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Abstract

In black-box optimization problems, we aim to maximize an
unknown objective function, where the function is only acces-
sible through feedbacks of an evaluation or simulation oracle.
In real-life, the feedbacks of such oracles are often noisy and
available after some unknown delay that may depend on the
computation time of the oracle. Additionally, if the exact eval-
uations are expensive but coarse approximations are available
at a lower cost, the feedbacks can have multi-fidelity. In order
to address this problem, we propose a generic extension of
hierarchical optimistic tree search (HOO), called ProCrasti-
nated Tree Search (PCTS), that flexibly accommodates a de-
lay and noise-tolerant bandit algorithm. We provide a generic
proof technique to quantify regret of PCTS under delayed,
noisy, and multi-fidelity feedbacks. Specifically, we derive re-
gret bounds of PCTS enabled with delayed-UCB1 (DUCB1)
and delayed-UCB-V (DUCBV) algorithms. Given a horizon
T , PCTS retains the regret bound of non-delayed HOO for
expected delay of O(log T ) and worsens by O(T

1−α
d+2 ) for

expected delays of O(T 1−α) for α ∈ (0, 1]. We experimen-
tally validate on multiple synthetic functions and hyperpa-
rameter tuning problems that PCTS outperforms the state-
of-the-art black-box optimization methods for feedbacks with
different noise levels, delays, and fidelity.

1 Introduction
Black-box optimization (Munos 2014; Sen, Kandasamy, and
Shakkottai 2019), alternatively known as zeroth-order opti-
mization (Xu et al. 2020) or continuous-arm multi-armed
bandit (Bubeck et al. 2011), is a widely studied prob-
lem and has been successfully applied in reinforcement
learning (Munos 2014; Grill et al. 2020), neural architec-
ture search (Wang et al. 2019), large-scale database tun-
ing (Pavlo et al. 2017; Wang, Trummer, and Basu 2021),
robotics (Martinez-Cantin 2017), AutoML (Fischer, Gao,
and Bernstein 2015), material science (Xue et al. 2016; Ka-
jita, Kinjo, and Nishi 2020), and many other domains. In
black-box optimization, we aim to maximize an unknown
function f : X → R, i.e. to find

x∗ ≜ argmax
x∈X

f(x). (1)

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this setting, the optimizer does not have access to the
derivatives of f , rather can access f only by sequen-
tially querying a simulation or evaluation oracle (Jamieson,
Nowak, and Recht 2012). The goal is to minimize the ex-
pected error in optimization, i.e. E[f(x∗) − f(xT )], after
T queries (Munos 2014), or to reach a fixed error thresh-
old with as few queries as possible (Jamieson, Nowak, and
Recht 2012). We adopt the first approach in this paper.

Approaches to Black-box Optimization. (Jamieson,
Nowak, and Recht 2012) have shown that black-box op-
timization for convex functions is in general efficient. For
convex functions, typically a Zeroth-order (ZO) Gradi-
ent Descent (GD) framework is used that replaces the
gradient with the difference between functional evalua-
tions (Jamieson, Nowak, and Recht 2012; Kumagai 2017;
Liu et al. 2018). This approach requires double evaluation
queries per-step and also multiple problem-specific hyper-
parameters to be tuned to obtain reasonable performance.
Still, these methods are less robust to noise and stochastic
delay (Li, Chen, and Giannakis 2019) than the next two other
approaches, i.e. Bayesian Optimization (BO) and Hierarchi-
cal Tree Search.

For an objective function with no known structure except
local smoothness, solving the black-box optimization prob-
lem is equivalent to estimating f almost everywhere in its
domain X (Goldstein 1977). This can lead to an exponen-
tial complexity in the dimensionality of the domain (Chen
1988; Wang, Balakrishnan, and Singh 2019). Thus, one ap-
proach for this problem is to learn a surrogate f̂ of the actual
function f , such that f̂ is a close approximation of f and
f̂ can be learned and optimized with fewer samples. This
has led to research in Bayesian Optimization (BO) and its
variants (Srinivas et al. 2010; Jones, Schonlau, and Welch
1998; Huang et al. 2006; Kandasamy et al. 2016), where
specific surrogate regressors are fitted to the Bayesian pos-
terior of f . However, if f is highly nonlinear or high di-
mensional, the Bayesian surrogate, namely Gaussian Pro-
cess (GP) (Srinivas et al. 2010) or Bayesian Neural Net-
work (BNN) (Springenberg et al. 2016), requires many sam-
ples to fit and generalize well. Also, there are two other
issues. Firstly, often myopic acquisition used in BO algo-
rithms leads to excessive exploration of the boundary of the
search domain (Oh, Gavves, and Welling 2018). Secondly,
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Algorithm Expected Simple Regret Delay Noise Fidelity Assumptions

PCTS T−1/(d+2)(log T + E[Delay]

σ2+2b
)1/(d+2) Stochastic Unknown Yes Local Lipschitz

HOO T−1/(d+2)(log T )1/(d+2) x Known MF-HOO Local Lipschitz
(Bubeck et al. 2011) (Sen et al. 2019)
GP-UCB T−1/2 InfoGain(T ) x Known MF-GP-UCB GP surrogate
(Srinivas et al. 2010) (Kandasamy et al. 2016)
GP-EI T−1/2O((log T )d/2) x Known x GP surrogate
(Nguyen et al. 2019)
DBGD (Li et al. 2019)

√
T +

∑
Delay/T Bounded x x Convex

Table 1: Comparison of existing tree search, BO, and zeroth-order GD optimizers.

the error bounds of BO algorithms include the information
gain term (InfoGain(T )) that often increases with T (Srini-
vas et al. 2010).

