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Abstract

Submodular functions are at the core of many machine learn-
ing and data mining tasks. The underlying submodular func-
tions for many of these tasks are decomposable, i.e., they are
sum of several simple submodular functions. In many data in-
tensive applications, however, the number of underlying sub-
modular functions in the original function is so large that we
need prohibitively large amount of time to process it and/or it
does not even fit in the main memory. To overcome this issue,
we introduce the notion of sparsification for decomposable
submodular functions whose objective is to obtain an accurate
approximation of the original function that is a (weighted)
sum of only a few submodular functions. Our main result is
a polynomial-time randomized sparsification algorithm such
that the expected number of functions used in the output is in-
dependent of the number of underlying submodular functions
in the original function. We also study the effectiveness of our
algorithm under various constraints such as matroid and car-
dinality constraints. We complement our theoretical analysis
with an empirical study of the performance of our algorithm.

Introduction
Submodularity of a set function is an intuitive diminishing
returns property, stating that adding an element to a smaller
set helps gaining more return than adding it to a larger set.
This fundamental structure has emerged as a very benefi-
cial property in many combinatorial optimization problems
arising in machine learning, graph theory, economics, game
theory, to name a few. Formally, a set function f : 2E → R
is submodular if for any S ⊆ T ⊆ E and e ∈ E \ T it holds
that

f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T ).

Submodularity allows one to efficiently find provably
(near-)optimal solutions. In particular, a wide range of ef-
ficient approximation algorithms have been developed for
maximizing or minimizing submodular functions subject to
different constraints. Unfortunately, these algorithms require
number of function evaluations which in many data inten-
sive applications are infeasible or extremely inefficient. For-
tunately, several submodular optimization problems arising
in machine learning have structure that allows solving them
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more efficiently. A novel class of submodular functions are
decomposable submodular functions. These are functions
that can be written as sums of several “simple” submodu-
lar functions, i.e.,

F (S) =

N∑
i=1

fi(S) ∀S ⊆ E,

where each fi : 2E → R is a submodular function on the
ground set E with |E| = n.

Decomposable submodular functions encompass many of
the examples of submodular functions studied in the con-
text of machine learning as well as economics. For example,
they are extensively used in economics in the problem of
welfare maximization in combinatorial auctions (Dobzinski
and Schapira 2006; Feige 2006; Feige and Vondrák 2006;
Papadimitriou, Schapira, and Singer 2008; Vondrák 2008).

Example 1 (Welfare maximization). Let E be a set of n
resources and a1, . . . , aN be N agents. Each agent has an
interest over subsets of resources which is expressed as a
submodular function fi : 2E → R. The objective is to se-
lect a small subset of resources that maximizes the happiness
across all the agents, the “social welfare”. More formally, the
goal is to find a subset S ⊆ E of size at most k that maxi-
mizes F (S) =

∑N
i=1 fi(S), where k is a positive integer.

Decomposable submodular functions appear in various
machine learning tasks such as data summarization, where
we seek a representative subset of elements of small size.
This has numerous applications, including exemplar-based
clustering (Dueck and Frey 2007; Gomes and Krause
2010), image summarization (Tschiatschek et al. 2014), rec-
ommender systems (Parambath, Usunier, and Grandvalet
2016), and document and corpus summarization (Lin and
Bilmes 2011). The problem of maximizing decomposable
submodular functions has been studied under different con-
straints such as cardinality and matroid constraints in var-
ious data summarization settings (Mirzasoleiman, Badani-
diyuru, and Karbasi 2016; Mirzasoleiman et al. 2016; Mirza-
soleiman, Zadimoghaddam, and Karbasi 2016), and differ-
ential privacy settings (Chaturvedi, Nguyen, and Zakynthi-
nou 2021; Mitrovic et al. 2017; Rafiey and Yoshida 2020).

In many of these applications, the number of underlying
submodular functions are too large (i.e., N is too large) to
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even fit in the main memory, and building a compressed
representation that preserves relevant properties of the sub-
modular function is appealing. This motivates us to find a
sparse representation for a decomposable submodular func-
tion F . Sparsification is an algorithmic paradigm where a
dense object is replaced by a sparse one with similar “fea-
tures”, which often leads to significant improvements in ef-
ficiency of algorithms, including running time, space com-
plexity, and communication. In this work, we propose a sim-
ple and very effective algorithm that yields a sparse and ac-
curate representation of a decomposable submodular func-
tion. To the best of our knowledge this work is the first to
study sparsification of decomposable submodular functions.

