang et al. 2019), and Transformer-XL (Dai et al. 2019).

Table 4 shows the system-level Kendall tau-b correlation
between our metrics and the SummEval quality judgements
from section 4.1 for each language model. The language
models perform quite similarly overall, suggesting that the
choice of language model is not overly important when us-
ing the Shannon Score or Information Difference. The ex-
ception is the low correlation of GPT, particularly on the co-
herence and relevance qualities: we suspect this is because
GPT was trained on the BooksCorpus dataset (Zhu et al.
2015), which is less diverse than the datasets used for the
other language models.



Metric Info Diff Shannon Score Coherence Consistency Fluency Relevance
Length 0.5425 0.4291 0.0615 0.0886 -0.0105 0.2054
Novel 1 -0.1140 -0.0962 0.1340 -0.2719 -0.1924 0.0267
Novel 2 -0.2935 -0.2849 -0.0248 -0.3693 -0.2674 -0.0733
Novel 3 -0.3324 -0.3297 -0.0781 -0.3840 -0.2755 -0.1035
Coverage 0.2163 0.1896 0.0144 0.3369 0.2431 0.0688
Compression  -0.0879 -0.6086 -0.0041 -0.0697 -0.0084 -0.1155
Density 0.4591 0.4517 0.1991 0.4035 0.2738 0.2019

Table 3: Spearman correlation of our metrics and human judged quality metrics with various statistics describing summaries

across the 1700 SummEval summaries.

It is also interesting to see that bigger GPT-2 models do
not necessarily perform better. Figure 3 shows the relation-
ship between model size and average document info with
and without the help of a summary. We can see that as the
model gets larger, both average I(D) and average I(D|S)
decrease together. Larger models should be better at autore-
gressive token prediction, as reflected in the plot of I(D),
but it is interesting to see that I(D|S) decreases at around
the same rate. We suspect this is because larger models may
not be more suitable at utilizing a summary to predict a doc-
ument under our setup.

5.2 Upstream Sentences

As described in section 2.3, we are making an independence
assumption between sentences in a document when estimat-
ing I(D), I(D|S), and I(D|D) by feeding each sentence
into the model individually. We could alternatively assume
that each sentence in the document is dependent on the &
previous sentences, where k = 0 refers to our current ap-
proach and £ = oo (or the maximum number of sentences
in a document) drops the sentence independence assumption
altogether. One could reason that this would better allow us
to quantify the information in a document, which may lead
to a more effective metric.

As shown in table 5, using k£ > 0 leads to an improvement
in consistency at the expense of the other summary dimen-
sions, and increasing k£ beyond 1 does not yield any signif-
icant gains in performance. Figure 4 shows that increasing
k from O is more helpful at decreasing I(D) than it is at
decreasing I(D|S). We could draw a similar conclusion as
we did in section 5.1 that increasing k is helpful for autore-
gressive token prediction, but it doesn’t help our model with
utilizing a summary to predict a document in our setup.

5.3 BLANC-Shannon

Our metrics bear similarity to the BLANC-help metric
(Vasilyev, Dharnidharka, and Bohannon 2020; Vasilyev
et al. 2020), which measures the accuracy of the BERT
language model on the task of guessing masked tokens
with and without a summary prepended to a document. The
BLANC score is measured as a boost in unmasking accu-
racy Gpelp — Gpase When masking various sets of M evenly
spaced tokens, where aj.p is the accuracy when the sum-
mary is provided as help and apqse is the accuracy when no
help is provided. Our metrics differ from BLANC in that
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we measure information instead of raw accuracy, we gener-
ate documents autoregressively instead of masking, and we
typically use GPT-2 instead of BERT.

To study the utility of measuring document information
as opposed to raw accuracy counts, we define BLANC-
Shannon to be the boost in accuracy when generating docu-
ment tokens given the summary. On the SummEval bench-
mark, BLANC-Shannon achieves Kendall tau-b system-
level correlations of 0.3676, 0.6765, 0.5092, and 0.5588 for
the expert annotations of coherence, consistency, fluency,
and relevance respectively. These scores are an improvement
on the consistency dimension over the Shannon Score and
Information Difference metrics at the expense of every other
dimension. We can only hypothesize that accuracy may be
more sensitive to wrongly generated tokens and hence to
consistency, but it would be interesting to compare BLANC-
Shannon to the other metrics on an even larger dataset than
SummEval.