Instead of fixing on to such specific surrogate modelling,
the alternative is to use hierarchical tree search methods
which have drawn significant attention and success in the re-
cent past (Munos 2014; Bubeck et al. 2011; Grill et al. 2015;
Shang, Kaufmann, and Valko 2018, 2019; Sen, Kandasamy,
and Shakkottai 2018, 2019).The tree search approach ex-
plores the space using a hierarchical binary tree with nodes
representing subdomains of the function domain X . Then,
it leverages a bandit algorithm to balance the exploration of
the domain and fast convergence towards the subdomains
with optimal values of f . This approach does not demand
more than local smoothness assumption with respect to the
hierarchical partition (Shang, Kaufmann, and Valko 2018,
Assumption 1) and an asymptotically consistent bandit al-
gorithm (Bubeck et al. 2011). The generic nature of hierar-
chical tree search motivated us to extend it to black-box op-
timization with delayed, noisy, and multi-fidelity feedbacks.

Imperfect Oracle: Delay, Noise, and Multi-fidelity
(DNF). In real-life, the feedbacks of the evaluation oracle
can be received after a delay due to the computation time to
complete the simulation or evaluation (Weinberger and Or-
dentlich 2002), or to complete the communication between
servers (Agarwal and Duchi 2012; Sra et al. 2015). Such de-
layed feedback is natural in different optimization problems,
including the white-box settings (Wang, Trummer, and Basu
2021; Li, Chen, and Giannakis 2019; Joulani, Gyorgy, and
Szepesvári 2016; Langford, Smola, and Zinkevich 2009).
In some other problems, introducing artificial delays while
performing tree search, may create opportunities for work
sharing between consecutive evaluations, thereby reducing
computation time (Wang, Trummer, and Basu 2021). This
motivated us to look into the delayed feedback for black-
box optimization. Additionally, the feedbacks of the ora-
cle can be noisy or even the objective function itself can
be noisy, for example simulation oracles for physical pro-
cesses (Kajita, Kinjo, and Nishi 2020) and evaluation oracles
for hyperparameter tuning of classifiers (Sen, Kandasamy,
and Shakkottai 2019) and computer systems (Fischer, Gao,
and Bernstein 2015; Wang, Trummer, and Basu 2021). On
the other hand, the oracle may invoke a multi-fidelity frame-
work. Specially, if there is a fixed computational or time
budget for the optimization, the optimizer may choose to
access coarse but cheaper evaluations of f than the exact

and costlier evaluations (Sen, Kandasamy, and Shakkottai
2018, 2019; Kandasamy et al. 2016). Both the noisy func-
tions and multi-fidelity frameworks are studied separately in
tree search regime while assuming a known upper bound on
the noise variance (Sen, Kandasamy, and Shakkottai 2019)
or known range of noise (Xu et al. 2020). We propose to ex-
tend tree search to a setting where all three imperfections,
delay, noise, and multi-fidelity (DNF), are encountered con-
currently. Additionally, we remove the requirement that the
noise is either known or bounded.

Our Contributions. The main contributions of this paper
are as follows:

1. Algorithmic: We show that the hierarchical tree search
(HOO) framework is extendable to delayed, noisy and multi-
fidelity (DNF) feedback through deployment of the upper
confidence bounds of a bandit algorithm that is immune to
the corresponding type of feedback. This reduces the tree
search design problem to designing compatible bandit algo-
rithms. In Section 3.1, we describe this generic framework,
and refer to it as the Procrastinated Tree Search (PCTS).

2. Theoretical: We leverage the generalities of the re-
gret analysis of tree search and incorporate delay and noise-
tolerant bandit algorithms to show the expected simple re-
gret bounds for expected delay τ = O(log T ) and O(T 1−α)
for α ∈ (0, 1). We instantiate the analysis for delayed ver-
sions of UCB1-σ (Auer, Cesa-bianchi, and Fischer 2002)
and UCB-V (Audibert, Munos, and Szepesvári 2007). This
requires analysing a delayed version of UCB1-σ and ex-
tending UCB-V to the delayed setting. We show that we
have constant loss and T (1−α)/(d+2) loss compared to non-
delayed HOO in case of the two delay models (Sec. 3.2).
We also extend the analysis to unknown noise variance
(Sec. 3.3) and multi-fidelity (Sec. 3.4). To the best of our
knowledge, we are the first to consider DNF-feedback in hi-
erarchical tree search, and our regret bound is more general
than the existing ones for black-box optimization with either
delay or known noise or multi-fidelity (Table 1).

3. Experimental: We experimentally and compara-
tively evaluate performance of PCTS on multiple syn-
thetic and real-world hyperparameter optimization prob-
lems against the state-of-the-art black-box optimization al-
gorithms (Sec. 4)1. We evaluate for different delays, noise
variances (known and unknown), and fidelities. In all the
experiments, PCTS with delayed-UCB1-σ (DUCB1σ) and

1Link to our code: https://github.com/jxiw/PCTS
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delayed-UCB-V (DUCBV) outperform the competing tree
search, BO, and zeroth-order GD optimizers.

