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Abstract

Most of the existing methods for search result diversification
(SRD) appeal to the greedy strategy for generating diversified
results, which is formulated as a sequential process of select-
ing documents one-by-one, and the locally optimal choice is
made at each round. Unfortunately, this strategy suffers from
the following shortcomings: (1) Such a one-by-one selection
process is rather time-consuming for both training and in-
ference. (2) It works well on the premise that the preceding
choices are optimal or close to the optimal solution. (3) The
mismatch between the objective function used in training and
the final evaluation measure used in testing has not been taken
into account. We propose a novel framework through direct
metric optimization for SRD (referred to as MO4SRD) based
on the score-and-sort strategy. Specifically, we represent the
diversity score of each document that determines its rank po-
sition based on a probability distribution. These distributions
over scores naturally give rise to expectations over rank po-
sitions. Armed with this advantage, we can get the differen-
tiable variants of the widely used diversity metrics. Thanks
to this, we are able to directly optimize the evaluation mea-
sure used in testing. Moreover, we have devised a novel prob-
abilistic neural scoring function. It jointly scores candidate
documents by taking into account both cross-document in-
teraction and permutation equivariance, which makes it pos-
sible to generate a diversified ranking via a simple sorting.
The experimental results on benchmark collections show that
the proposed method achieves significantly improved perfor-
mance over the state-of-the-art results.

Introduction
To cope with ambiguous and/or underspecified queries,
search result diversification (SRD) has been regarded as the
key solution and has shown significantly increasing values
in a wide range of domains, such as web search (Ma, Lyu,
and King 2010; Liu et al. 2014; Liang 2019) and recom-
mender systems (Liu et al. 2020b; Ding et al. 2021). Ac-
cording to whether the subtopics (i.e., different information
needs) underlying a query are given beforehand or not, the
task of SRD can be distinguished into implicit SRD and ex-
plicit SRD. The distinguishing characteristic of the implicit
SRD is that the possible subtopics underlying a query are
unknown. From a machine learning perspective, we can also
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classify SRD methods into unsupervised methods and su-
pervised methods. The key difference is that unsupervised
methods mainly rely on some heuristic criteria for gener-
ating the diversified ranking and no machine learning al-
gorithms is used. Noteworthy, finding a group of subtopic
strings that covers well all the possible information needs
behind the query is a challenging task. In most realistic sce-
narios explicit subtopics are not available (Kim and Lee
2015). In this paper, we focus on how to perform implicit
SRD in a supervised manner. The information retrieval com-
munity has experienced a flourishing development of SRD
methods, such as the methods (Santos, Macdonald, and Ou-
nis 2010; Dang and Croft 2012; Yu and Ren 2014; Dang and
Croft 2013; Hu et al. 2015; Sarwar et al. 2020) for explicit
SRD and the methods (Carbonell and Goldstein 1998; San-
ner et al. 2011; Gollapudi and Sharma 2009; Zuccon et al.
2012; Raiber and Kurland 2013; Yu et al. 2018, 2017) for
implicit SRD. Later on, due to the breakthrough successes of
neural network based models, significant efforts (Zhu et al.
2014; Xu et al. 2020; Liu et al. 2020a; Yigit-Sert et al. 2020;
Xia et al. 2015, 2017, 2016; Xu et al. 2017; Jiang et al. 2017;
Feng et al. 2018) have been made in exploring how to deploy
machine learning methods, especially neural network based
models, to solve SRD problems.

Despite the successes achieved by the aforementioned
studies, fundamental research questions remain open. First,
most studies appeal to formulate diversified document rank-
ing as a sequential process, where the locally optimal choice
is made at each round. The key drawback is that the com-
monly used greedy strategy works well on the premise that
the preceding choices are optimal or close to the optimal
solution. However, in most cases, this strategy fails to guar-
antee the optimal solution. What is more, this one-by-one
selection process is rather time-consuming with the increase
of the number of candidate documents, which poses an ad-
ditional challenge. Second, in order to overcome the afore-
mentioned shortcoming, Qin, Dou, and Wen (2020) ex-
plored how to generate diversified ranking in a score-and-
sort manner. Unfortunately, the mismatch between the ob-
jective function used in training and the final evaluation
measure used in testing has not been taken into account.
Third, the recent work by Yan et al. (2021) showed sig-
nificantly improved performance by directly optimizing the
smooth approximation of a specific diversity metric. How-
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ever, a global tuning parameter is required when deriving
the approximated rank of each document, which leads to im-
pacted performance. Fourth, using a deterministic scoring
function fails to capture uncertainty, which is an inherent
part of the learning process of a model and the retrieval pro-
cess, such as parameter uncertainty (different combinations
of weights that explain the data equally well), structural un-
certainty (which neural architecture to use for neural rank-
ing), and aleatoric uncertainty (noisy data). In view of the
fact that the SRD problem is bound to attract more attention
in the era of big data, the aforesaid shortcomings motivate us
to approach SRD in a novel way. In this paper, we propose a
novel framework for SRD based on the score-and-sort strat-
egy. The main contributions are listed as follows:

