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Abstract

Sarcasm is a pervading linguistic phenomenon and highly
challenging to explain due to its subjectivity, lack of context
and deeply-felt opinion. In the multimodal setup, sarcasm is
conveyed through the incongruity between the text and vi-
sual entities. Although recent approaches deal with sarcasm
as a classification problem, it is unclear why an online post is
identified as sarcastic. Without proper explanation, end users
may not be able to perceive the underlying sense of irony.
In this paper, we propose a novel problem – Multimodal
Sarcasm Explanation (MuSE) – given a multimodal sarcas-
tic post containing an image and a caption, we aim to gen-
erate a natural language explanation to reveal the intended
sarcasm. To this end, we develop MORE, a new dataset with
explanation of 3510 sarcastic multimodal posts. Each ex-
planation is a natural language (English) sentence describ-
ing the hidden irony. We benchmark MORE by employing
a multimodal Transformer-based architecture. It incorporates
a cross-modal attention in the Transformer’s encoder which
attends to the distinguishing features between the two modal-
ities. Subsequently, a BART-based auto-regressive decoder is
used as the generator. Empirical results demonstrate convinc-
ing results over various baselines (adopted for MuSE) across
five evaluation metrics. We also conduct human evaluation
on predictions and obtain Fleiss’ Kappa score of 0.4 as a fair
agreement among 25 evaluators.

Introduction
Sarcasm1 refers to the use of satirical or ironic statements
usually to hurt, insult, or offend someone. The surface mean-
ing of such statements is usually different from the in-
tended meaning, and to comprehend the sarcasm, one needs
to be aware of the context in which the statement was ut-
tered. Joshi, Sharma, and Bhattacharyya (2015) suggested
the presence of incongruity as a vital signal for sarcasm.
Traditionally, the research around sarcasm analysis revolves
around the detection of underlying sarcasm in text (Camp-
bell and Katz 2012; Riloff et al. 2013). In recent years, the
exploitation of multimodal signals viz. image, video or au-
dio, is on the rise for detecting sarcasm (Schifanella et al.
2016; Castro et al. 2019; Sangwan et al. 2020). With mul-
timodal signals, the scope of incongruity in sarcastic posts
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1https://www.merriam-webster.com/dictionary/sarcasm

Caption: This guy gets a gold star for excellent parking.
Explanation: this guy has parked his car partially covering
the parking slot for handicapped.

Non-Sarcastic utterance: This guy does not get a gold star
for bad parking.

(a) Difference of MuSE with non-sarcastic interpretation

Caption: Internet is awesome. i love my dialup internet! show
me the 70mbps! #wtf.
Explanation: This internet is terrible, I hate dialup internet.
Non-Sarcastic utterance: This internet is not awesome, I
hate dial up internet.

(b) Similarity of MuSE and non-sarcastic interpretation.

Figure 1: Example scenarios showing the multimodal sar-
casm explanation task compared to the (textual) non-
sarcastic interpretation task (Dubey, Joshi, and Bhat-
tacharyya 2019). Non-sarcastic interpretation is primarily
negation of caption.

expands to inter-modality and intra-modality incongruity.
Most existing systems rely on the interaction among the
modality-specific latent representations for leveraging in-
congruity. For example, Sangwan et al. (2020) employed a
gating mechanism to fuse the two modalities.

Motivation. Sarcasm comes in different varieties – some
sarcasms are lucid while some require intense scrutiny of
the situation. In such situation, merely the detection of sar-
casm without revealing the implicit irony may not be ad-
equate for many use cases. For various applications, rang-
ing from feedback analysis in e-commerce to sensitive so-
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cial media analysis, understanding why something is sarcas-
tic is as crucial as detecting negative sentiment in the form
of sarcasm. This suffices the requirement explaining the in-
tended sarcasm for every sarcastic posts. To this end, we pro-
pose a novel problem – Multimodal Sarcasm Explanation
(MuSE). The task takes a multimodal (image and its cap-
tion) sarcastic post as input, and aims to generate a natural
language sentence to explain the intended irony in the sar-
castic post. Figure 1 shows two instances of the MuSE task.
In the first case, the image shows that a car is parked in front
of a building with the user-written caption ‘This guy gets a
gold star in parking.’. Taking the inter-modal incongruity
into account, we can realize that the user is highlighting the
improper car parking as it partially covers the reserved park-
ing slot for handicap person. As an outcome of the MuSE
task, we expect to generate a similar explanation for the sar-
castic post. Similarly, we show another instance of MuSE
in Figure 1b. Moreover, the instance in Figure 1a highlights
the importance of multimodal content for sarcasm detection.
Evidently, it is extremely non-trivial to classify the post as
sarcastic without image. On the other hand, the instance in
Figure 1b defines both inter- and intra-modal incongruities.
The inter-modal incongruity exists between 70mbps (text)
and 0.21mbps (image), while the intra-modal incongruity is
apparent in caption because of the positive words (awesome,
love) and negative word (#wtf).