2 Background and Problem Formulation
We aim to maximize an objective function f : X → R,
where the domain X ⊆ RD. At each iteration, the algo-
rithm queries f at a chosen point xt ∈ X and gets back
an evaluation y = f(xt) + ϵ, such that E[ϵ] = 0 and
V[ϵ] = σ2 (Jamieson, Nowak, and Recht 2012). We con-
sider both, the case where σ2 is known and where it is un-
known to the algorithm. We denote x∗ as the optimum and
f∗ ≜ f(x∗) as the optimal value.

Structures of the Objective Function. In order to prove
convergence of PCTS to the global optimum f∗, we need
to assume that the domain X of f has at least a semi-
metric ℓ defined on it (Munos 2014). This allows us to de-
fine an ℓ-ball of radius ρ with Bρ ≜ {x|maxy ℓ(x, y) ≤
ρ ∀ x, y ∈ Bρ ⊆ X}. Now, we aim to define the near-
optimality dimension of the function f , given semi-metric ℓ.
The near-optimality dimension quantifies the inherent com-
plexity of globally optimising a function using tree search
type algorithms. Near-optimality dimension quantifies the ϵ-
dependent growth in the number of ℓ-balls needed to pack
this set of ϵ-optimal states: Xϵ ≜ {x ∈ X |f(x) ≥ f∗ − ϵ}.

Definition 1 (c-near-optimality dimension (Bubeck et al.
2011)). c-near-optimality dimension is the smallest d ≥ 0,
such that for all ϵ > 0, the maximal number of disjoint ℓ-
balls of radius cϵ whose centers can be accommodated in
Xϵ is O(ϵ−d).

This is a joint property of f and the dissimilarity measure
ℓ. d is independent of the algorithm of choice and can be
defined for any f and X with semi-metric ℓ. Additionally,
we need f to be smooth around the optimum x∗, i.e. to be
weak Lipschitz continuous, for the tree search to converge.

Assumption 1 (Weak Lipschitzness of f (Bubeck et al.
2011)). For all x, y ∈ X , f satisfies f∗ − f(y) ≤ f∗ −
f(x) + max{f∗ − f(x), ℓ(x, y)}.

Weak Lipschitzness implies that there is no sudden drop
or jump in f around the optimum x∗. Weak Lipschitz-
ness can hold even for discontinuous functions. Thus, it
widens applicability of hierarchical tree search methodol-
ogy and corresponding analysis to more general perfor-
mance metrics and domain spaces in comparison with al-
gorithms that explicitly need gradients or smoothness in
stricter forms. In Appendix, we show that we can relax this
assumption proposed in Hierarchical Optimistic Optimiza-
tion (HOO) (Bubeck et al. 2011) to more local assumptions
like (Shang, Kaufmann, and Valko 2018). As we develop
PCTS using the HOO framework, we keep this assumption
here to directly compare the effects of DNF feedbacks.

Structure: Non-increasing Hierarchical Partition. The
Hierarchical Tree Search or X -armed bandit family of al-
gorithms (Bubeck et al. 2011; Shang, Kaufmann, and Valko
2019; Sen, Kandasamy, and Shakkottai 2019) grow a tree
T ⊆ ∪{(h, l)}H,2h

h,l=0,1 of depth H , such that each node (h, l)

represents a subdomain X(h,l) of X ,2 and the correspond-
ing upper confidence intervals partition the domain of the
performance metric f . Then, it uses a UCB-type bandit al-
gorithm to assign optimistic upper confidence values to each
partition. Using these values, it chooses a node to evaluate
and expand at every time step. As the tree grows deeper, we
obtain a more granular hierarchical partition of the domain.
As we want the confidence intervals to shrink with increase
in their depth, we need to ensure certain regularity of such
hierarchical partition. Though we state the hierarchical par-
tition as an assumption, it can be considered as an artifact of
the tree search algorithm.

Assumption 2 (Hierarchical Partition with Decreasing Di-
ameter and Shape (Munos 2014)).

1. Decreasing diameters. There exists a decreasing se-
quence δ(h) > 0 and constant ν1 > 0 such that
diam(Xh,l) ≜ maxx∈Xh,l

ℓ(xh,l, x) ≤ ν1δ(h),for any
depth h ≥ 0, for any interval Xh,l, and for all i = 1, . . . , 2h.
For simplicity, we consider that δ(h) = ρh for ρ ∈ (0, 1).

2. Regularity of the intervals. There exists a constant
ν2 > 0 such that for any depth h ≥ 0, every interval Xh,l

contains at least a ball Bh,l of radius ν2ρh and center xh,l

in it. Since the tree creates a partition at any given depth h,
Bh,l ∩ Bh,l′ = ∅ for all 1 ≤ l < l′ ≤ 2h.

Simple Regret: Performance Metric. While analyz-
ing iterative or sequential algorithms, regret RegT ≜∑T

t=1[f(x
∗) − f(xt)] is widely used as the performance

measure (Munos 2014). For optimization algorithms, an-
other relevant performance metric is expected error or ex-
pected simple regret incurred at time T : ϵT = E[rT ] =
E[f(x∗) − f(xT )] = 1

T E[RegT ]. Since the last equality
holds for tree search (Munos 2014), we state only the ex-
pected simple regret results in the main paper. The algorithm
performance is better if the expected simple regret is lower.
If the upper bound on expected simple regret grows sublin-
early with horizon T , the corresponding algorithm asymp-
totically converges to the optimum. Given the aforemen-
tioned assumptions and definitions, and choosing simple re-
gret as the performance measure, we state the expected error
bound of HOO (Bubeck et al. 2011, Thm. 6) (using UCB1).