(1) We propose a novel probabilistic scoring function. On
the one hand, we represent the diversity score of each docu-
ment that determines its rank position based on a probability
distribution (the controlling parameters can be learned au-
tomatically) rather than a deterministic value. These distri-
butions over scores naturally give rise to expectations over
rank positions. On the other hand, we jointly score candidate
documents by taking into account both cross-document in-
teraction and permutation equivariance, which makes it pos-
sible to generate a diversified ranking via a simple sorting.

(2) Thanks to the easy computation of expected rank of
each document, we can derive differentiable reformulations
of the widely used diversity metrics. These differentiable re-
formulations naturally give rise to better optimization objec-
tives for SRD, which ensures the consistency between the
objective function used in training and the final evaluation
measure used in testing. Noteworthy, no tuning parameter is
required within the differentiable reformulation.

Related Work
In this section, we discuss related studies on SRD by classi-
fying them into two groups. Due to space constraints, for an
in-depth overview of SRD, we refer the reader to the work
(Santos, Macdonald, and Ounis 2015). For the first group,
relevance and diversity are quantified respectively. As a re-
sult, an explicit mechanism of balancing relevance and di-
versity becomes the core of methods of this kind. In gen-
eral, relevance denotes to what extent a document provides
useful information. Diversity denotes the marginal benefit
of adding a document. These methods differ mainly in the
following aspects: (1) how to represent diversity; (2) how
to balance relevance and diversity and (3) how to generate
the diversified ranking. For example, a typical instance is
the maximal marginal relevance (MMR) model, which mea-
sures the diversity of a document based on the maximum
similarity between this document and the previously se-
lected documents. Later on, Guo and Sanner (2010) present
a probabilistic latent view of MMR. Another line of studies
build upon the cluster hypothesis (Rijsbergen 1979), which
states that closely associated documents tend to be relevant
to the same requests. Raiber and Kurland (2013) studied
how to incorporate various types of cluster-related informa-
tion based on Markov Random Fields. The methods (also
referred to as top-k retrieval in (Zuccon et al. 2012; Golla-
pudi and Sharma 2009; Yu et al. 2017, 2018)) for implicit

SRD perform a two-step process. The first step is to se-
lect an optimal subset of documents according to a specific
objective function. At the second step, the selected docu-
ments are ordered in a particular way, e.g., in a decreasing
order of relevance. The methods (Santos, Macdonald, and
Ounis 2010; Dang and Croft 2012; Yu and Ren 2014; Dang
and Croft 2013; Hu et al. 2015) for explicit SRD assume
that the possible aspects representing different information
needs of a query are given beforehand. For instance, the
xQuAD framework (Santos, Macdonald, and Ounis 2010)
downweights each subtopic based on the degree of its rele-
vance to the already selected documents, thus the subtopics
with less relevant documents will have a higher priority in
the next round. Recently, many efforts (Zhu et al. 2014; Xu
et al. 2020; Liu et al. 2020a; Yigit-Sert et al. 2020; Xia
et al. 2015, 2017, 2016; Xu et al. 2017; Jiang et al. 2017;
Feng et al. 2018) have been made to use machine learning
technologies to train the diversification model. The advan-
tages are straightforward. On one hand, it is easy to incorpo-
rate a large number of features into a specific diversification
method. On the other hand, decades of work on machine
learning can be leveraged to optimize the ranking functions.
Compared with the unsupervised methods for either explicit
SRD or implicit SRD, the diversification models (Radlin-
ski, Kleinberg, and Joachims 2008; Xia et al. 2016; Yue and
Joachims 2008; Xia et al. 2017; Jiang et al. 2017) based on
machine learning technologies can achieve significantly im-
proved performance.