Formulation of MuSE. The task of MuSE is differ-
ent from the traditional explainable systems that use at-
tention heatmaps (Guo et al. 2019; Yao and Wan 2020)
or similar mechanisms (e.g., SHAP (Parsa et al. 2020),
LIME (Pramanick et al. 2021; Mahajan, Shah, and Jafar
2021), etc.) to explain the model behavior. In contrast, we
project the sarcasm explanation as a natural language gen-
eration task. Thus, MuSE’s output requires to be a cohe-
sive and coherent English sentence. We formally define
MuSE as follows: For a given multimodal sarcastic post
P = ⟨I, T [t1, t2, ..., tN ]⟩, where I and T [] denote the
image and caption, respectively, and ti is the token in the
caption, we aim to reveal the intended irony by generat-
ing a natural language explanation E[e1, e2, ..., eD], where
∀ti, ej ∈ V ocab

English and ej indicates the token in the ex-
planation.

New Dataset and Baselines. To address MuSE, we
curate MORE, a novel multimodal sarcasm explanation
dataset, consisting of 3510 sarcastic posts with natural lan-
guage explanations manually generated by expert annota-
tors. To benchmark MORE, we design a Transformer based
encoder-decoder model. We employ two encoders –one each
for text and image– to obtain the modality-wise latent repre-
sentations, which is followed by the incorporation of a cross-
modal attention module. Finally, a BART-based decoder is
added in the pipeline for the explanation generation.

Novelty of MuSE. We draw the difference between
MuSE and the non-sarcastic interpretation task proposed
by (Dubey, Joshi, and Bhattacharyya 2019) in Figure 1.
The first difference is the incorporation of multimodality in
MuSE compared to the text-based non-sarcastic interpreta-

tion. The second and the prime difference is that the non-
sarcastic interpretations are primarily the negation of the
sarcastic texts. In contrast, MuSE is defined to explain the
incongruity – not necessarily with the use of negation. How-
ever, we have a few examples for which the explanations can
be termed as non-sarcastic interpretations (c.f. Figure 1b).

Contributions: Our main contributions are fourfold:

• We introduce MuSE, a novel task aiming to generate a
natural language explanation for a given sarcastic post to
explain the intended irony. To our knowledge, it is the first
attempt at explaining the intended sarcasm.

• We develop MORE, a new dataset consisting of 3510
triples (image, caption, and explanation) for MuSE.

• We benchmark MORE with a new Transformer-based
encoder-decoder model which would serve as a strong
baseline. Empirical results show its superiority over vari-
ous existing models adopted for this task, across five eval-
uation metrics.

• We perform extensive human evaluation to measure the
coherence and cohesiveness of the generated explanations
by our proposed model.

Reproducibility: The source code and dataset are
available at https://github.com/LCS2-IIITD/Multimodal-
Sarcasm-Explanation-MuSE.

Related Work
Sarcasm Detection: Most prior studies focus on detect-
ing sarcasm using one or more modalities. Earlier methods
including (Bouazizi and Otsuki Ohtsuki 2016) and (Felbo
et al. 2017) use hand-crafted features such as punctuation
marks, POS tags, emojis, lexicons, etc., for detecting the
sarcastic nature of the input. Recent studies have explored
sarcasm detection in multimodal setting. One of the ear-
lier studies on multimodal sarcasm detection (Schifanella
et al. 2016). incorporated images along with the correspond-
ing captions for detecting inter-modal incongruity. Haz-
arika et al. (2018) extracted contextual information from
the discourse of a discussion thread, encoded stylometric
and personality features of the users, and subsequently used
content-based features for sarcasm detection in online social
media. Cai, Cai, and Wan (2019) exploited the multi-stage
hierarchical fusion mechanism for multimodal sarcasm de-
tection. In another work, Oprea and Magdy (2019) consid-
ered the distinction between the intended and perceived sar-
casm and showed the limitations of the existing systems in
capturing the intended sarcasm.

