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Abstract

Recent research on model interpretability in natural language
processing extensively uses feature scoring methods for iden-
tifying which parts of the input are the most important for
a model to make a prediction (i.e. explanation or rationale).
However, previous research has shown that there is no clear
best scoring method across various text classification tasks
while practitioners typically have to make several other ad-
hoc choices regarding the length and the type of the rationale
(e.g. short or long, contiguous or not). Inspired by this, we
propose a simple yet effective and flexible method that al-
lows selecting optimally for each data instance: (1) a feature
scoring method; (2) the length; and (3) the type of the ra-
tionale. Our method is inspired by input erasure approaches
to interpretability which assume that the most faithful ratio-
nale for a prediction should be the one with the highest dif-
ference between the model’s output distribution using the full
text and the text after removing the rationale as input respec-
tively. Evaluation on four standard text classification datasets
shows that our proposed method provides more faithful, com-
prehensive and highly sufficient explanations compared to us-
ing a fixed feature scoring method, rationale length and type.
More importantly, we demonstrate that a practitioner is not
required to make any ad-hoc choices in order to extract faith-
ful rationales using our approach.

1 Introduction
Large pre-trained transformer-based language models such
as BERT (Devlin et al. 2019; Bommasani et al. 2021), cur-
rently dominate performance across language understanding
benchmarks (Wang et al. 2019). These developments have
opened up new challenges on how to extract faithful expla-
nations (i.e. rationales1), which accurately represent the true
reasons behind a model’s prediction when adapted to down-
stream tasks (Jacovi and Goldberg 2020).2 3

Recent studies use feature scoring (i.e. attribution) meth-
ods such as gradient and attention-based scores (Arras et al.
2016; Sundararajan, Taly, and Yan 2017; Jain and Wallace
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1We use these terms interchangeably throughout the paper.
2Code for experiments available at: https://github.com/

GChrysostomou/instance-specific-rationale
3We provide an extended version of our work with an appendix

at: https://arxiv.org/abs/2104.08219

2019; Chrysostomou and Aletras 2021b) to identify impor-
tant (i.e. salient) segments of the input to subsequently ex-
tract them as rationales (Jain et al. 2020; Treviso and Martins
2020). However, a single feature scoring method is typically
applied across the whole dataset (i.e. globally). This might
not be optimal for individual instances resulting into less
faithful explanations (Jacovi and Goldberg 2020; Atanasova
et al. 2020). Additionally, rationales are usually extracted
using a pre-defined fixed length (i.e. the ratio of a rationale
compared to the full input sequence) and type (i.e. top k
terms or contiguous) globally. We hypothesize that using
a fixed length or type for different instances could result
into shorter (i.e. not sufficient for explaining a model’s pre-
diction) or longer than needed rationales reducing rationale
faithfulness, whilst finding the explanation length is an open
problem (Zhang et al. 2021). Moreover to extract rationales,
practitioners are currently required to make assumptions for
the rationale parameters (i.e. feature scoring method, length
and type), whilst different choice of parameters might sub-
stantially affect the faithfulness of the rationales.

In this paper, we propose a simple yet effective method
that operates at instance-level and mitigates the a priori se-
lection of a specific (1) feature scoring method; (2) length
and (3) type when extracting faithful rationales. Our pro-
posed method is flexible and allows the automatic selec-
tion of some of these instance-specific parameters or all. In-
spired by erasure methods, it functions by computing differ-
ences between a model’s output distributions obtained us-
ing the full input sequence and the input without the ratio-
nale respectively. We base this on the assumption that by
removing important tokens from the sequence, we should
observe large divergences in the model’s predicted distribu-
tion (Nguyen 2018; Serrano and Smith 2019; DeYoung et al.
2020) resulting into more faithful rationales (Atanasova
et al. 2020; Chen and Ji 2020). The contributions of our work
are thus as follows:

• To the best of our knowledge, we are the first to propose a
method for instance-specific faithful rationale extraction;

• We empirically demonstrate that rationales extracted
with instance-specific flexible feature scoring method,
length and type using our proposed method are more
comprehensive than rationales with fixed, pre-defined pa-
rameters;
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• We show that our method results in consistently highly
sufficient rationales, mitigating the variability in faith-
fulness of different feature scoring methods across
datasets when used globally, i.e. the same for all in-
stances (Atanasova et al. 2020).