For the second group, inspired by bidirectional encoder
representations from transformers (BERT) and its variants,
recent efforts (Yan et al. 2021; Qin, Dou, and Wen 2020)
have been made to develop methods based on the score-
and-sort strategy. In particular, the multi-head self-attention
layer is a key component for incorporating cross-document
interactions. Finally, the output is formulated as a univariate
score, which determines a document’s rank position. In this
paper, we also use the score-and-sort strategy. Compared
with Qin, Dou, and Wen (2020), our training objective is
tightly related to the evaluation metric, which ensures the
consistency between the objective function used in training
and the final evaluation measure used in testing. In order
to obtain the differentiable variant of the diversity metric,
Yan et al. (2021) approximate the indicator function with a
vanilla sigmoid as introduced by Qin, Liu, and Li (2010).
Unfortunately, a predefined global tuning parameter is re-
quired and has to be fine-tuned, which limits the final per-
formance. We note that Xia et al. (2015) and Xu et al. (2017)
also explored how to directly optimize diversity metrics, but
the final result is generated in a greedy manner.

Preliminaries
In this section, we first introduce the general SRD frame-
work following the Cranfield paradigm. Then we review two
widely used diversity evaluation metrics.

Cranfield Search Result Diversification
LetQ andD be the query space and the document space, re-
spectively. We use Φ : Q ∪ D → Rd to denote the mapping
function for generating vector representations for documents
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and queries, where d represents the dimension size. For a
query, there are h subtopics, where a subtopic refers to a dif-
ferent search intent or information need. Given a query q, we
have a list of candidate documents D = (d1, ..., dm) and a
corresponding list of ground-truth labels Y = (y1, ...,ym),
where Y ∈ T := Rh×m≥0 and T denotes the space of the
ground-truth labels. The subscript i as in di or yi denotes
the i-th position in the list. Moreover, yi ∈ Rh≥0 is a col-
umn vector that denotes the relevance assessment of docu-
ment di with respect to each subtopic. In other words, Yki
denotes the relevance label of document di with respect to
the k-th subtopic. Noteworthy, the number of subtopics and
the number of documents may differ from query to query.
In practice, we get independently and identically distributed
(i.i.d) samples S = {(qj , Dj , Y j)}nj=1 from an unknown
joint distribution P (·, ·, ·) over Q×D × T . The superscript
j denotes the data that are associated with the same query,
which is omitted if the context provides sufficient clarity. We
use π to denote a diversified ranking on candidate documents
D = (d1, ..., dm), and π(i) / π(di) yields the rank posi-
tion of the i-th document in the diversified ranking. An ideal
ranking refers to the optimal ranking of documents that sys-
tematically accounts for redundancy and ambiguity, which
maximizes the likelihood that an average user can find doc-
uments relevant to her specific need. We use f parameterized
by θ ∈ Θ to denote a general ranking function. Commonly
we measure the quality of ranking documents for a query
using f with a loss function R(f(q,D), Y ). We would like
to learn the optimal function over a hypothesis space F of
ranking functions that can minimize the expected risk as:

min
f∈F
<(f) = min

f∈F

∫
Q×D×T

R(f(q,D), Y )dP (q,D, Y )

(1)
Unfortunately,<(f) is intractable to optimize directly and

the joint distribution is unknown, so instead we appeal to
the empirical risk minimization to approximate the expected
risk, which is defined as follows:

min
f∈F
<̃(f ;S) = min

f∈F

1

n

n∑
j=1

R(f(qj , Dj), Y j) (2)

Given the above general framework, different formulations
of the ranking function and the loss function yield different
models.

Diversity Evaluation Metrics
Before reviewing the diversity metrics, we note that I(Yki)
and R(Yki) are two functions that map a ground-truth rele-
vance label to a numerical value or the probability of being
relevant. I(Yki) = 1 if Yki > 0, otherwise I(Yki) = 0,
it is used by α-nDCG. R(Yki) used by ERR and ERR-IA
is defined as 2Yki−1

2Y max , where Y max denotes the maximum
ground-truth relevance value across the dataset.
α-nDCG (novelty-biased Discounted Cumulative

Gain) (Clarke et al. 2008) extends the standard metric
of nDCG (normalised Discounted Cumulative Gain)
(Järvelin and Kekäläinen 2002) by rewarding newly re-
trieved subtopics and penalizing redundant subtopics. They

assume binary relevance assessments, and use parameter
α to reflect the possibility of assessor error. The gain
value for document di is computed by summing over
subtopics, namely, Gi =

∑h
k=1 I(Yki)(1 − α)cki , where

cki =
∑
j:π(j)<π(i) Ykj denotes the number of times that

the k-th subtopic has been covered by documents ranked
above document di. The discounted cumulative gain is
expressed as:

α-DCG =
m∑
i=1

∑h
k=1 I(Yki)(1− α)cki

log2(π(i) + 1)
(3)

To compare the scores across various queries, α-DCG
is commonly normalized, namely α-nDCG = α-DCG

α-DCG∗

where α-DCG∗ denotes the maximum α-DCG value at-
tained by the ideal ranking.