Castro et al. (2019) extended multimodal sarcasm detec-
tion for conversational dialog systems. The authors intro-
duced a new dataset, MUStARD, for multimodal sarcasm
detection. Recently, Bedi et al. (2021) explored the sarcasm
detection task in Hindi-English code-mixed conversations.

Sarcastic to Non-Sarcastic Interpretation and Sarcasm
Generation: In addition to sarcasm detection, a few at-
tempts have been made in exploring different aspects of
sarcasm analysis. Peled and Reichart (2017) and Dubey,
Joshi, and Bhattacharyya (2019) explored an interesting
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Caption: #sarcasm
#sarcastic

Caption: Some idiots just don ’t
get it .. thoughts #idiot #idiotlist.

Figure 2: Posts that are discarded due to explicit sarcasm and
do not suffice for an explanation.

idea of converting sarcastic text into non-sarcastic interpre-
tation. Both approaches utilize machine translation based
systems for generating non-sarcastic interpretation. In con-
trast, Mishra, Tater, and Sankaranarayanan (2019) focused
on generating sarcastic text given a negative sentiment sen-
tence. All these systems work at the unimodal textual level.
In comparison, MuSE incorporates the multimodal signals,
aiming to highlight the intended irony of sarcasm instead of
converting a sarcastic instance to a non-sarcastic one.

Natural Language Explanations: There have been a few
studies focusing on explaining model predictions by gener-
ating a natural language explanation. Hendricks et al. (2016)
first proposed an explainable model for image classifica-
tion that targets to explain the predicted label. Kim et al.
(2018) proposed to explaining the model actions in self-
driving cars. Recently, Kayser et al. (2021) introduce e-ViL,
a benchmark for explainable vision-language (VL) tasks,
that establishes a unified evaluation framework and provides
the first comprehensive comparison of existing approaches
that generate NLEs for VL tasks. A majority of these stud-
ies employ NLEs for justifying the outputs of their models.
However, in our task, NLE itself is the output of the model
which is intended to explain the underlying sarcasm in the
given multimodal sarcastic sample. To the best our knowl-
edge, this is the first attempt at generating natural language
explanations for multimodal sarcastic posts.

Proposed Dataset
This section elaborates on our effort in developing the
MultimOdal saRcasm Explanation (MORE) dataset. Since,
MuSE demands a sarcastic post, we explore two existing
multimodal sarcasm detection datasets – (Schifanella et al.
2016) and (Sangwan et al. 2020) – to extract the sarcas-
tic posts. Schifanella et al. (2016) used hashtag-based ap-
proach (#sarcasm or #sarcastic) to collect 10000 sarcastic
posts from Twitter, Instagram, and Tumblr. On the other
hand, Sangwan et al. (2020) manually annotated 1600 sar-
castic posts. Additionally, we explore another multimodal
sarcasm detection dataset2 to collect 10560 sarcastic posts.
In total, we collect 22160 sarcastic posts.

Next, we adopt the following annotation guidelines to
generate an explanation for each post.

2https://github.com/headacheboy/data-of-multimodal-
sarcasm-detection

Split # of Posts Caption Explanation
Avg. length ∣V ∣ Avg. length ∣V ∣

Train 2983 19.75 9677 15.47 5972
Val 175 18.85 1230 15.39 922
Test 352 19.43 2172 15.08 1527
Total 3510 19.68 10865 15.43 6669

Table 1: Statistics of the MORE dataset.

• Exclusion: Following posts are discarded

– Non-sarcastic posts are discarded.
– Posts with explicit mention of sarcasm are discarded.
– Posts with non-English content are discarded.
– Posts that require additional context to interpret sar-

casm or the annotators are not familiar with the topics
are discarded.

• Inclusion: Post describing the intra-incongruity (within
text, or within image) or inter-incongruity (between im-
age and text) are considered.

• Annotation Scheme: Annotators were given the follow-
ing instructions for generating the explanation.

– All entities including image, caption, hashtags, emojis,
etc., are to be considered for interpreting the irony and
generating an appropriate explanation.

– In case the underlying sarcasm can be explained in mul-
tiple ways, the shorter and simpler explanation is pre-
ferred.

– Any unrelated topic in explanation is avoided.