Theorem 1 (Regret of HOO). Assume that the expected
objective function f satisfies Assumption 1, and its 4ν1/ν2-
near-optimality dimension is d > 0. Then, under Assump-
tion 2 and for any d′ > d, expected simple regret of HOO

ϵT = E[rT ] = O
(
T− 1

d′+2 (log T )
1

d′+2

)
(2)

for T > 1, and 4ν1/ν2-near-optimality dimension d of f .

3 PCTS: Procrastinated Tree Search
In this section, we first provide a generic template for our
framework. Following that, we incrementally show expected
error bounds under delayed, noisy with known variance,
noisy with unknown variance, and multi-fidelity feedbacks.

2Here, (h, l) represents the l-th node at depth h.
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Algorithm 1: PCTS under DNF feedback and with a com-
patible BANDIT algorithm

1: Input: Total cost budget Λ, Bias function ζ, Cost func-
tion λ, Smoothness parameters (ν1, ρ).

2: Initialization: T1 = {(0, 0)} (root), Bmin
(1,1) = Bmin

(1,2) =

∞, t = 0 (iteration), C = 0 (cost)
3: while C ≤ Λ do
4: Compute Bmin values for each node in Tt using a

UCB-type algorithm BANDIT(Eq. (3))
5: Select a leaf node (ht, lt) by following an “optimistic

path” from root such that each selected node in the
path has the highest Bmin value among its sibling
nodes

6: Sample a point xt uniformly at random in the subdo-
main of node (ht, lt)

7: Query the evaluation oracle with xt and at fidelity zht

8: Observe the delayed and noisy feedbacks Ot ≜
{fs|t(xhs,ls |zhs

) + ϵs : s + τs = t} with the times-
tamps of invoking these queries {s : s+ τs = t}

9: Expand node (ht, lt) and add its children to Tt to form
Tt+1

10: end while

3.1 Algorithmic Framework

PCTS adapts the HOO algorithm (Bubeck et al. 2011) to
delayed, noisy, and multi-fidelity feedbacks. We illustrate
the pseudocode in Algorithm 1. Thus, in PCTS, we first as-
sign optimistic Bmin values to each node (h, l) in the hierar-
chical tree Tt. Then, we incrementally select an ‘optimistic
path’ from the root such that the path corresponds to one
node at every depth and every chosen node has larger Bmin

value than its sibling nodes. Sibling nodes are the nodes that
share the same parent. Following that, we sample a point
xt randomly from the subdomain X(ht,lt) that the leaf node
(ht, lt) of the optimistic path represents. We expand this leaf
node and add its children to Tt+1. Lines 4-6 and 9 essen-
tially come from the HOO algorithm. The difference is in
mainly three steps. In Line 7, we query the evaluation or-
acle with the point xt and fidelity zht

due to multi-fidelity
evaluator. In Line 8, we observe a delayed set of noisy feed-
backs Ot ≜ {fs|t(xhs,ls |zhs) + ϵs : s+ τs = t} that arrives
with corresponding timestamps when the queries were in-
voked. Here, fs|t(xhs,ls |zhs

) is the multi-fidelity feedback
lower bounded by f(xhs,ls)− ζ(zhs

), and ϵs is a noise with
zero mean and bounded variance. Such DNF feedback con-
strains us to use an asymptotically optimal bandit algorithm,
BANDIT (Line 4), that allows us to get an upper confidence
bound B(h,l),s,t, which would be immune to DNF. In the
following sections, we incrementally design such BANDIT
confidence bounds and derive corresponding error bounds
for PCTS. Though we describe the algorithm and the analy-
sis for given smoothness parameters (ν1, ρ), we describe in
Appendix B the details of how to extend PCTS to unknown
smoothness parameters.

3.2 Adapting to Delayed Feedbacks
Observable Stochastic Delay Model. We consider the
stochastic delay setting (Joulani, Gyorgy, and Szepesvári
2013, 2016). This means that the feedback f(xs) of the eval-
uation oracle invoked at time s ∈ [0, T ] arrives with a delay
τs ∈ R≥0, such that {τs}Ts=0 are random variables invoked
by an underlying but unknown stochastic process D. Here,
the delays are independent of the algorithm’s actions.
Assumption 3 (Bounded Mean Delay). Delays are gener-
ated i.i.d from an unknown delay distribution D. The expec-
tation of delays τ ≜ E[τs : s ≥ 0] is bounded and observ-
able to the algorithm.

We observe that constant or deterministic delay with
τconst < ∞ is a special case of this delay model.

From PCTS to Delayed Bandits. Due to the delayed set-
ting, we observe feedback of a query invoked at time s at
time t ≥ s. Let us denote such feedback as fs|t(xs). Thus, at
time t, PCTS does not have access to all the invoked queries
but a delayed subset of it: ∪t

t′=1Ot′ = ∪t
t=1{fs|t′(xs) :

s+ τs = t′}. At time t, PCTS uses Ot to decide which node
to extend next. Thus, making PCTS immune to unknown
stochastic delays reduces to deployment of a BANDIT algo-
rithm that can handle such stochastic delayed feedback.