2 Background and Related Work
Rationale Extraction
Given a trained model M, an input x = [x1, . . . , xT ] and
a predicted distribution over classes Y , rationale extraction
methods seek to identify the most important subset R ∈ x
of the input for explaining the model’s prediction.

There are two common approaches for extracting ra-
tionales. The first consists of two modules jointly trained
on an end-task, e.g. sentiment analysis (Lei, Barzilay, and
Jaakkola 2016; Bastings, Aziz, and Titov 2019). The first
module extracts the rationale (i.e. typically by learning to se-
lect which inputs should be masked) and the second module
is trained using only the rationale. The second approach con-
sists of using feature scoring (or attribution) methods (i.e.
salience metrics) to first identify important parts of the in-
put and then extract the rationales fromM (Jain et al. 2020;
Treviso and Martins 2020; DeYoung et al. 2020). A limi-
tation of the first approach is that the models are hard to
train compared to the latter and often do not reach high ac-
curacy (Jain et al. 2020). Regarding the latter approach, a
limitation is that the same feature scoring method is applied
to all instances in a given dataset, irrespective of whether
a feature scoring method is not the best for a particular in-
stance (Atanasova et al. 2020; Jacovi and Goldberg 2020)
while finding a suitable explanation length is an open prob-
lem (Zhang et al. 2021).

Computing Input Importance
Feature scoring methods Ω compute input importance scores
ω for each token in the sequence x, such that ω =
Ω(M,x,Y). High scores indicate that the associated to-
kens contributed more towards a model’s prediction. Sub-
sequently, R is extracted by selecting the K highest scored
tokens (or K-gram for contiguous) in a sequence (DeYoung
et al. 2020; Jain et al. 2020).

A common approach to computing ω is by calculating the
gradients of the prediction with respect to the input (Kinder-
mans et al. 2016; Li et al. 2016; Arras et al. 2016; Sundarara-
jan, Taly, and Yan 2017; Bastings and Filippova 2020). Jain
et al. (2020) use attention weights to attribute token im-
portance for rationale extraction, while Treviso and Martins
(2020) propose sparse attention. Li et al. (2016) compute
input importance scores by measuring the difference in a
model’s prediction between keeping and omitting each to-
ken, with Kim et al. (2020) also suggesting input marginal-
ization as an alternative to token omission. Another way
is using sparse linear meta-models that are easier to inter-
pret (Ribeiro, Singh, and Guestrin 2016). Atanasova et al.
(2020) however show that sparse linear meta-models are
not as faithful as gradient-based approaches for interpreting
large language models.

Evaluating Rationale Faithfulness
Having extractedR, we typically need to evaluate how faith-
ful that explanation is for a model’s prediction. Several stud-
ies evaluate the faithfulness of explanations by training a
separate classifier on an end-task using only the rationales
as input (Jain et al. 2020; Treviso and Martins 2020). These
classifiers are inherently faithful, as they are trained only on
the rationales (Jain et al. 2020). Other studies compare the
ability of different feature scoring methods to identify im-
portant tokens by using word erasure, i.e. masking (Samek
et al. 2017; Serrano and Smith 2019; Atanasova et al. 2020;
Chen and Ji 2020; DeYoung et al. 2020; Zhang et al. 2021;
Chrysostomou and Aletras 2021a). The intuition is that by
removing the most important tokens, it should result in a
larger difference in the output probabilities, compared to re-
moving a less important token which will also lead to drops
in classification accuracy (Robnik-Šikonja and Kononenko
2008; Nguyen 2018; Atanasova et al. 2020). DeYoung et al.
(2020) use erasure to evaluate the comprehensiveness and
sufficiency of rationales. Carton, Rathore, and Tan (2020)
suggest normalizing these metrics using the predictions of
the model with a baseline input, to allow for a fairer com-
parison across models and datasets.