We obtained services of two annotators who carefully
examined individual posts in our collection. Following the
guidelines, annotators generated explanations of 3510 sar-
castic posts. Out of these samples, MORE contains 1968
samples with textual entities as part of the image3 along
with the captions, while the rest 1542 samples do not have
images and texts overlapped. We call the former OCR sam-
ples, while the latter non-OCR samples throughout the pa-
per. The remaining posts are discarded due to one of the
aforementioned reasons for exclusion. Two such examples
are shown in Figure 2. A brief statistics of the dataset is pre-
sented in Table 1.

Proposed Benchmark Model
To generate explanations, we employ ExMore, a multi-
modal Transformer-based encode-decoder approach4. Fig-
ure 3 shows the complete architecture of ExMore.

At first, we take both inputs, i.e., images and captions,
and pass them through pre-trained VGG-19 (Simonyan and
Zisserman 2014) and BART (Lewis et al. 2020) encoders,
respectively. Next, we feed the image (xI ∈ Rq×dI

) and
caption (xT ∈ Rr×dT

) representations to the multimodal

3Text written within the image.
4Note that our aim is not to propose a sophistical model. Rather,

we focus on proposing a new task and present a model to bench-
mark our dataset. Our model is expected to serve as a strong base-
line for MuSE.
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Figure 3: Architecture of ExMore.

Transformer encoder for cross-modal learning, where r is
the number of tokens in caption and q is the number of
regions we obtain from the VGG-19 model. Unlike tradi-
tional Transformer architecture (Vaswani et al. 2017), where
the same input is projected as ‘query’, ‘key’, and ‘value’, in
the multimodal variant, we project the textual representation
as ‘query’ (Q ∈ Rr×dk

) and image representation as ‘key’
(K ∈ Rq×dk

) and ‘value’ (V ∈ Rq×dk

). Subsequently, we
apply the conventional self-attention mechanism to compute
the cross-modal attentive representation z ∈ Rr×dk

. Taking
dk = dT

M
, we incorporate M = 4 heads for the computa-

tion. Following this, we apply layer normalization and fully-
connected layers with residual connections to obtain the en-
coder’s output. Finally, we concatenate the textual represen-
tation x with the encoder output to obtain the final cross-
modal encoder representation CT ∈ R2r×dT

. We feed CT to
the pre-trained auto-regressive BART decoder and fine-tune
the entire model on MORE for the explanation generation.

Experiments, Results, and Analysis
We evaluate the generated explanations both quantitatively
(using standard text generation evaluation metrics) and qual-
itatively (human evaluation). We also furnish comparative
analyses at both levels.

Comparative Systems
Due to multimodal nature of the input, we study MuSE
for both unimodal (text) and multimodal (text + image) in-
puts. Therefore, we also employ comparative systems for
both the modalities. For text-based baselines, we employ
Transformer (Vaswani et al. 2017) and Pointer Genera-
tor Network (See, Liu, and Manning 2017) for generating
explanations. In the multimodal setup, we adopt MFFG, the
video summarization system proposed by Liu et al. (2020).
The MFFG architecture is a multi-stage fusion mechanism
with a forget fusion gate acting as a multimodal noise fil-
ter. We compare with both RNN and Transformer variants
of MFFG. We also utilize the multimodal Transformer (M-
Transf) (Yao and Wan 2020) originally proposed for ma-
chine translation. M-transf and ExMore differ in the way
they consume multimodal inputs in their encoders. M-transf
considers the concatenation of text and image representa-
tions for query and text representation for key and value.
On contrary, ExMore considers text representation for query
and image representation for key and value projections.

Experimental Setup
We perform experiments on MORE and use 85:5:10 split
to create train (2983), validation (175), and test (352) sets.
We employ BLEU (B1, B2, B3, and B4), ROUGE (R1, R2,
and RL), METEOR, BERTScore (Zhang et al. 2020), and
SentBERT (a BERT-based cosine similarity at the explana-
tion level), as evaluation metrics. SentBERT estimates the
semantic closeness between the reference and generated ex-
planations in the Sentence-BERT (Reimers and Gurevych
2019) embedding space.

Task-based pre-training: Since MORE has limited num-
ber of training samples, we utilize the existing multimodal
sarcasm detection datasets (c.f. Section ) to pre-train Ex-
More’s encoder. The pre-training was performed as a binary
(sarcastic or non-sarcastic) classification task. This enables
the encoder to learn the distinguishing features for sarcastic
posts that can be leveraged in the MuSE task. Subsequently,
the pre-trained ExMore encoder is then used to train and
fine-tune on MORE.