Multi-armed bandits with delayed feedback is an active
research area (Eick 1988; Joulani, Gyorgy, and Szepesvári
2013; Vernade, Cappé, and Perchet 2017; Gael et al. 2020;
Pike-Burke et al. 2018), where researchers have incremen-
tally studied the known constant delay, the unknown observ-
able stochastic delay, and the unknown anonymous stochas-
tic delay settings. In this paper, we operate in the second set-
ting, where a delayed feedback comes with the timestamp of
the query. Under delayed feedback, designing an UCB-type
bandit algorithm requires defining an optimistic confidence
interval around the expected value of a given node i that
will consider both Ti(t) and Si(t). Ti(t) and Si(t) are the
number of times a node i is evaluated and the number of
evaluation feedbacks observed until time t.

Given such delayed statistics, any UCB-like bandit algo-
rithm computes Bi,s,t, i.e. the optimistic upper confidence
bound for action i at time t (Table 2), and chooses the one
with maximum Bi,s,t:

it = argmax
i∈A

Bi,s,t.

We show three such confidence bounds in Table 2. Here,
µ̂i,s, σ̂2

i,s, and σ2 are sample mean, sample variance, and pre-
defined variance respectively. For the non-delayed setting,
s = Ti(t− 1), and for delayed setting, s = Si(t− 1). Rep-
resenting the modifications of UCB1 (Auer, Cesa-bianchi,
and Fischer 2002), UCB1-σ (Auer, Cesa-bianchi, and Fis-
cher 2002), and UCB-V (Audibert, Munos, and Szepesvári
2007) in such a general form allows us to extend them for
delayed settings and incorporate them for node selection in
PCTS. Thus, given an aforementioned UCB-like optimistic
bandit algorithm, the leaf node (ht, lt) selected by PCTS at
time t is

(ht, lt) ≜ argmax
(h,l)∈Tt

Bmin
(h,l)(t)
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BANDIT DUCB1 (Joulani, Gyorgy, and Szepesvári 2016) DUCB1σ DUCBV

Bi,s,t µ̂i,s +
√

2 log t
s µ̂i,s +

√
2σ2 log t

s µ̂i,s +

√
2σ̂2

i,s log t

s + 3b log t
s

Table 2: Confidence Bounds for different bandit algorithms with delayed/non-delayed feedback.

≜ argmax
(h,l)∈Tt

min{B(h,l),s,t + ν1ρ
h, max

(h′,l′)∈C(h,l)
Bmin

(h,l)(t)}.

(3)

Here, Tt is the tree constructed at time t, and C(h, l) is
the set of children nodes of the node (h, l). Equation (3) is
as same as that of HOO except that B(h,l),s,t is replaced
by bounds in Table 2. Under these modified confidence
bounds for delays, we derive the bound on expected regret of
PCTS+ DUCB1 that extends the regret analysis of bandits
with delayed feedback to HOO (Munos 2014).
Theorem 2 (Regret of PCTS+ DUCB1 under Stochastic
Delays). Under the same assumptions as Theorem 1 and
upper bound on expected delay τ , PCTS using Delayed-
UCB1 (DUCB1) achieves expected simple regret

ϵT = O

((
lnT

T

) 1
d′+2 (

1 +
τ

lnT

) 1
d′+2

)
. (4)

Corollary 1 (Regret of PCTS+ DUCB1 under Constant
Delay). If the assumptions of Theorem 1 hold, and the de-
lay is constant, i.e. τconst > 0, the expected simple regret of
PCTS+ DUCB1 is

ϵT = O

((
lnT

T

) 1
d′+2 (

1 +
τconst
lnT

) 1
d+2

)
. (5)

Consequences of Theorem 2. The bound of Theorem 2
provides us with a few interesting insights.
1. Degradation due to delay: we observe that the ex-
pected error of PCTS+ DUCB1 worsens by a factor of(
1 + τ

lnT

) 1
d+2 compared to HOO, which uses the non-

delayed UCB1 (Auer, Cesa-bianchi, and Fischer 2002). This
is still significantly better than the other global optimiza-
tion algorithm that can handle delay, such as Delayed Bandit
Gradient Descent (DBGD) (Li, Chen, and Giannakis 2019)

that achieves expected error bound
√

1
T + D

T . Here D is the
total delay. Also, appearance of delay as an additive term in
our analysis resonates with the proven results in bandits with
delayed feedback,where an additive term appears due to de-
lay. For d = 0, our bound matches in terms of T and τ with
the problem-independent lower bound of bandits with fi-
nite K-arms and constant delay, i.e.

√
(K/T + τ/T ) (Cesa-

Bianchi et al. 2016, Cor. 11), up to logarithmic factors.
2. Wait-and-act vs. PCTS+ DUCB1. A naı̈ve way to

handle known constant delay is to wait for the next τconst
time steps and to collect all the feedbacks in that interval
to update the algorithm. In that case, the effective horizon
becomes T

τconst
. Thus, the corresponding error bound will

be O
(
T− 1

d′+2 (τconst lnT )
1

d+2

)
. This is still higher than

our error bound in Equation 5 for unknown constant delay
τconst > 1 and T ≥ 3.

3. Deeper trees. While proving Theorem 2, we observe
that the depth H > 0 achieved by PCTS+ DUCB1 till
time T is such that ρ−H(d′+2) ≥ T

τ+lnT . This implies that
for a fixed horizon T , the achieved depth should be H ≥

1
d′+2

τ+lnT
ln(1/ρ) = Ω(τ+lnT ). In contrast, HOO grows a tree of

depth H = Ω(ln(T/τ)). This shows that PCTS+ DUCB1
constructs a deeper tree than HOO.