3 Instance-Specific Rationale Extraction
Our aim is to address the “one-size-fits-all” ad-hoc approach
of previous work on rationale extraction with feature scoring
methods that typically extracts rationales using the same fea-
ture scoring method, length and type across all instances in a
dataset. Inspired by word erasure approaches (Nguyen 2018;
Serrano and Smith 2019; DeYoung et al. 2020) we mask the
tokens that constitute a rationale and record the difference
δ in a model’s output distribution by using the full text and
the reduced input. Our main assumption is that a sufficiently
faithful rationale is the one that will result into the largest
δ (Atanasova et al. 2020; Chen and Ji 2020; DeYoung et al.
2020). Following this assumption, we can extract rationales
by selecting for each instance a specific (1) feature scoring
method; (2) length; and (3) type.4

Instance-level Feature Scoring Selection
Given a set of M feature scoring methods {Ω1, . . . ,ΩM},
we extract a rationaleR as follows:
1. For each Ωi in the set we compute input importance

scores ωi = Ωi(M,x,Y);
2. We subsequently select the K highest scored tokens

(TOPK) or the highest K-gram (CONTIGUOUS) to form
a rationaleRi, where K is the rationale length;

3. For each rationale we compute the difference δi, between
the reference model output (using full text input) and the
model output having masked the rationale, such that:

δi = ∆(Y,Ymi ) = ∆(M(x),M(x\Ri
))

4Similar to Jain et al. (2020), we consider two rationale types:
(a) TOPK tokens ranked by a feature scoring method, treating each
word in the input sequence independently; and (b) CONTIGUOUS
span of input tokens of length K with the highest overall score com-
puted by a feature scoring method.

10546



where ∆ is the function used to compute the difference
between the two outputs;

4. We select the rationale R with the highest difference
δmax = max({δ1, . . . , δi, . . . , δM}).

For computing δ, we experiment with the following diver-
gence metrics (∆): (a) Kullback-Leibler (KL); (b) Jensen-
Shannon divergence (JSD); (c) Perplexity (PERP.) and (d)
Predicted Class Probability (CLASSDIFF).

Instance-level Rationale Length Selection
For computing at instance-level the rationale length k and
extracting the rationale R using a single feature scoring
method Ω, we propose the following steps:

1. Given Ω, we first compute input importance scores ω =
Ω(M,x,Y);

2. We then iterate over the sequence such that k =
range(1, N), where N is the fixed, pre-defined rationale
length and k the possible rationale length at the current
iteration. We set N as the upper bound rationale length
for our approach to make results comparable with fixed
length rationales.

3. At each iteration we begin by masking the top k tokens
(as indicated by ω) to form a candidate rationale Rk.
When using TOPK we mask the k highest scored tokens,
whilst with CONTIGUOUS we mask the highest scored
k-gram;

4. We compute the difference δk between the reference
model output Y and the model output having masked the
candidate rationale Ymk =M(x\Rk

);
5. We record every δ until k = N and extract the

rationale R with the highest difference δmax =
max({δ1, . . . , δk, . . . , δN}), where k at δmax is the com-
puted rationale length.5

Instance-level Rationale Type Selection
In a similar way to selecting a feature scoring method, our
approach can also be used to select between different ratio-
nale types (i.e. CONTIGUOUS or TOPK) for each instance in
the dataset.

Finally, our approach is flexible and can be easily mod-
ified to support selecting any of these parameters while
keeping the rest fixed (i.e. feature scoring method, rationale
length and rationale type) or by selecting any combination
of them. An important benefit of our approach is that we
extract rationales with different settings for each instance
rather than using uniform settings globally (i.e. across the
whole dataset), which we empirically demonstrate to be ben-
eficial for faithfulness (§5).

4 Experimental Setup
Tasks
For our experiments we use the following datasets (details
in Table 1):

5We also experimented with early stopping, whereby the differ-
ence between δk and the δmax until k are under a specified thresh-
old, however this resulted in reduced performance.

Data |W | C Splits
Train/Dev/Test F1 N

SST 18 2 6,920 / 872 / 1,821 90.1 ± 0.2 20%
AG 36 4 102,000 / 18,000 / 7,600 93.5 ± 0.2 20%
Ev.Inf. 363 3 5,789 / 684 / 720 83.0 ± 1.6 10%
M.RC 305 2 24,029 / 3,214 / 4,848 73.2 ± 1.7 20%

Table 1: Dataset statistics including average words at in-
stance (|W |), number of classes (C), data splits, F1 macro
performance and the fixed, pre-defined rationale ratio across
all instances (N ).