Hyperparameters: We employ BART (Lewis et al. 2020)
tokenizer with maximum token length as 256. We use
AdamW (Loshchilov and Hutter 2017) optimizer with learn-
ing rate of 1e − 5 for the single cross-modal encoder and
3e − 4 for the LM head of decoder. We train ExMore for
125 epochs with batch size = 16. During training, the
cross-entropy loss is monitored over the validation set
with image encoder in a frozen state.

Experimental Results
Table 2 shows the comparative results on MORE. We per-
form evaluation5 for three cases – (a) on complete dataset
(both non-OCR + OCR samples) (Table 2a), (b) only on
Non-OCR samples (Table 2b), and (c) only on OCR samples
(Table 2b).

5We train on the complete dataset and evaluate according to the
data type, i.e., non-OCR, OCR, or complete.
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Model BLEU Rouge METEOR BERT-Score Sent-BERT
B1 B2 B3 B4 R1 R2 RL Pre Rec F1 (Cosine)

Pointer Generator Network 17.54† 6.31 2.33 1.67† 17.35 6.90 16.00 15.06† 84.8 85.1 84.9 49.42
Transformer 11.44 4.79 1.68 0.73 17.78 5.83 15.90 9.74 83.4 84.9 84.1 52.55
MFFG-RNN 14.16 6.10 2.31 1.12 17.47 5.53 16.21 12.31 81.5 84 82.7 44.65
MFFG-Transf 13.55 4.95 2.00 0.76 16.84 4.30 15.14 10.97 81.1 83.8 82.4 41.58
M-Transf 14.37 6.48† 2.94† 1.57 20.99† 6.98† 18.77† 12.84 86.3† 86.2† 86.2† 53.85†

ExMore 19.26 11.21 6.56 4.26 27.55 12.49 25.23 19.16 88.3 87.5 87.9 59.12

(a) All samples

Model BLEU Rouge METEOR BERT-Score Sent-BERT
B1 B2 B3 B4 R1 R2 RL Pre Rec F1 (Cosine)

Pointer Generator Network 17.87† 6.37 1.92 1.36† 17.80 6.92 16.43 15.62† 84.7 85.2 84.9 48.77
Transformer 11.65 5.65 1.73 0.69 17.41 6.26 16.16 10.13 83.6 85.1 84.3 48.40
MFFG-RNN 15.43 6.82 2.46 1.33 18.61 5.71 17.40 12.98 81.6 84.3 82.9 42.72
MFFG-Transf 13.28 5.35 1.49 0.26 16.80 4.35 14.90 11.19 81.3 84 82.6 41.68
M-Transf 14.91 6.90† 2.66† 0.83 21.05† 7.08† 19.34† 13.91 86.5† 86.3† 86.4† 51.77†

ExMore 19.47 11.69 6.82 4.27 27.12 12.12 24.92 19.20 88.3 87.6 88.0 56.95

(b) Non-OCR samples

Model BLEU Rouge METEOR BERT-Score Sent-BERT
B1 B2 B3 B4 R1 R2 RL Pre Rec F1 (Cosine)

Pointer Generator Network 17.19† 6.08 2.49 1.79 16.92 6.76 15.55 14.64† 84.9 84.9 84.9 49.53
Transformer 10.68 4.01 1.49 0.71 17.25 5.32 15.04 8.99 83.2 84.7 83.9 53.94
MFFG-RNN 12.18 4.92 1.73 0.88 15.18 4.56 14.01 10.64 81.2 83.7 82.4 45.91
MFFG-Transf 12.87 4.12 1.69 0.62 15.54 3.53 14.20 9.70 81 83.6 82.3 41.13
M-Transf 14.06 6.25† 3.22† 2.28† 21.04† 7.01† 18.42† 12.06 86.2† 86.1† 86.1† 55.66†

ExMore 19.40 11.31 6.83 4.76 28.02 13.10 25.66 19.55 88.2 87.5 87.9 60.82

(c) OCR samples
Table 2: Comparative analysis on the MORE dataset. Dagger (†) represents the best baseline.