ERR-IA (Intent-Aware Expected Reciprocal Rank) is the
intent-aware version of ERR (Expected Reciprocal Rank) by
Chapelle et al. (2009). The underlying intuition of ERR-IA
is to perform evaluation by applying a traditional metric to
each subtopic independently and then combine the results
based on the importance or probability of subtopics (denoted
as P (Tk|q)), which is expressed as:

ERR− IA =
∑h
k=1 P (Tk|q)

∑m
i=1

1
π(i)R(Yki)

∏
j:π(j)<π(i)(1-R(Ykj)) (4)

A closer look at the computation of α-nDCG and ERR-
IA reveals that they rely on the positions at which doc-
uments are ranked. Unfortunately, the rank information is
commonly obtained via a traditional sorting algorithm (e.g.,
Quicksort (Hoare 1962)) or determined during the sequen-
tial selection process, which makes it hard to directly opti-
mize the metrics. Taking the case of direct sorting for ex-
ample, when we make small changes to the model parame-
ters of a univariate scoring function, the output scores will
typically change smoothly. In contrast, the ranks of docu-
ments will not change until the documents’ scores exceed
one another. Hence the metrics will make a discontinuous
change. In other words, the metrics are non-smooth with re-
spect to the model parameters, being everywhere either flat
(with zero gradient) or discontinuous.

Proposed Method
In this section, we detail our proposed method named as
MO4SRD. First, we describe the proposed probabilistic
scoring function, including initial representations, major
component layers and the scoring pipeline. We then show
how to derive the differentiable reformulations of the widely
used diversity metrics as the optimization objective.

Probabilistic Scoring Function
Our proposed probabilistic scoring function has two main
characteristics. The first characteristic is that: different from
most prior studies that treat relevance and diversity re-
spectively, our scoring function uses an integrated uni-
variate score (referred to as diversity score in the fol-
lowing) to determine the rank position of a document
in the diversified ranking, which paves the way for de-
ploying the score-and-sort strategy. The second charac-
teristic is that we view the diversity score of a docu-
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ment as a probabilistic value, which follows the Gaus-
sian distribution. In a nutshell, given a query q and the
list of candidate documents D = (d1, ..., dm), the diver-
sity score si of a specific document di follows the distri-
bution P (si|q,D) = N (µ(di|q,D), σ2(di|q,D)), where
µ(di|q,D) and σ2(di|q,D) denote the mean and variance,
respectively. Throughout this paper, we assume that the
computation of diversity score, mean and variance for a
document is conditioned on the query and other candidate
documents. In the following, we will omit the condition of
q,D if the context provides sufficient clarity. For instance,
P (si|q,D) is written as P (si) for short.

In order to fulfill the aforementioned characteristics, our
scoring function is designed to satisfy the following desider-
ata. First, in view of the fundamental principle for SRD
(the more the information needs are satisfied or covered by
the above ranked documents, the less the marginal benefit
of a low-ranked document containing similar information
provides), the scoring function must be able to character-
ize cross-document interaction among the candidate docu-
ments when generating the diversified result list. Second,
given the requirement of coping with cross-document inter-
action among the candidate documents, a natural choice is to
score the documents together. A desired property for such a
scoring function is that the order of input documents should
have no effect on the output, which is referred to as permu-
tation equivariance. Third, the document-specific control-
ling parameters of a Gaussian distribution, such as mean and
variance, should be automatically learned rather than using
a globally predefined setting.

Next we elaborate on the major components including ini-
tial vector representation, multi-head self-attention layer and
probabilistic regress layer. Finally, we describe the overall
scoring pipeline.