• SST: Binary sentiment classification without neutral sen-
tences (Socher et al. 2013).

• AG: News articles categorized in Science, Sports, Busi-
ness, and World topics (Corso, Gulli, and Romani 2005).

• Evidence Inference (EV.INF.): Abstract-only biomedi-
cal articles describing randomized controlled trials. The
task is to infer the relationship between a given interven-
tion and comparator with respect to an outcome (Lehman
et al. 2019).

• MultiRC (M.RC): A reading comprehension task with
questions having multiple correct answers that depend
on information from multiple sentences (Khashabi et al.
2018). Following DeYoung et al. (2020) and Jain et al.
(2020), we convert this to a binary classification task
where each rationale/question/answer triplet forms an in-
stance and each candidate answer is labeled as True/False

Models
Similar to Jain et al. (2020), we use BERT (Devlin et al.
2019) for SST and AG); SCIBERT (Beltagy, Lo, and Co-
han 2019) for EV.INF. and ROBERTA (Liu et al. 2019) for
M.RC.

Feature Scoring Methods
We use a random baseline and six other feature scoring
methods (to compute input importance scores) similar to
Jain et al. (2020) and Serrano and Smith (2019).

• Random (RAND): Random allocation of token impor-
tance.

• Attention (α): Token importance corresponding to nor-
malized attention scores (Jain et al. 2020).

• Scaled Attention (α∇α): Scales the attention scores αi
with their corresponding gradients ∇αi = ∂ŷ

∂αi
(Serrano

and Smith 2019) .
• InputXGrad (x∇x): Attributes input importance by

multiplying the gradient of the input by the input with
respect to the predicted class, where ∇xi = ∂ŷ

∂xi
(Kin-

dermans et al. 2016; Atanasova et al. 2020) .
• Integrated Gradients (IG): Ranking words by comput-

ing the integral of the gradients taken along a straight
path from a baseline input (zero embedding vector) to
the original input (Sundararajan, Taly, and Yan 2017).
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(a) F1 macro (b) NormSuff (c) NormComp

Figure 1: F1 macro (lower is better), mean NormSuff (higher is better) and mean NormComp (higher is better), when using any
single feature scoring method across all instances in a dataset and our proposed method of selecting a feature scoring method
for each instance (OURS) for TOPK rationale types.

• DeepLift: Ranking words according to the difference be-
tween the activation of each neuron to a reference activa-
tion (Shrikumar, Greenside, and Kundaje 2017).

• LIME: Ranking words by learning an interpretable
model locally around the prediction (Ribeiro, Singh, and
Guestrin 2016).

Evaluating Explanation Faithfulness
• F1 macro: Similar to Arras et al. (2017) we measure the

F1 macro performance of model M when masking the
rationale in the original input (x\R). A key difference in
our approach is that we use the predicted labels of the
model with full input as gold labels, as we are interested
in the faithfulness of explanations for the predictions of
the model. Larger drops in F1 scores indicate that the
extracted rationale is more faithful.6

• Normalized Sufficiency (NormSuff): We measure the
degree to which the extracted rationales are sufficient for
a model to make a prediction (DeYoung et al. 2020). Sim-
ilar to Carton, Rathore, and Tan (2020) we bind suffi-
ciency between 0 and 1 and use the reverse difference
so that higher is better. We modify this metric and mea-
sure the normalized sufficiency (Carton, Rathore, and
Tan 2020) such that:

Suff(x, ŷ,R) = 1−max(0, p(ŷ|x)− p(ŷ|R))

NormSuff(x, ŷ,R) =
Suff(x, ŷ,R)− Suff(x, ŷ, 0)

1− Suff(x, ŷ, 0)
(1)

where Suff(x, ŷ, 0) is the sufficiency of a baseline input
(zeroed out sequence) and ŷ the model predicted class
using the full text x as input, such that ŷ = arg max(Y).