Our Contributions
General setting. Given a decomposable submodular func-
tion F =

∑N
i=1 fi, we present a randomized algorithm that

yields a sparse representation that approximates F . Our al-
gorithm chooses each submodular function fi with proba-
bility proportional to its “importance” in the sum

∑N
i=1 fi

to be in the sparsifier. Moreover, each selected submodu-
lar function will be assigned a weight which also is pro-
portional to its “importance”. We prove this simple algo-
rithm yields a sparsifier of small size (independent of N )
with a very good approximation of F . Let |B(fi)| denote
the number of extreme points in the base polytope of fi, and
B = maxi∈[N ] |B(fi)|.

Theorem 2. Let F =
∑N
i=1 fi be a decomposable submod-

ular function. For any ε > 0, there exists a vector w ∈ RN

with at most O(B·n
2

ε2 ) non-zero entries such that for the sub-
modular function F ′ =

∑N
i=1 wifi we have

(1− ε)F ′(S) ≤ F (S) ≤ (1 + ε)F ′(S) ∀S ⊆ E.

Moreover, if all fi’s are monotone, then there exists a
polynomial-time randomized algorithm that outputs a vec-
tor w ∈ RN with at most O(B·n

2.5 logn
ε2 ) non-zero en-

tries in expectation such that for the submodular function
F ′ =

∑N
i=1 wifi, with high probability, we have

(1− ε)F ′(S) ≤ F (S) ≤ (1 + ε)F ′(S) ∀S ⊆ E.

Remark 3 (Tightness). The existential result is almost tight
because in the special case of directed graphs, we have
maxi |B(fi)| = 2 and it is known that we need Ω(n2) edges
to construct a sparsifier (Cohen et al. 2017).

Sparsifying under constraints. We consider the setting
where we only are interested in evaluation of F on particu-
lar sets. For instance, the objective is to optimize F on sub-
sets of size at most k, or it is to optimize F over subsets
that form a matroid. Optimizing submodular functions un-
der these constraints has been extensively studied and has an
extremely rich theoretical landscape. Our algorithm can be
tailored to these types of constraints and constructs a sparsi-
fier of even smaller size.

Theorem 4. Let F =
∑N
i=1 fi be a decomposable submod-

ular function. For any ε > 0 and a matroid M of rank r,

there exists a vector w ∈ RN with at most O(B·r·nε2 ) non-
zero entries such that for the submodular function F ′ =∑N
i=1 wifi we have

(1− ε)F ′(S) ≤ F (S) ≤ (1 + ε)F ′(S) ∀S ⊆M.

Moreover, if all fi’s are monotone, then there exists a
polynomial-time randomized algorithm that outputs a vec-
tor w ∈ RN with at most O(B·r·n

1.5 logn
ε2 ) non-zero en-

tries in expectation such that for the submodular function
F ′ =

∑N
i=1 wifi, with high probability, we have

(1− ε)F ′(S) ≤ F (S) ≤ (1 + ε)F ′(S) ∀S ⊆M.

Applications, speeding up maximization/minimization.
Our sparsifying algorithm can be used as a preprocessing
step in many settings in order to speed up algorithms. To
elaborate on this, we consider the classical greedy algorithm
of Nemhauser, Wolsey, and Fisher for maximizing mono-
tone submodular functions under cardinality constraints. We
observe that sparsifying the instance reduces the number
of function evaluations from O(knN) to O(Bk

2n2

ε2 ), which
is a significant speed up when N � n. Regarding mini-
mization, we prove our algorithm gives an approximation
on the Lovász extension, thus it can be used as a prepro-
cessing step for algorithms working on Lovász extensions
such as the ones in (Axiotis et al. 2021; Ene, Nguyen, and
Végh 2017). One particular regime that has been consid-
ered in many results is where each submodular function
fi acts on O(1) elements of the ground set which implies
B = maxi |B(fi)| is O(1). Using our sparsifier algorithm
as a preprocessing step is quite beneficial here. For in-
stance, it improves the running time of Axiotis et al. (2021)
from Õ(Tmaxflow(n, n + N) log 1

ε ) to Õ(Tmaxflow(n, n +
n2

ε2 ) log 1
ε ). Here, Tmaxflow(n,m) denotes the time required

to compute the maximum flow in a directed graph of n ver-
tices and m arcs with polynomially bounded integral capac-
ities.