Initial Vector Representation For implementing the
mapping function Φ which is used to generate vector rep-
resentations for documents and queries, there are a number
of choices, such as using heuristic aggregated ranking fea-
tures (e.g., BM25 and TF-IDF) and the pre-trained BERT
model (Devlin et al. 2019). Following the prior studies (Yan
et al. 2021; Qin, Dou, and Wen 2020), we appeal to the
doc2vec model (Le and Mikolov 2014) in this paper, which
also enables us to make a fair comparison. Specifically, the
text-based queries and documents are mapped into dense
normalized vectors xq ∈ Re and xi ∈ Re of a fixed em-
bedding size e. Inspired by the work (Yan et al. 2021; Qin
et al. 2021), in order to well capture the interaction between
query-document pairs, we also use the algorithm of latent
cross (Beutel et al. 2018) to generate query-document cross
feature. Given the vector representations xq and xi for a pair
of query and document, the query-document cross feature is
defined as: ci = xq � xi, where � denotes element-wise
multiplication.

Multi-Head Self-Attention Layer Inspired by the recent
studies (Yan et al. 2021; Qin, Dou, and Wen 2020; Pang
et al. 2020; Qin et al. 2021; Pasumarthi et al. 2020), we
incorporate multi-head self-attention layer into our scoring
function. Thanks to this, the scoring function is able to cope

with cross-document interaction and preserve permutation
equivariance. Please refer to (Pasumarthi et al. 2020; Pang
et al. 2020) for the theoretical demonstration. Given the in-
put matrix M ∈ Rm×a corresponding to m candidate doc-
uments (a denotes the dimension size), the attention layer
in Transformer (Vaswani et al. 2017) is formulated based
on three projection matrices: WQ ∈ Ra×b, WK ∈ Ra×b
and WV ∈ Ra×a (where b is the projection size). Then we
project M into a query1 matrix Q = MWQ, a key matrix
K = MWK and a value matrix V = MWV , respectively.
At a high level, attention is a pooled combination of val-
ues of V across documents, weighted by pairwise scaled
dot product similarity matrix A(M) between query matrix
Q and key matrix K:

A(M) =
QKᵀ

√
b

(5)

Using these weights, a self-attention layer computes a
weighted sum of V as follows:

SA(M) = Softmax(A(M))V (6)

The study by Transformer (Vaswani et al. 2017) have
shown that using multiple heads, which attend on different
parts of the input, can be beneficial. For U heads, the out-
put of multiple self-attention layers per head are concate-
nated and projected via a linear transformation using matri-
ces Wout ∈ RUa×a and bias term bout ∈ Ra in order to
ensure the output MHSA(M) ∈ Rm×a:

MHSA(M) = concatu∈[U ][SAt(M)]Wout + bout (7)

Additionally, we also apply residual connections and
layer normalization. They also preserve the property of per-
mutation equivariance due to the element-wise operations.

Probabilistic Regression Layer Inspired by the model of
MDN (mixture density network) (Bishop 1994), we formu-
late the target distribution with respect to a document as a
GMM (Gaussian mixture model):

P (si|q,D) = PRL(vi) =
∑V
j=1 ρjN (sj |µj(vi), σ2

j (vi)) (8)

where vi denotes the input vector corresponding to doc-
ument di, {ρj , µj , σ2

j } is a set of parameters of a GMM,
namely mixture probabilities, mixture means, and mixture
variances, respectively. One important analytical property
that makes the Gaussian distribution extremely tractable
is its closure under linear combinations, namely the lin-
ear combination of independent random variables having
a Gaussian distribution also has a Gaussian distribution.
Thanks to this, the controlling parameters of each distribu-
tion for representing the diversity score of a document are
directly parameterized by the network architecture itself.

Scoring Pipeline In Figure 1, we show the overall struc-
ture of the proposed scoring function. Given a query q and
candidate documents D, we first get their vector representa-
tions based on the adopted mapping function Φ. As the input
of stacked multi-head self-attention layers, we concatenate

1We note that the query here is different from the search query.
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Figure 1: The proposed end-to-end framework for SRD.

query vector xq , document vector xi and query-document
cross feature vector ci to obtain the listwise contextual rep-
resentation ei for each document. Then, query vector xq ,
document vector xi, query-document cross feature vector ci
and listwise contextual representation ei are concatenated
and passed through a number of fully connected layers to
compute the input vector of PRL. The output of PRL corre-
sponds to the predicted diversity score for each document.

Differentiable Variants of α-DCG and ERR-IA
With the probabilistic formulation of diversity score in
place, the probability P (di .dj) that document di beats doc-
ument dj (i.e., di should be ranked above dj) can be eas-
ily expressed as P (Si − Sj > 0), where Si and Sj are the
draws from P (si) and P (sj), respectively. In other words,
this probability is simply the integral of the difference of two
Gaussian random variables, which is itself a Gaussian.