In the overall case (c.f. Table 2a), among all the compet-
ing methods, M-transf reports the best performance in each
case – albeit the Pointer Generator Network in a few metrics
(B1, B4, and METEOR). In comparison, we can observe that
ExMore outperforms all baselines across five sets of eval-
uation metrics. We obtain BLEU scores6 of 19.26(+1.72),
11.21(+4.73), 6.56(+3.62), and 4.26(+2.59) for B1, B2,
B3, and B4, respectively. Similarly, we gain +6.56, +5.51,
and +6.46 Rouge points at 27.55, 12.49, and 25.23 in
R1, R2, and RL, respectively. ExMore also reports im-
proved performance in METEOR 19.16(+4.1), BERT-
Score 87.9(+1.7) and Sent-BERT 59.12(+5.3).

Experimental results for non-OCR and OCR samples are
reported in Tables 2b and 2c, respectively. The objective of
evaluating separate results for OCR and Non-OCR samples
is to analyze the effect of text in images on ExMore’s perfor-
mance. We observe that ExMore does not show any sign of
bias towards either the OCR samples or the Non-OCR sam-
ples – in both cases, the obtained results across all metrics
are comparable and closer to the overall case. Furthermore,
we observe that ExMore outperforms M-transf in both Non-
OCR and OCR cases.

Ablation Study
We experiment with a variant of ExMore that leverage the
ocr text extracted from image as the third modality input
along with the caption and image (we call it ExMoreocr). To

6Numbers in bracket show improvement against the best base-
line.

handle the tri-modal case, we introduce two parallel cross-
modal encoders – one for caption and image, and another for
caption and ocr text. Utilizing the two encoders, we obtain
two cross-modal encoded representations, z img ∈ Rr×dT

and z ocr ∈ Rr×dT

. Since some posts may not contain
ocr text, we introduce a filter/gating mechanism to intelli-
gently fused the encoded representations. To achieve this,
we compute the mean across the sequence length dimen-
sion of z img and z ocr representations. The resulting vec-
tors are concatenated and passed through a 2-layered fully-
connected network followed by a sigmoid function to pro-
duce a weight λ. The final encoder representation CT ∈

Rr×dT

is obtained as (λ × z img) + z ocr, which is then
passed to the pre-trained BART decoder to produce the ex-
planation.

Table 3 reports the result of the ablation study. Similar
to the earlier case, we evaluate ExMoreocr for the overall,
only Non-OCR, and only OCR samples. In comparison to
ExMore, we obtain inferior results in all three cases. An
interesting observation is that ExMoreocr obtains better re-
sults for the OCR samples compared to the Non-OCR ex-
amples. This could be because ExMoreocr incorporates the
OCR text explicitly in the model. However, the performance
was on a lower side perhaps due to the inability of the gating
mechanism to learn in the absence of sufficient training data
points.

In addition to ExMoreocr, we also explore another vari-
ant that aims to leverage the image description of an image.
The idea seems plausible as extracting desired and relevant
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Data BLEU Rouge METEOR BERT-Score Sent-BERT
B1 B2 B3 B4 R1 R2 RL Pre Rec F1 (Cosine)

Overall 17.52 9.21 4.76 2.92 24.23 9.89 22.27 16.72 86.9 87.1 87 59.57
Non-OCR instances 17.42 9.17 4.12 1.86 23.84 9.6 21.93 17.11 86.8 87.1 86.9 56.82

OCR-instances 17.81 9.47 5.56 3.91 24.86 10.27 22.94 16.62 87 87.1 87 61.68

Table 3: Ablation results for ExMoreocr: Experiment with Image + Caption + OCR text.

Model Total Non-OCR OCR
M-T ExM M-T ExM M-T ExM

Ref count 3.76 3.75 3.80
Gen count 3.68 3.57 3.62 3.53 3.73 3.68
Difference 1.80 1.81 1.80 1.88 1.80 1.76
Overlap 0.68 1.03 0.63 1.05 0.73 1.06
Overlap–Syn 0.79 1.18 0.73 1.19 0.85 1.21

(a) Noun

Model Total Non-OCR OCR
M-T ExM M-T ExM M-T ExM

Ref count 2.78 2.71 2.80
Gen count 2.67 2.41 2.51 2.38 2.81 2.46
Difference 1.24 1.18 1.16 1.15 1.32 1.17
Overlap 0.45 0.60 0.38 0.51 0.52 0.69
Overlap–Syn 0.60 0.77 0.52 0.72 0.67 0.81