Well-known examples. In practice, the bounds on the size
of sparsifiers are often better than the ones presented in The-
orems 2 and 4 e.g. B is a constant. We consider several
examples of decomposable submodular functions that ap-
pear in many applications, namely, MAXIMUM COVERAGE,
FACILITY LOCATION, and SUBMODULAR HYPERGRAPH
MIN CUT problems. For the first two examples, sparsifiers
of size O(n

2

ε2 ) can be constructed in time linear in N . For
SUBMODULAR HYPERGRAPH MIN CUT when each hyper-
edge is of constant size sparsifiers of size O(n

2

ε2 ) exist, and
in several specific cases with various applications efficient
algorithms are employed to construct them.

Empirical results. Finally, we empirically examine our
algorithm and demonstrate that it constructs a concise spar-
sifier on which we can efficiently perform algorithms.

Related Work
To the best of our knowledge there is no prior work on spar-
sification algorithms for decomposable submodular func-
tions. However, special cases of this problem have attracted
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much attention, most notably cut sparsifiers for graphs. The
cut function of a graph G = (V,E) can be seen as a de-
composable submodular function F (S) =

∑
e∈E fe, where

fe(S) = 1 if and only if e∩S 6= ∅ and e∩ (V \S) 6= ∅. The
problem of sparsifying a graph while approximately preserv-
ing its cut structure has been extensively studied, (See Ahn,
Guha, and McGregor (2012, 2013); Bansal, Svensson, and
Trevisan (2019); Benczúr and Karger (2015) and references
therein.) The pioneering work of Benczúr and Karger (1996)
showed for any graph G with n vertices one can con-
struct a weighted subgraph G′ in nearly linear time with
O(n log n/ε2) edges such that the weight of every cut in
G is preserved within a multiplicative (1 ± ε)-factor in G′.
Note that a graph on n vertices can have N = Ω(n2) edges.
The bound on the number of edges was later improved to
O(n/ε2) (Batson, Spielman, and Srivastava 2012) which is
tight (Andoni et al. 2016).

A more general concept for graphs called spectral sparsi-
fier was introduced by Spielman and Teng (2011). This no-
tion captures the spectral similarity between a graph and its
sparsifiers. A spectral sparsifier approximates the quadratic
form of the Laplacian of a graph. Note that a spectral spar-
sifier is also a cut sparsifier. This notion has numerous ap-
plications in linear algebra (Mahoney 2011; Li, Miller, and
Peng 2013; Cohen et al. 2015; Lee and Sidford 2014), and it
has been used to design efficient approximation algorithms
related to cuts and flows (Benczúr and Karger 2015; Karger
and Levine 2002; Madry 2010). Spielman and Teng’s spar-
sifier hasO(n logc n) edges for a large constant c > 0 which
was improved to O(n/ε2) (Lee and Sun 2018).

In pursuing a more general setting, the notions of cut
sparsifier and spectral sparsifier have been studied for hy-
pergraphs. Observe that a hypergraph on n vertices can
have exponentially many hyperedges i.e., N = Ω(2n). For
hypergraphs, Kogan and Krauthgamer (2015) provided a
polynomial-time algorithm that constructs an ε-cut sparsi-
fier with O(n(r + log n)/ε2) hyperedges where r denotes
the maximum size of a hyperedge. The current best result is
due to Chen, Khanna, and Nagda (2020) where their ε-cut
sparsifier uses O(n log n/ε2) hyperedges and can be con-
structed in time O(Nn2 + n10/ε2) where N is the num-
ber of hyperedges. Recently, Soma and Yoshida (2019) ini-
tiated the study of spectral sparsifiers for hypergraphs and
showed that every hypergraph admits an ε-spectral sparsi-
fier with O(n3 log n/ε2) hyperedges. For the case where
the maximum size of a hyperedge is r, Bansal, Svensson,
and Trevisan (2019) showed that every hypergraph has an
ε-spectral sparsifier of size O(nr3 log n/ε2). Recently, this
bound has been improved to O(nr(log n/ε)O(1)) and then
to O(n(log n/ε)O(1)) (Kapralov et al. 2021a,b). This leads
to the study of sparsification of submodular functions which
is the focus of this paper and provides a unifying framework
for these previous works.

Preliminaries
For a positive integer n, let [n] = {1, 2, . . . , n}. Let E be a
set of elements of size n which we call the ground set. For a
set S ⊆ E, 1S ∈ RE denotes the characteristic vector of S.

For a vector x ∈ RE and a set S ⊆ E, x(S) =
∑
e∈S x(e).