Pij = P (di . dj) = P (Si − Sj > 0)

=

∫ ∞
0

N (s|µ(di)− µ(dj), σ
2(di) + σ2(dj))ds

=
1

2
[1 + erf(

µ(di)− µ(dj)√
2(σ2(di) + σ2(dj))

)]

(9)

erf(x) = 2√
π

∫ x
0

exp(−t2)dt is the Gauss error function.
Inspired by (Qin, Liu, and Li 2010; Yan et al. 2021), given

the list of candidate documents D = (d1, ..., dm), the rank
position of the i-th document can be given as

π(i) = 1 +
∑
j:j 6=i

I{dj . di} (10)

I{e} is the indicator, which is one if the condition e is true
and zero otherwise. Analogously, the number of times that
the k-th subtopic has been covered by the above ranked doc-
uments can be given as:

cki =
∑
j:j 6=i

I(Ykj)I{dj . di} (11)

Given Equation-10 and Equation-11, we go one step fur-
ther by taking the expectation, thus we have

E[π(i)] = 1 +
∑
j:j 6=i

P (dj . di) (12)

E[cki] =
∑
j:j 6=i

I(Ykj)P (dj . di) (13)

With the pairwise comparison (Equation-9) in place, the ex-
pected rank of a document and the expected number of times
that the k-th subtopic has been covered by documents ranked
above document di can be easily computed using Equation-
12 and Equation-13, respectively.

By replacing the non-differentiable factors π(i) and cki
with their expectations E[π(i)] and E[cki], we can get the
differentiable variants of α-DCG and ERR-IA as follows:

α̂-DCG =
m∑
i=1

∑h
k=1 I(Yki)(1− α)E[cki]

log2(E[π(i)] + 1)
(14)

̂ERR− IA = 1
h

∑m
i=1

1
E[π(i)]

∑h
k=1R(Yki)

∏
j:E[π(j)]<E[π(i)](1−R(Ykj)) (15)

By defining the negative metric score as the minimization
objective, a novel loss function that is a tightly related to
the evaluation metric can be obtained correspondingly. Tak-
ing α-DCG for example, because 1

log2(1+t)
is convex for

t > 0, we have 1
log2(E[π(i)]+1) ≤ E[ 1

log2(π(i)+1) ] through
Jensen’s inequality. Therefore, the above approximation of
α-DCG is a lower bound of the expected α-DCG. A closer
look at Equation-14 reveals that: this formulation closely re-
sembles the idea of SoftRank (2008). The key difference is
that Taylor et al. (2008) proposed an approximate way of
computing the expected nDCG by introducing the so-called
rank-binomial distribution, which suffers from a computa-
tional complexity of O(m3). The proposed method has the
same time complexity as Yan et al. (2021) and Qin, Liu, and
Li (2010), which is of order O(m2) for a single query at
training time. Thanks to the adopted score-and-sort strategy,
MO4SRD allows O(m) inference complexity at test time,
which can be done in parallel. On the contrary, the meth-
ods relying on greedy selection suffer from a high computa-
tional cost of O(mk) for diversifying the top-k results. We
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note that a diversification algorithm achieving the best per-
formance can be useless if its high computational cost for-
bids its use in a real-world applications2.

Experiments
In this section we report a series of experiments to evaluate
the proposed method by comparing it to the state-of-the-art
diversification approaches. First, we detail the test collec-
tions. Second, we describe the baseline methods and config-
urations3. Finally, we describe the experimental results.

Test Collections
Four standard test collections released in the diversity tasks
of TREC Web Track from 2009 to 2012 are adopted for the
experiments (50 queries per each year). Each query is struc-
tured as a set of representative subtopics. Queries numbered
95 and 100 in TREC 2010 are discarded due to the lack of
judgment data, resulting in 198 queries being finally used.
For each query, the candidate documents are annotated with
a binary relevance label per subtopic by the TREC asses-
sors. We report the results with different cutoff values 5, 10
and 20 to show the performance of each method at differ-
ent positions, where α for α-nDCG is set as 0.5 so as to
keep consistent with the official TREC evaluation program.
For a fair comparison with recent methods, the experiments
are conducted based on the pre-processed dataset4 following
the practices in (Xia et al. 2017; Feng et al. 2018). Specif-
ically, the ClueWeb09 Category B collection consisting of
50 million English web documents is used as the base. The
doc2vec model is trained on all documents and the num-
ber of vector dimensions is set as 100. The initial vector
representations of queries and documents can be obtained
given the trained doc2vec model. Please refer to (Xia et al.
2017; Feng et al. 2018) for more details. We perform 5-fold
cross validation experiments following the same subset split
as (Feng et al. 2018). In each fold, three subsets are used as
the training data, the remaining two subsets are used as the
validation data and the testing data. We use the training data
to learn the ranking model, use the validation data to select
the hyper parameters, and use the testing data for evaluation.
Finally, we report the performance based on the averaged
evaluation scores across five folds with 300 epochs.