• Normalized Comprehensiveness (NormComp): We
measure the extent to which a rationale is needed for a
prediction (DeYoung et al. 2020). For an explanation to

6We also conducted experiments using the dataset gold labels
with results being comparable.

be highly comprehensive, the model’s prediction when
masking the rationale should have a high difference be-
tween the model’s prediction with full text. Similarly to
Carton, Rathore, and Tan (2020) we bind this metric be-
tween 0 and 1 and normalize it. We compute it by:

Comp(x, ŷ,R) = max(0, p(ŷ|x)− p(ŷ|x\R))

NormComp(x, ŷ,R) =
Comp(x, ŷ,R)

1− Suff(x, ŷ, 0)

(2)

We do not conduct human experiments to evaluate expla-
nation faithfulness since that is only relevant to explanation
plausibility (i.e. how understandable by humans a rationale
is (Jacovi and Goldberg 2020)) and in practice faithfulness
and plausibility do not correlate (Atanasova et al. 2020). Fi-
nally we do not compare with select-then-predict methods
(Lei, Barzilay, and Jaakkola 2016; Jain et al. 2020), as we
are interested in faithfully explaining the modelM and not
forming inherently faithful classifiers.

Performance-Time Trade-off
Input erasure approaches typically requireN forward passes
to compute a rationale length (see §3) when removing one
token at a time. Similar to Nguyen (2018); Atanasova et al.
(2020), we expedite this process when selecting a rationale
length by “skipping” every X% of tokens. For our work, we
use a 2% skip rate which led to a seven-fold reduction in the
time required to compute rationales for datasets comprising
of long sequences, such as MRc and EvInf, with comparable
performance in faithfulness to the slower process of remov-
ing one token at a time.

5 Results
Selecting Instance-specific Feature Scoring
Figure 1 compares the faithfulness of extracted rationales
when using our proposed method for selecting an instance-
specific feature scoring method (OURS) and our baselines,
that use a single fixed pre-defined feature scoring method
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globally (i.e. across all instances in a dataset). We measure
faithfulness using F1 macro (lower is better), mean Norm-
Suff and mean NormComp (higher is better respectively).
For clarity we show results using the TOPK rationale type.
7.

Overall, results demonstrate that rationales extracted with
our proposed approach are highly sufficient and compre-
hensive. In fact, our approach results in more sufficient ra-
tionales against all single feature scoring methods in AG
and is comparable with the best NormSuff scores in the re-
mainder of the datasets. This suggests that even when ra-
tionales with our proposed method are not the most suffi-
cient, they are consistently highly sufficient (i.e. rationales
extracted with our approach are significantly more sufficient
than fixed, pre-defined feature scoring methods in 18 out of
24 test cases). Compared to our six baselines, the rationales
extracted with our approach are significantly more com-
prehensive across all four datasets (Wilcoxon Rank Sum,
p < .05). Additionally, the larger drops in F1 macro perfor-
mance demonstrate that rationales extracted with our pro-
posed approach are more necessary for a model to make a
prediction compared to a globally used, pre-defined feature
scoring approach.

Our results strengthen the hypothesis that whilst some
feature scoring methods are better than others globally, they
might not be optimal for all instances in a dataset (Jacovi and
Goldberg 2020) and our approach helps mitigate that. Sim-
ilar to (Atanasova et al. 2020), we observe that the faithful-
ness performance of single feature scoring methods varies
across datasets. For example LIME returns more compre-
hensive rationales than α∇α in MultiRC, however is out-
performed by the latter in SST. By returning consistently
highly comprehensive and sufficient rationales, our propose
method helps reducing the variability in faithfulness per-
formance observed when using any single feature scoring
method across datasets.

Selecting Instance-specific Rationale Length
Table 2 shows the Relative Improvement (R.I.) ratio in mean
NormSuff and NormComp (>1.0 is better) between ratio-
nales extracted using a fixed pre-defined length (see N in
Table 1) and rationales extracted using our method with
instance-specific length across feature scoring methods and
datasets. For brevity we do not include results with F1
macro, where we make similar observations to comprehen-
siveness. Overall, rationales extracted using our approach
are on average shorter than fixed length rationales. Specif-
ically, rationale length drops from 20% to 16% on average
in SST, AG; from 20% to 15% in M.Rc and from 10% to 7%
in Ev.Inf.