4. Benign and adversarial delays. If the expected delay
is O(lnT ) , the expected simple regret is practically of the
same order as that of non-delayed feedbacks. Thus, in cases
of applications where introducing artificial delays helps in
improving the computational cost (Wang, Trummer, and
Basu 2021), we can tune the delays to O(lnT ) for a given
horizon T without harming the accuracy. We refer to this
range of delays as benign delay. In contrast, one can con-
sider delay distributions that have tails with α-polynomial
decay, i.e. the expected delay is O(T 1−α) for α ∈ (0, 1).
In that case, the expected error is at least Õ(T− α

d+2 ). Thus,
it worsens the HOO bound by a factor of T

1−α
d+2 . This ob-

servation in error bound resonates with the impossibility
result of (Gael et al. 2020) that, in case of delays with α-
polynomial tails, a delayed bandit algorithm cannot achieve
total expected regret lower than (T 1−α). Thus, it is unex-
pected that any hierarchical tree search with such delays
achieves expected error better than O(T− α

d+2 ).

3.3 Adapting to Delayed and Noisy Feedback
Typically, when we evaluate the objective function at any
time step t, we obtain a noisy version of the function as
feedback such that f̃(Xt) = f(Xt) + ϵt. Here, ϵt is a noise
sample independently generated from a noise distribution N
with mean 0. Till now, we did not explicitly consider the
noise for the action selection step. In this section, we pro-
vide analysis for both known and unknown variance cases.
In both cases, we assume that the noise has bounded vari-
ance σ2, i.e. sub-Gaussian. In general, this assumption can
be imposed in the present setup as any noisy evaluation can
be clipped in the range of the evaluations where we optimize
the objective function. It is known that a bounded random
variable is sub-Gaussian with bounded mean and variance.

Case 1: Known Variance. Let us assume that the vari-
ance of the noise is known, say σ2 > 0. In this case, the
optimistic B-values can be computed using a simple variant
of delayed-UCB1, i.e. delayed-UCB-σ (DUCB1σ), where

B(h,i),S(h,i)(t−1),t ≜ µ̂(h,i),S(h,i)(t−1) +

√
2σ2 log t

S(h,i)(t− 1)
. (6)

Here, µ̂(h,i),S(h,i)(t−1) is the empirical mean computed using
noisy evaluations obtained till time t, i.e. ∪t

t′=0Ot, and for
node (h, i). In multiple works, this known noise setup and
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Fidel. Model Linear Growth Constant Polynomial Decay Exponential Decay

λ(Zh) min{βh, λ(1)}, β > 0 min{β, λ(1)}, β > 0 min{h−β , λ(1)}, β > 0, ̸= 1 min{β−h, λ(1)}, β ∈ (0, 1]

H(Λ)
√
2(2Λ− λ(1))/β 2(2Λ− λ(1))/β (1 + (1− β)(2Λ− λ(1)))1/(1−β) log1/β (1 + (1− β)(2Λ− λ(1)))

Table 3: Per-step cost λ(Zh) and total number of iterations H(Λ) for different Fidelity models.

UCB − σ2 algorithm has been considered in tree search
algorithms without delays.
Theorem 3. Let us assume that the variance of the noise
in evaluations is σ2 and is available to the algorithm. Then,
under the same assumptions as Theorem 1 and upper bound
on expected delay τ , PCTS using DUCB1σ for node selec-
tion achieves expected simple regret

ϵT = O
(
T− 1

d′+2
(
(σ/ν1)

2 lnT + τ
) 1

d+2

)
. (7)

Effect of Known Noise. We observe that even with no delay,
i.e. τ = 0, noisy feedback with known variance σ2 worsens
the bound of HOO with noiseless evaluations by σ2/(d+2).

Case 2: Unknown Variance. If the variance of the noise
is unknown, we have to estimate the noise variance empiri-
cally from evaluations. Given the evaluations {f̃(X1)}Tt=0
and the delayed statistics S(h,i)(t − 1) of node (h, i), the
empirical noise variance at time t is σ̂2

(h,i),S(h,i)(t−1) ≜

1
S(h,i)(t−1)

∑S(h,i)(t−1)

j=1 (f̃(Xj)1[(Hj , Ij) = (h, i)] −

µ̂(h,i),S(h,i)(t−1))
2, where empirical mean µ̂(h,i),S(h,i)(t−1) ≜

1
S(h,i)(t−1)

∑S(h,i)(t−1)

j=1 f̃(Xj)1[(Hj , Ij) = (h, i)]. Using
the empirical mean and variance of functional evaluations
for each node (h, i), we now define a delayed-UCBV
(DUCBV) confidence bound for selecting next node:

B(h,i),S(h,i)(t−1),t ≜ µ̂(h,i),S(h,i)(t−1)

+

√√√√2σ̂2
(h,i),S(h,i)(t−1) log t

S(h,i)(t− 1)
+

3b log t

S(h,i)(t− 1)
. (8)

In practice, we do not need an exact value of b. We can use
a large proxy value such that the feedback is bounded by it.
Theorem 4. Let us assume that the upper bound on vari-
ance of the noise in evaluations is σ2, which is unknown to
the algorithm. If [0, b] is the range of f , under the same as-
sumptions as of Theorem 1, PCTS using DUCBV achieves
expected simple regret

ϵT = O
(
T− 1

d′+2
(
((σ/ν1)

2 + 2b/ν1) lnT + τ
) 1

d′+2

)
.