(b) Verb

Model Total Non-OCR OCR
M-T ExM M-T ExM M-T ExM

Ref count 1.32 1.19 1.40
Gen count 0.86 1.04 0.80 0.91 0.91 1.14
Difference 1.04 0.91 0.91 0.85 1.13 0.95
Overlap 0.04 0.16 0.05 0.15 0.04 0.17
Overlap–Syn 0.04 0.18 0.05 0.16 0.04 0.20

(c) Adjectives

Model Total Non-OCR OCR
M-T ExM M-T ExM M-T ExM

Ref count 1.03 0.96 1.09
Gen count 0.78 0.69 0.73 0.61 0.80 0.76
Difference 0.79 0.72 0.84 0.71 0.76 0.74
Overlap 0.27 0.24 0.22 0.18 0.31 0.28
Overlap–Syn 0.27 0.24 0.22 0.18 0.31 0.28

(d) Adverb

Table 4: POS-based comparison between the reference (Ref) explanation and generated (Gen) explanation for ExMore and M-
Transf (the best baseline). Numbers show the average count respective to four PoS tags (Noun, Verb, Adjectives, and Adverb).
Ref and Gen counts refer to the avg. frequencies. Difference and Overlap are the avg. word counts. Overlap-Syn is the avg.
overlap count with the incorporation of synonym words obtained through WordNET. The incorporation of synonyms improves
overlap counts; thus suggesting slightly better explanations at the semantic-level as well.

Caption: This guy gets a gold star for excellent parking.

Image description: A white car parked in a parking lot.

Figure 4: An example showing that the image description,
obtained from Microsoft OSCAR image descriptor, does
not capture the caption-specific context that the white car is
parked partially covering the parking slot for handicapped.

information from an image is comparatively non-trivial than
extracting the same from text. Therefore, we try to incorpo-
rate the image description in place of an image. We gener-
ate image description of an image using Microsoft OSCAR
(Li et al. 2020; Zhang et al. 2021), a state-of-the-art image
descriptor. However, a manual analysis of the generated im-
age description is found to be non-convincing. Though the
image description highlights the key points in an image, fea-
tures contributing to the irony is missing. One such example
is shown in Figure 4. The description ‘A white car parked
in a parking lot.’ appropriately describes various spatial fea-
tures in the image; however, it fails to comprehend the way
car is parked – the target of sarcasm. Therefore, we do not
proceed with the image description-based experiments.

Result Analysis
Linguistic view: In this section, we review the generated
explanations from linguistic aspect. We conduct our analy-
ses according to four content POS tags – noun, verb, adjec-

tive, and adverb. Since the POS tags are the carriers of the
core semantics of sentences, their comparison would provide
us with a sense of their semantic context7. For each case,
we count the frequency of respective tag in the generated
(Gen) and reference (Ref) explanations. Moreover, to check
the closeness of two explanations considering the underlying
PoS tag, we also compute the difference and overlap word
counts. Furthermore, we also incorporate the synonyms of a
word while computing overlaps in the generated and refer-
ence explanations.

Table 4 presents the count-based comparison between Ex-
More and the best baseline, M-Transf (on avg), for the four
tags. The numbers show the average count over the test set
for the respective metrics. Though the results suggest that
there is a significant gap in generating adequate explanations
compared to the reference, we observe that the performance
of ExMore is better than M-Transf in all cases. Another ap-
pealing observation is that the overlap count, albeit small,
improves (except for the adverb case) with the inclusion of
synonyms for noun (Table 4a), verb (Table 4b), and adjec-
tive (Table 4c). It suggests that ExMore’s explanations are
slightly better at the semantic-level as well.

Human Evaluation: We also perform human evaluation
for assessing the quality of the generated explanations. We
randomly sample 50 examples from the test set and ask

7To be clear, we do not claim that POS-based comparison would
allow us to compare at the semantic level; instead, it would provide
us with a high-level semantic context.
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Caption: dear <user> please never
change . you are perfect in every
way.

Ground truth: the author isn’t
happy with <user>’s internet
speeds.

Explanation: the author is pissed
at <user> for such terrible internet
speed.

(a) Justify

Caption: really enjoying the #
atmfcb game tonight <user>
<user>

Ground truth: the author can’t
enjoy the atmfcb game tonight
because of such disturbance.

Explanation: the author is pissed
at <user> for such disturbance.

(b) Weakly Justify

Caption: i just love paying for
chunks of ice ... i mean a smoothie
<user> # metrocenter #
unacceptable

Ground truth: the author hates
paying for chunks of ice in the
name of a smoothie.