NormSuff scores indicate that our shorter on average
rationales are overall less but comparably sufficient with
longer, fixed-length rationales. For example with SST ra-
tionales with instance-specific length are 0.9-1.0 times less
sufficient that rationale with pre-defined length. We find this
particularly evident in datasets such as M.Rc and Ev.Inf.,

7Also for clarity, all results presented in this work are using JSD
for ∆. The other divergence functions performed comparably

NormSuff NormComp
FEAT SST M.Rc AG Ev.Inf. SST M.Rc AG Ev.Inf.

T
O

P
K

DeepLift 0.9 0.8 0.8 1.1 0.8 1.1 1.0 1.0
LIME 1.0 0.7 0.9 0.9 0.9 1.1 1.0 1.0
α 0.9 0.9 0.7 0.8 0.8 1.1 0.9 1.2
α∇α 0.9 0.9 0.8 0.9 1.0 1.1 0.9 1.0
IG 0.9 0.9 0.8 0.9 0.9 1.1 1.0 1.1
x∇x 1.0 0.8 0.7 0.8 0.9 1.1 0.9 1.2

C
O

N
T

IG
U

O
U

S DeepLift 0.9 0.9 0.8 1.2 0.9 1.1 1.3 1.5
LIME 0.9 0.7 0.8 0.9 1.0 1.1 1.2 1.3
α 0.9 0.9 0.7 0.9 0.7 1.1 1.0 1.2
α∇α 0.9 0.8 0.8 0.9 1.0 1.1 1.1 1.1
IG 0.9 0.8 0.8 1.0 1.0 1.2 1.2 1.4
x∇x 0.9 0.8 0.7 1.0 1.0 1.1 1.0 1.3

Table 2: Relative Improvement (R.I.) ratios for mean Norm-
Suff and mean NormComp between fixed length rationales
(seeN in Table 1) extracted using our method and rationales
with instance-specific length (>1.0 is better).

where our rationales are on average 4-5% shorter (approxi-
mately 15 tokens shorter on average for α in M.Rc) but still
retain comparable sufficiency, while in some cases improv-
ing it (e.g. 1.2 R.I. in Ev.Inf. with DeepLift).

We also note that rationales extracted with instance-
specific length are more comprehensive in most cases, de-
spite being shorter on average compared to fixed-length ra-
tionales. For example in Ev.Inf., CONTIGUOUS rationales
with I.G. are 1.4 times more comprehensive when we se-
lect their length at instance-level. Results also indicate that
using our proposed method benefits more CONTIGUOUS ra-
tionales compared to TOPK for comprehensiveness, leading
to increased R.I. in the majority of cases. Overall, findings
support our initial hypothesis that in certain cases a rationale
with longer than needed length might contain unnecessary
information and adversely impact its comprehensiveness.

Selecting Instance-specific Feature Scoring, Length
and Type
Table 3 shows mean NormSuff and NormComp scores when
using our proposed method to select at instance-level (I-L)
a combination of: (1) the feature scoring method (FEAT);
(2) the rationale length (LEN); and (3) the rationale type
(TYPE). For comparison, we also show scores of the best
performing fixed (FIX) feature scoring function, rationale
type and length (see Figure 1).

We first observe that the highest NormSuff scores across
three datasets (SST, MRc, EvInf), are from the best per-
forming fixed scoring method with fixed length and ratio-
nale type. Additionally, the best performing combination
of our proposed approach for sufficiency is when we only
select the feature scoring method keeping the length and
type fixed. This combination results in the highest NormSuff
scores in AG (.44 with TOPK type compared to .42, which is
the second best with CONTIGUOUS) and competitive Norm-
Suff scores with the highest scoring combination (e.g. .82 in
Ev.Inf. and CONTIGUOUS compared to .85). We assume that
using combinations which include instance-specific lengths
do not perform as well for sufficiency due to the shorter ra-
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(a) F1 macro (b) NormSuff (c) NormComp

Figure 2: F1 macro (lower is better), mean NormSuff and mean NormComp (higher is better), when extracting rationales with
our approach given decreasing numbers of feature scoring methods.

NormSuff NormComp
TYPE LEN FEAT SST M.Rc AG Ev.Inf. SST M.Rc AG Ev.Inf.