6 Related Work

The Shannon Game The Shannon Game (Hovy and Lin
1998) was proposed over two decades ago as a way to use
humans to measure the information retention between doc-
ument and summary. In the original formulation, humans
need to guess a document letter by letter given the summary,
document, or nothing, and they measure the total number
of guesses that were required to reconstruct the document.
The authors ran a small-scale experiment where they con-
ducted this game using human subjects, and they found a
clear order of magnitude difference between the number of
guesses each human required, as expected. However, they
also found that reconstructing the original document with no
help (the task of human 3) was extremely time-consuming,
sometimes taking over 3 hours, making the Shannon Game
prohibitively expensive as a human evaluation method.

Automated Summary Evaluation The most popular au-
tomatic summarization evaluation method is the ROUGE
family of metrics (Lin 2004; Lin and Och 2004), which mea-
sure word overlap between the system summary and one or
more reference summaries. The two biggest problems we
see with ROUGE as a metric are 1) that it relies on human
written reference summaries, and 2) that it measures sim-
ple word overlap, which means that a perfectly paraphrased
version of the reference summary would score poorly.



k Coher. Consi. Fluen. Relev.
Shannon Score
0 04118 0.6324 0.5240 0.6029
1 0.3529 0.6618 0.4945 0.5441
2 03235 0.6618 0.4945 0.5147
3 03235 0.6618 0.4945 0.5147
4 03235 0.6618 0.4945 0.5147
Information Difference
0 04706 0.6324 0.5683 0.6618
1 03529 0.6618 0.4945 0.5441
2 03382 0.6765 0.5092 0.5294
3 0.3235 0.6618 0.4945 0.5147
4 0.3382 0.6765 0.5092 0.5294

Table 5: Kendall tau-b system-level correlations between ex-
pert annotations of coherence, consistency, fluency, and rel-
evance and our Shannon Score and Information Difference
metrics with different choices of k (the number of upstream
sentences to provide the model) on the SummEval dataset.
Scores at least as high as those of £k = 0 are bold. Coeffi-
cients above 0.36 are significant at the o = 0.05 level.
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Figure 4: The average document information and document
information given summary when prompting GPT-2 with
different amounts of upstream sentences for the SummEval
dataset.

Many solutions have been proposed to remedy issue #2
without solving issue #1, such as BERTScore (Zhang et al.
2020), MoverScore (Zhao et al. 2019), Sentence Mover Sim-
ilarity (Clark, Celikyilmaz, and Smith 2019), Word Mover
Similarity (Kusner et al. 2015), and ROUGE-WE (Ng and
Abrecht 2015). All of these metrics involve the idea of using
soft overlap or embedding/token distance between the sys-
tem and reference summaries. Louis and Nenkova (2009)
suggested measuring the Jensen-Shannon divergence be-
tween word distributions used in the system summary and
original document, which suffers from issue #2 while fix-
ing issue #1. Sun and Nenkova (2019) and Gao, Zhao, and
Eger (2020) perform reference-free summary evaluation us-
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ing language model word embeddings with promising re-
sults. Other have used question generation and question an-
swering models to evaluate summaries (Scialom et al. 2019;
Chen et al. 2018), but we argue that these metrics are only
as good as the datasets the models were trained on, and may
have problems generalizing. Beyond summarization, there
have been many metrics proposed for Natural Language
Generation more generally (Sai, Mohankumar, and Khapra
2020).

Our methods are most similar to BLANC (Vasilyev,
Dharnidharka, and Bohannon 2020; Vasilyev et al. 2020),
which measures the accuracy boost of BERT (Devlin et al.
2019) on the Cloze task (Taylor 1953) when a summary is
prepended to a document or the model is finetuned on the
summary. This paper contributes to the study of BLANC-
like metrics by extending them to new language models,
giving them a theoretical motivation, and performing more
robust experiments to better understand their behavior. The
information-theoretic motivations of our metrics are similar
to that of Peyrard (2019) who formally defined some met-
rics based on distributions of semantic units, which contrasts
with our use of pretrained language models.

7 Conclusion

In this work, we successfully show that a universal lan-
guage model performing the basic language modeling task
is an effective reference-free evaluator of summary qual-
ity. This work extends the Shannon Game from using hu-
mans as evaluators to using machines, and extends the work
on BLANC-like metrics to new language models and theo-
retical interpretations. We experimentally showed that our
metrics strongly correlate with expert judgement of sum-
mary quality, and hope that they will serve as useful tools
for the future development of summarization models. As
next steps, it would be interesting to see if our metrics are
useful for summarization model training, or evaluation in
tasks beyond standard summarization, such as paraphrasing
or query-focused summarization. Our code is available on
GitHub."!
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