Effect of Unknown Noise. Adapting UCB-V in the
stochastic delay setting and using the corresponding bound
in PCTS allows us to extend hierarchical tree search for un-
known noise both in presence and absence of delays. To
the best of our knowledge, this paper is the first to ex-
tend HOO framework for unknown noise, and also UCB-
V to stochastic delays. This adaptation to unknown noise
comes at a cost of (((σ/ν1)

2 + 2b/ν1) lnT )
1/(d+2) in

expected error, whereas for known noise variance, it is
((σ/ν1)

2 lnT )1/(d+2).

3.4 Adapting to Delayed, Noisy, and Multi-fidelity
(DNF) Feedback

Now, let us consider that we do not only have a delayed and
noisy functional evaluator at each step but also an evalua-
tor with different fidelity at each level h of the tree. This
setup of multi-fidelity HOO without unknown noise and de-
lay was first considered in (Sen, Kandasamy, and Shakkottai
2019). We extend their schematic to the version with delayed
and noisy feedback with unknown delays and noise. Follow-
ing the multi-fidelity formulation of (Sen, Kandasamy, and
Shakkottai 2018, 2019), we consider the mean of the multi-
fidelity query, fz(x), as biased, and progressively smaller
bias can be obtained but with varying costs. The cost of se-
lecting a new node at level h > 0 is λ(Zh) ∈ R+ and
the bias added in the decision due to the limited evalua-
tion is ζ(Zh) ∈ R+. Here, the bias function is monoton-
ically decreasing, and Zh ∈ Z is the state of fidelity of
the multi-fidelity evaluator, which influences both the cost
of and the bias in evaluation. Thus, the evaluation at xs is
f̃(x(hs,ls)|zh,s) ≜ f(x(hs,ls)) + ϵs + ζ(zhs). Hence, under
DNF feedback, the DUCBV selection rule becomes

B(h,i),S(h,i)(t−1),t ≜ µ̂(h,i),S(h,i)(t−1)

+

√√√√2σ̂2
(h,i),S(h,i)(t−1) log t

S(h,i)(t− 1)
+

3b log t

S(h,i)(t− 1)
+ ζ(Zh).

Here, the empirical mean and variance are computed us-
ing the multi-fidelity and delayed feedbacks. We do not
need to know ζ for the algorithm but we assume it to be
known for the analysis. Given this update rule and the multi-
fidelity model, we observe that the Lemma 1 of (Sen, Kan-
dasamy, and Shakkottai 2019) holds. Given a total bud-
get Λ and the multi-fidelity selection rule, the total num-
ber of iterations that the algorithms runs for is T (Λ) ≥
H(Λ) + 1, where H(Λ) ≜ max{H :

∑H
h=1 λ(Zh) ≤ Λ}

Thus, we can retain the previously derived bounds of Theo-
rem 2 and 4 by substituting T = H(Λ).
Corollary 2 (PCTS+ DUCBV under DNF Feedback). If
the function under evaluation has h-dependent fidelity such
that H(Λ) ≜ max{H :

∑H
h=1 λ(Zh) ≤ Λ} and the induced

bias ζ(Zh) = ν1ρ
h, then under the same assumptions as of

Theorem 1, PCTS using DUCB1 achieves

ϵΛ = O
(
(H(Λ))−

1
d′+2 (lnH(Λ) + τ)

1
d′+2

)
,

and PCTS using DUCBV achieves expected simple regret

ϵΛ =

O

(
(H(Λ))−

1
d′+2

(
lnH(Λ) +

τ

(σ/ν1)2 + 2b/ν1

) 1
d′+2

)
.

10386



0 100 200 300 400 500 600
Wall-Clock Time(s) 

 (a) 

10-4

10-3

10-2

10-1

100

101

S
im

p
le

 R
e
g

re
t

Hartmann3, d = 3

0 100 200 300 400 500 600
Wall-Clock Time(s) 

 (b) 

10-4

10-3

10-2

10-1

100

101

102

103 Branin, d = 2

0 100 200 300 400 500 600
Wall-Clock Time(s) 

 (c) 

10-4

10-3

10-2

10-1

100

101

102 CurrinExp, d = 2

200 300 400 500 600 700
Wall-Clock Time(s) 

 (d) 

0.5

0.6

0.7

0.8

0.9

V
a
l.

 A
cc

u
ra

cy

NewsGroup-SVM

600 800 1000 1200 1400 1600
Wall-Clock Time(s) 

 (e) 

0.93

0.94

0.95

0.96

0.97

0.98

MNIST-XGB

800 1000 1200 1400 1600
Wall-Clock Time(s) 

 (f) 

0.5

0.6

0.7

0.8

0.9

1.0 MNIST-NN

Figure 1: Figures (a) to (c) show simple regret (median of 10 runs) of different algorithms on synthetic functions with DNF
feedbacks. Figures (d) to (f) show the cross-validation accuracy (median of 5 runs) achieved on the hyperparameter tuning of
classifiers on datasets with DNF feedbacks.

Models of Multi-fidelity. Depending on the evaluation
problem, we may have different cost functions. In Table 3,
we instantiate the cost model, bias model, and total num-
ber of iterations for four multi-fidelity models with linear
growth, constant, polynomially decaying, and exponentially
decaying costs of evaluations. The linear growth, polyno-
mial decays, and exponential decays are observed in the
cases of hyperparameter tuning of deep-learning models,
database optimization, and tuning learning rates of convex
optimization respectively. Further details are in Appendix.