T
O

P
K FIX FIX .68 .12 .37 .43 .54 .42 .28 .80

I-L FIX .61 .11 .30 .37 .52 .46 .27 .82
FIX I-L .63 .09 .44 .38 .57 .59 .41 .84
I-L I-L .59 .07 .38 .36 .55 .62 .39 .86

C
O

N
T. FIX FIX .71 .07 .41 .85 .46 .47 .17 .55

I-L FIX .63 .06 .33 .78 .47 .54 .19 .62
FIX I-L .67 .07 .42 .82 .46 .60 .22 .59
I-L I-L .61 .05 .33 .76 .48 .65 .24 .67

I-L I-L I-L .60 .06 .39 .49 .57 .69 .41 .88

Table 3: Mean NormSuff and NormComp scores when we
select at instance-level (I-L) a combination of the: (1) ratio-
nale length (LEN); (2) feature scoring method (FEAT.); and
(3) rationale type (TYPE). {TYPE}-FIX-FIX and {TYPE}-
I-L-FIX values are from the highest scoring feature scoring
method (see Figure 1). Bold values denote the highest per-
forming combination in column-wise (higher is better).

tionale length, which we have previously shown to partially
degrade rationale sufficiency.

Finally, our results demonstrate that we obtain highly
comprehensive rationales when selecting at instance level
all parameters (FEAT. + LEN + TYPE) using our approach.
In fact, this results in higher NormComp scores compared
to any other setting combination across all datasets. For ex-
ample in M.Rc., selecting all parameters results in a Norm-
Comp score of .69 which is .22 units higher than the ratio-
nales extracted with fixed feature scoring method and length
and type. This highlights the efficacy of our approach in ex-
tracting highly comprehensive rationales, without requiring
strong a priori assumptions about rationale parameters.

Ablation Study
We finally perform an ablation study to examine the behav-
ior and effectiveness of our approach by sequentially remov-
ing one feature scoring method at a time to measure changes
in F1 macro, NormSuff and NormComp. The intuition is that
we should observe drops in faithfulness scores when remov-

ing feature attribution methods for our approach to be ef-
fective (i.e. we should extract more faithful rationales when
having more feature scoring options to choose from). Figure
2 shows the results.

We first observe that removing one feature scoring
method at a time results in increases in F1 macro (lower is
better) and drops in NormComp scores (higher is better).
This demonstrate that the faithfulness of the rationales ex-
tracted with our approach deteriorates as the number of fea-
ture scoring methods becomes smaller highlighting the effi-
cacy of our proposed approach.

For example, in Ev.Inf. by removing α∇α results in a
drop of .14 in mean NormComp (.84 when including α∇α
compared to .70 without it). On the other hand, we also ob-
serve that our method can still benefit from feature scor-
ing methods that achieve low NormComp scores when used
standalone, resulting in improvements in comprehensive-
ness and drops in F1 macro (e.g. α in SST). This indicates
that our approach steadily improves rationale faithfulness
for model’s predictions given a larger pool of available fea-
ture scoring methods.

Results show a deterioration in NormSuff scores as the
number of feature scoring methods becomes smaller, show-
ing that our method results in more sufficient rationales
when presented with a larger list of available feature scoring
methods in the majority of the datasets. We hypothesize that
this is not true for MultiRC due to the already low NormSuff
scores of the rationales (e.g. no more than 0.12). By using all
six feature scoring methods, our approach produces highly
sufficient rationales and is comparable to the set achieved
the highest sufficiency. For example in Ev.Inf. using all fea-
ture scoring methods results to a NormSuff score of approx-
imately .38 compared to the highest scoring feature scoring
set (all except LIME) and the lowest scoring (x∇x) which
achieved .39 and .15 respectively.