Explanation: the author is pissed
at <user> for having to wait for a
few pieces of ice.

(c) SRI

Caption: i think i may be the
greatest fisherman who has ever
lived. just look at the size of my
largemouth bass.

Ground truth: the size of the
author’s largemouth bass is very
small.

Explanation: it’s obvious from
the stats.

(d) NRI
Figure 5: Examples of adequacy ratings for the generated explanation by human evaluators. We map the adequacy rating to
numeric scale as: Justify (1.0); Weakly Justify (0.66); SRI (0.33); and NRI (0.0).

Model Adequacy Fluency
M-Transf 0.37 0.74
ExMore 0.69 0.89

(a) Adequacy and Fluency scores.

Adequacy Rating
Model Justify W. Justify SRI NRI

M-Transf 15% 15% 35% 35%
ExMore 65% 5% 20% 10%

(b) Adequacy rating distribution.

Model Adequacy Fluency
M-Transf 0.367 0.221
ExMore 0.401 0.175

(c) Fleiss’ Kappa scores (25 evaluators).
Table 5: Human Evaluation: A comparison between ExMore and M-Trasnf.

25 human evaluators8 to rate the generated explanations
(ExMore and M-Transf) considering their adequacy and flu-
ency. The former metric measures the goodness of expla-
nation to reveal the underlying sarcasm, whereas the latter
represents the coherency of English explanation. Inspired
by Kayser et al. (2021), for adequacy, the human evalua-
tors are provided with four rating options – justify, weakly
justify, somewhat related to input (SRI), and not related to
input (NRI). Justify highlights the high semantic closeness
between the generated and reference explanations; whereas
weakly justify represents explanations which reveal the se-
mantic incongruence without reasoning out the sarcastic na-
ture. In contrast, both SRI and NRI categorize the instances
with no proper explanations, with the difference that, in SRI,
the output refers to some entities related to the input (either
in image or caption); however, the outputs in NRI are com-
pletely unrelated or random. A few examples related to the
four classes of adequacy rating are shown in Figure 5.

Next, we map the four classes onto numeric scale of [0,
1] – we assign a score of 1.0 to justify, 0.66 to weakly jus-
tify, 0.33 to SRI, and 0.0 to NRI samples. Evaluators rate
fluency of the generated explanation on the continuous scale
of [0,1]. Table 5 presents the summary of human evaluation
in form of adequacy and fluency scores, adequacy rating dis-
tribution, and Fleiss’ Kappa (Fleiss 1971) scores among 25
evaluators. From Table 5a, we observe that the evaluators
showed more confidence in the explanation of ExMore than
M-Transf for both adequacy (0.69 vs 0.37) and fluency (0.89
vs 0.74) metrics.

To compute the adequacy rating distribution, we adopt
8Evaluators are the linguistics experts in 25-40Y age bracket.

the majority-voting approach across evaluators to select the
adequacy class. The results are shown in Table 5b. We ob-
serve a significant percentage of samples fall under the jus-
tify or weakly justify categories for ExMore. In contrast,
most of the samples belong to the SRI and NRI categories
for M-Transf. It further strengthens our claim that ExMore
yields better explanation than all baselines. Furthermore, we
compute Fleiss’ Kappa to evaluate the agreement among 25
human evaluators. We observe fair agreement (Landis and
Koch 1977) among evaluators for adequacy.

Conclusion

In this paper, we proposed a novel task of multimodal sar-
casm explanation (MuSE), aiming to unfold the intended
sarcasm in multimedia posts with a caption and an image.
To address the task, we developed a new dataset, MORE,
containing 3510 sarcastic posts annotated with reference ex-
planations in natural language (English) sentence. Further,
we presented a strong baseline, ExMore, to benchmark the
MORE dataset. Our evaluation showed that ExMore out-
performs various baselines (adopted for MuSE) across five
sets of evaluation metrics. Moreover, we conducted exten-
sive analyses on the generated explanations. The POS tag
and synonym-based linguistics analysis showed that Ex-
More produced semantically accurate output than the best
baseline. In addition, the human evaluation with fair Fleiss’
Kappa agreement among 25 evaluators upheld the quality of
ExMore’s explanation in form of higher adequacy scores.
We believe that MuSE opens a new avenue in the domains
of sarcasm analysis and explainability.
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