4 Experimental Analysis
Experimental Setup. Similar to prior work on tree search
with multi-fidelity and known noise (Sen, Kandasamy, and
Shakkottai 2018, 2019), we evaluate performance of PCTS
on both synthetic functions and machine learning models
operating on real-data but under delayed, noisy (unknown),
and multi-fidelity (DNF) feedback. We compare the per-
formance of PCTS with: BO algorithms (BOCA (Kan-
dasamy et al. 2017), GP-UCB (Srinivas et al. 2010), MF-GP-

UCB (Kandasamy et al. 2016), GP-EI (Jones, Schonlau, and
Welch 1998), MF-SKO (Huang et al. 2006))3, tree search al-
gorithms (MFPOO (Sen, Kandasamy, and Shakkottai 2018),
MFPOO with UCB-V (Audibert, Munos, and Szepesvári
2007)), zeroth-order GD algorithms (OGD, DBGD (Li,
Chen, and Giannakis 2019)).

In our experiments, cost is the time required for a func-
tion evaluation. Delay is the time required to communicate
the result to the PCTS algorithm. The cost-function and de-
lay can be general but in our experiments, we focus on time-
efficiency. Thus, we plot the convergence of the simple re-
gret of competing algorithms with respect to the wall-clock
time. In our experiments, we do not assume the smoothness
parameters, the bias function, and the cost function to be
known. The smoothness parameters are computed in a simi-

3We use the implementations in https://github.com/rajatsen91/
MFTreeSearchCV for baselines except OGD, DBGD, and
MFPOO-UCBV. For BO algorithms, this implementation chooses
the best among the polynomial kernel, coordinate-wise product
kernel and squared exponential kernel for each problem.
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lar manner as POO and MFPOO. For comparison, we keep
the delay constant and use wait-and-act versions of delay-
insensitive baselines. The experiments with stochastic delay
are elaborated in Appendix, where PCTS variants perform
even better in comparison with the constant delay setups.

Synthetic Functions. We illustrate results for three dif-
ferent synthetic functions, Hartmann3 (van der Vlerk 1996),
Branin (van der Vlerk 1996), and CurrinExp (Currin et al.
1988) with noise variances σ2 = 0.01, 0.05, and 0.05 re-
spectively. We follow the fidelity setup of (Sen, Kandasamy,
and Shakkottai 2018, 2019), that modifies the synthetic
functions to incorporate the fidelity space Z = [0, 1]. The
delay time τ for all synthetic functions is set to four sec-
onds. We choose to add noise from Gaussian distributions
with variance σ2. Note that the noise can be added from any
distribution with variance ≤ σ2. This σ is passed to UCB1-σ
and DUCB1-σ in MFPOO and PCTS as it assumes the noise
variance is known (Sen, Kandasamy, and Shakkottai 2019).
We implement all baselines in Python (version 2.7). We run
each experiment ten times for 600s on a MacBook Pro with
a 6-core Intel(R) Xeon(R)@2.60GHz CPU and plot the me-
dian value of simple regret, i.e. l1 distance between the value
of current best point and optimal value, for each algorithm.

Real Data: Hyperparameter Tuning. We evaluate
the aforementioned algorithms on a 32-core Intel(R)
Xeon(R)@2.3 GHz server for hyperparameter tuning of
SVM on News Group dataset, and XGB and Neural Net-
work on MNIST datasets. We use corresponding scikit-learn
modules (Buitinck et al. 2013) for training all the classifiers.
For each tuning task, we plot the median value of cross-
validation accuracy in five runs for 700s, 1700s, and 1800s
respectively. We set σ2 = 0.02 for algorithms where σ is
known, and b = 1 where UCBV and DUCBVare used.

Summary of Results. In all of the experiments, we ob-
serve that either PCTS+ DUCB1 or PCTS+ DUCBV out-
performs the competing algorithms in terms of convergence
speed. Also, in case of synthetic functions, they achieve ap-
proximately 1 to 3 order lower simple regret. These results
empirically validate the efficiency of PCTS to adapt to DNF
feedback. Due to lack of space, further implementation de-
tails, results on tree depth, performance for stochastic de-
lays, and error statistics for other synthetic functions and
hyperparamter tuning experiments are deferred to appendix.

5 Discussion and Future Work
We propose a generic tree search approach PCTS for black-
box optimization problems with DNF feedbacks. We pro-
vide a generic analysis to bound the expected simple re-
gret of PCTS given a horizon T . We instantiate PCTS with
delayed-UCB1 and delayed-UCBV for observable stochas-
tic delays, and known and unknown noises respectively. Our
analysis shows that the expected simple regret for PCTS

worsens by a constant factor and T
1−α
d+2 for expected de-

lay of O(log T ) and O(T 1−α) respectively. We also experi-
mentally show that PCTS outperforms other global optimiz-
ers incompatible or individually tolerant to noise, delay, or
multi-fidelity on both synthetic and real-world functions. In
addition, our work extends UCB-V to stochastic delays.

In the future, we plan to consider anonymous delay feed-
backs in order to develop tree search optimizers that re-
spect privacy. It also shows the need for proving a problem-
independent lower bound for hierarchical tree search with
stochastic delay. The other possible direction is to deploy
PCTS for planning in Markov Decision Processes with de-
lay, where tree search algorithms have been successful.
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