We also tested different combinations of feature scor-
ing methods with similar observations. Finally, we exper-
imented with doubling the upper bound of the rationale
length (from N to 2 × N ) for both fixed length rationales
and our proposed approach. Our approach still yielded more
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Example 1 Data.:AG Id: test 4614
[FIXED-LEN + α]: ... game last Friday night will stand , the CFL announced yesterday. While a review ...
[I-L-LEN + α (Ours)]: ... game last Friday night will stand , the CFL announced yesterday. While a review ...
[Predicted Topic || True Topic]: Decreased significantly || Decreased significantly
Example 2 Data.:EV.INF. Id: 3162205 2
[FIXED-LEN + α∇α]: ... computed tomography ( 3D - CT ) scans . ABSTRACT.RESULTS : The control sides treated
with an autograft showed significantly better Lenke scores than the study sides treated with β - CPP at 3 and 6
months postoperatively , but there was no difference between the two sides at 12 months . The fusion ..
[I-L-LEN + α∇α (Ours)]: ... computed tomography ( 3D - CT ) scans . ABSTRACT.RESULTS : The control
sides treated with an autograft showed significantly better Lenke scores than the study sides treated with β - CPP
at 3 ...
[Predicted Relationship || True Relationship]: Increased significantly || No significant difference
Example 3 Data.:SST Id: test 694
[FIXED-LEN + α]: ... Frontal is the antidote for Soderbergh fans who think he s gone too commercial ...
[I-L-LEN + I-L-FEAT (Ours)]: ... Frontal is the antidote for Soderbergh fans who think he s gone too commercial ...
[Predicted Sentiment || True Sentiment]: Negative || Positive
Example 4 Data.:SST Id: test 1039
[FIXED-LEN + α]: It ’s just incredibly dull.
[I-L-LEN + I-L-FEAT (Ours)]: It ’s just incredibly dull.
[Predicted Sentiment || True Sentiment]: Negative || Negative

Table 4: Examples when using our approach (Ours) to select at instance-level (I-L) a combination of the: (1) rationale length
(LEN); (2) feature scoring method (FEAT) against our baseline of fixed-length rationales from a fixed feature scoring method.

comprehensive rationales compared to the fixed-length ones
that were also highly sufficient.

6 Qualitative Analysis
Table 4 shows examples of the qualitative comparison be-
tween our approach (Ours) for selecting at instance-level
(I-L) a combination of the: (1) rationale length (LEN); (2)
feature scoring method (FEAT against our baseline of fixed-
length rationales from a fixed feature scoring method.

Concise rationales: Example 1 presents an instance from
AG. Our approach extracts a rationale that is six tokens
shorter than the one with fixed length while also achieving
a higher NormComp score. However, the fixed length ratio-
nale scores higher in NormSuff. We can assume from this
that sufficiency positively correlates with rationale length.

Error analysis: Our assumption is that if a model makes a
wrong prediction, we should be able to extract the rationale
that better demonstrates what led to a wrong prediction. Ex-
ample 2 shows an instance from EV.INF., where the model
has wrongly predicted that “Lenke scores at 12 months”
have ‘increased significantly’ instead of the correct ‘no sig-
nificant difference’. Surprisingly, both rationales recorded
maximum scores (1.0) in NormSuff and NormComp. We ob-
serve that the correct answer is included in the fixed length
rationale, however the model made a wrong prediction. On
the contrary, our rationale highlights something directly re-
lated to its prediction.

Example 3 presents an instance from SST, where the
fixed-length rationale and the instance-specific rationale

(ours) attend at different sections of the text. Our ratio-
nale scored lower for NormSuff, however we observe that
it aligns more closely with the predicted sentiment.

When using a fixed pre-defined length is not sufficient:
Example 4 presents a different scenario, where the fixed-
length rationale for SST is at 20% whilst the upper bound
N for our rationale is at 40%. The intuition is that in cer-
tain cases a fixed rationale length might not be sufficient for
all instances to explain a prediction. We argue that our ap-
proach highlighted something more informative for the task
(“incredibly dull” compared to “incredibly”), due to remov-
ing the restriction of a pre-defined fixed length.

7 Conclusions
We have proposed a simple yet effective approach for se-
lecting at instance-level (1) feature scoring method; (2)
length; and (3) type of the rationale. We empirically demon-
strated that rationales extracted with our approach are signif-
icantly more comprehensive and highly sufficient, while be-
ing shorter compared to rationales extracted with a fixed fea-
ture scoring method, length and type. Finally, we consider
our work an important step towards instance-level faithful
rationalization while finding the most sufficient rationale, an
interesting direction for future work.
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