Baseline Methods and Configuration
In this work, the following baseline methods are compared:
(1) xQuAD (Santos, Macdonald, and Ounis 2010) and PM-
2 (Dang and Croft 2012) are adopted to represent the typi-
cal unsupervised methods for SRD. (2) DSSA (Jiang et al.
2017) and DVGAN (Liu et al. 2020a) represent the super-
vised methods that incorporate explicit subtopic features. (3)
SVM-DIV (Yue and Joachims 2008), R-LTR (Zhu et al.
2014), PAMM (Xia et al. 2015), NTN-DIV (Xia et al.
2016), MDP-DIV (Xia et al. 2017), M2DIV (Feng et al.
2018), PPG (Xu et al. 2020) and Graph4DIV (Su et al.

2Here we compare time complexity by focusing on the way of
generating the ranked list, the complexity of score estimation is not
included since it varies due to the adopted network structures.

3Detailed implementation: https://github.com/wildltr/ptranking
4https://github.com/sweetalyssum/M2DIV

2021) represent the supervised methods that do not use
explicit subtopic features. (4) DESA (Qin, Dou, and Wen
2020) and DALETOR (Yan et al. 2021) represent the state-
of-the-art supervised methods based on the score-and-sort
strategy. Different from DALETOR, explicit subtopics are
used by DESA. By following DALETOR (Yan et al. 2021),
we choose the optimizer of Adagrad, and set the dimen-
sions of fully connected layers before either probabilistic or
deterministic regression as [256, 128, 64]. The other hyper-
parameters are chosen via a grid search: number of at-
tention heads ∈ {2, 4, 6}, number of self-attention layers
∈ {2, 4, 6}, learning rate ∈ {0.001, 0.01}, activation func-
tions ∈ {ReLU,GELU}, global variance σ ∈ {0.1, 1, 10}
and number of Gaussian components V ∈ {1, 10}. Using
a consistent network setting enables us to conduct a fair
comparison between DALETOR and MO4SRD. Further-
more, we investigate the following variants of MO4SRD:
MO4SRD(ERR-IA): using ERR-IA as the optimization ob-
jective. MO4SRD(α-DCG): using α-DCG as the optimiza-
tion objective, MO4SRD(σ = b): using a global variance
setting for all documents. As far as we know, the effective-
ness of optimizing ERR-IA has not been investigated by
prior studies.

Experimental Evaluation
Noteworthy, the previous studies use different cutoff val-
ues to compute metric performance when comparing differ-
ent models. For example, the models, like DSSA, DVGAN,
DESA and Graph4DIV, mainly use a cutoff value of 20 (i.e.,
α-nDCG@20 and ERR-IA@20), while the methods, such
as DALETOR and PPG, mainly use cutoff values of 5 and
10. In order to obtain an in-depth comparison of the typical
methods for SRD, we use cutoff values of 5, 10 and 205.
Table 1 shows the overall performance of the involved ap-
proaches, respectively. The best result is indicated in bold,
and the second-best result is underlined. † denotes that the
results in terms of α-nDCG@5, α-nDCG@10, ERR-IA@5
and ERR-IA@10 are cited from Yan et al. (2021). ? denotes
that the results in terms of α-nDCG@20 and ERR-IA@20
are cited from Su et al. (2021).

From Table 1, we can observe that: (1) DALETOR
and MO4SRD significantly outperforms the previous ap-
proaches for SRD, including the newly proposed mod-
els DVGAN (Liu et al. 2020a), PPG (Xu et al. 2020),
Graph4DIV (Su et al. 2021) and DESA (Qin, Dou, and Wen
2020). The key reason is that DALETOR and MO4SRD di-
rectly use the evaluation metric as the optimization objec-
tive, which circumvents the mismatch between the objec-
tive function used in training and the final evaluation mea-
sure used in testing. (2) Due to the unavailability of the
source code for DALETOR, we re-implemented it (denoted
as DALETOR(reproduce)) on our own so as to make a fair
comparison between DALETOR and MO4SRD such that
they use the same network components except the regres-
sion part and the loss function. Unfortunately, we failed
to achieve the same level of performance as reported in

5The results are computed using the officially released script
ndeval with the default settings.
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Method α-nDCG@5 α-nDCG@10 α-nDCG@20 ERR-IA@5 ERR-IA@10 ERR-IA@20
xQuAD(†,?) 0.3165 0.3941 0.413 0.2314 0.2890 0.317
PM-2(†,?) 0.3047 0.3730 0.411 0.2298 0.2814 0.306
DSSA(?) - - 0.456 - - 0.356
DVGAN(?) - - 0.465 - - 0.367
DESA(?) - - 0.464 - - 0.363
Graph4DIV(?) - - 0.468 - - 0.370
SVM-DIV(†) 0.3030 0.3699 - 0.2268 0.2726 -
R-LTR(†) 0.3498 0.4132 - 0.2521 0.3011 -
PAMM(†) 0.3712 0.4327 - 0.2619 0.3029 -
NTN-DIV(†) 0.3962 0.4577 - 0.2773 0.3285 -
MDP-DIV(†) 0.4189 0.4762 - 0.2988 0.3494 -
M2DIV(†) 0.4429 0.4839 - 0.3445 0.3658 -
PPG 0.4799 0.5122 - 0.3727 0.3914 -
DALETOR(†) 0.5009 0.5294 - 0.3942 0.4119 -
DALETOR(reproduce) 0.4799 0.5084 0.5466 0.3789 0.3962 0.4067
MO4SRD(α-DCG) 0.4738 0.5132 0.5509 0.3689 0.3905 0.4010
MO4SRD(ERR-IA) 0.4083 0.4606 0.5007 0.3129 0.3383 0.3495
MO4SRD(α-DCG,σ = 1.0) 0.4930 0.5289∗ 0.5656∗ 0.3920 0.4123 0.4225
MO4SRD(ERR-IA,σ = 1.0) 0.4421 0.4798 0.5211 0.3483 0.3676 0.3790

Table 1: Performance comparison on TREC Web Track datasets, where ∗ indicates significant improvements over DALE-
TOR(reproduce) with the Wilcoxon signed-rank test (p < 0.05) in terms of α-nDCG.

Yan et al. (2021). Compared with the re-implemented ver-
sion, we can see that MO4SRD with learnable mean and
variance can achieve competitive performance as DALE-
TOR when we use α-DCG as the optimization objective.
Moreover, when we use a uniform variance setting (i.e.,
σ = 1.0), MO4SRD significantly outperforms DALETOR
in terms of α-nDCG. (3) A closer look the performance
of MO4SRD’s different variants reveals that using different
metrics as the optimization objectives significantly affects
the performance. Our results show that using α-DCG as the
optimization objective is a better choice. The most possible
reason is due to the underlying differences in rewarding as-
pect coverage and penalizing redundancy.

To show the importance of coping with the inherent un-
certainty when performing SRD, Figure 2 illustrates the im-
pact of adding Gaussian noise on performance. In partic-
ular, we add Gaussian noise to the embedding vectors of
queries and documents before feeding them into each model,
namely x = x + N (0, σ2I). From Table 1 and Figure
2, we can observe that: though DALETOR(reproduce) per-
forms slightly better than MO4SRD(α-DCG) with no noise,
its performance is significantly impacted when we increase
the Gaussian noise. On the contrary, MO4SRD(α-DCG) is
less impacted and shows better performance than DALE-
TOR(reproduce).

Conclusions
We proposed a novel method MO4SRD for SRD based on
probabilistic regression. On one hand, MO4SRD represents
the diversity score of each document using a probability dis-
tribution, which enables us to cope with the inherent un-
certainty during the learning process of a model and the
retrieval process. Further, this probabilistic formulation en-
ables us to get the differentiable variants of the widely used

Figure 2: The impact of Gaussian noise on performance.

diversity metrics and directly using them as the optimization
objective. On the other hand, MO4SRD jointly scores candi-
date documents by taking into account both cross-document
interaction and permutation equivariance, which makes it
possible to generate a diversified ranking via a simple sort-
ing. Compared to the state-of-the-art methods, MO4SRD
achieves significantly improved performance. Our work also
opens up many interesting future research directions. First,
we have only demonstrated the effectiveness of probabilistic
regression for SRD. It should be very interesting to evalu-
ate how calibrated the proposed probabilistic regression is.
Second, we plan to investigate the generalization ability of
the proposed method by adapting it to other research top-
ics, such as document summarization and paraphrase gener-
ation, where diversification plays an important role.
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