Submodular functions. Let f : 2E → R+ be a set func-
tion. We say that f is monotone if f(S) ≤ f(T ) holds
for every S ⊆ T ⊆ E. We say that f is submodular if
f(S ∪ {e}) − f(S) ≥ f(T ∪ {e}) − f(T ) holds for any
S ⊆ T ⊆ E and e ∈ E \T . The base polytope of a submod-
ular function f is defined as

B(f) = {y ∈ RE | y(S) ≤ f(S) ∀S ⊆ E,y(E) = f(E)},
and |B(f)| denotes the number of extreme points in the base
polytope B(f).
Definition 5 (ε-sparsifier). Let fi (i ∈ D) be a set of N
submodular functions, and F (S) =

∑
i∈D fi(S) be a de-

composable submodular function. A vector w ∈ RN is
called an ε-sparsifier of F if, for the submodular function
F ′ :=

∑
i∈Dwifi, the following holds for every S ⊆ E

(1− ε)F ′(S) ≤ F (S) ≤ (1 + ε)F ′(S). (1)

The size of an ε-sparsifier w, size(w), is the number of in-
dices i’s with wi 6= 0.

Matroids and matroid polytopes. A pairM = (E, I) of
a set E and I ⊆ 2E is called a matroid if (1) ∅ ∈ I , (2) A ∈
I for any A ⊆ B ∈ I , and (3) for any A,B ∈ I with |A| <
|B|, there exists e ∈ B \ A such that A ∪ {e} ∈ I . We call
a set in I an independent set. The rank function rM : 2E →
Z+ of M is rM(S) = max{|I| : I ⊆ S, I ∈ I}. An in-
dependent set S ∈ I is called a base if rM(S) = rM(E).
We denote the rank ofM by r(M). The matroid polytope
P(M) ⊆ RE ofM is P(M) = conv{1I : I ∈ I}, where
conv denotes the convex hull. Or equivalently (Edmonds
2001), P(M) = {x ≥ 0 : x(S) ≤ rM(S) ∀S ⊆ E} .

Constructing a Sparsifier
In this section, we propose a probabilistic argument that
proves the existence of an accurate sparsifier and turn this
argument into an (polynomial-time) algorithm that finds a
sparsifier with high probability.

For each submodular function fi, let

pi = max
A⊆E

fi(A)

F (A)
. (2)

The values pi’s are our guide on how much weight should be
allocated to a submodular function fi and with what proba-
bility it might happen. To construct an ε-sparsifier of F , for
each submodular function fi, we assign weight 1/(κ · pi) to
wi with probability κ ·pi and do nothing for the complement
probability 1− κ · pi (see Algorithm 1). Here κ depends on
n, ε and δ where δ is the failure probability of our algorithm.
Observe that, for each fi, the expected weight wi is exactly
one. We show that the expected number of entries of w with
wi > 0 is n2 ·maxi∈D |B(fi)|. Let B = maxi∈D |B(fi)| in
the rest of the paper.
Lemma 6. Algorithm 1 returns w which is an ε-sparsifier
of F with probability at least 1− δ.
Lemma 7. Algorithm 1 outputs an ε-sparsifier with the ex-
pected size O(B·n

2

ε2 ).

10338



Algorithm 1

Require: Submodular functions fi in datasetD where each
fi : {0, 1}E → R, ε, δ ∈ (0, 1)

1: w ← 0
2: κ← 3 log(2n+1/δ)/ε2

3: for fi in D do
4: pi ← maxA⊆E fi(A)/F (A)
5: κi ← min{1, κ · pi}
6: wi ← 1/κi with probability κi . do nothing with

probability 1− κi
7: return w ∈ RD.

Proof. In Algorithm 1, each wi is greater than zero with
probability κi and it is zero with probability 1− κi. Hence,

E[size(w)] =
∑
i∈D

κi ≤ κ
∑
i∈D

pi ≤ O (n/ε2)
∑
i∈D

pi (3)

It suffices to show an upper bound for
∑
i∈D pi.

Claim 8.
∑
i∈D pi ≤ n ·maxi∈D |B(fi)| = n ·B.

Claim 8 and inequality (3) yield the desired bound.

Lemmas 6 and 7 proves the existence part of Theorem 2.
That is, for every ε, δ ∈ (0, 1), there exists an ε-sparsifier of
size at most O(B·n

2

ε2 ) with probability at least 1− δ.

Polynomial time algorithm. Observe that computing
pi’s (2) may not be a polynomial-time task in general. How-
ever, to guarantee that Algorithm 1 outputs an ε-sparsifier
with high probability it is sufficient to instantiate it with
an upper bound for each pi (see proof of Lemma 6). For-
tunately, the result of Bai et al. (2016) provides an algorithm
to approximate the ratio of two monotone submodular func-
tions.

Theorem 9 (Bai et al. (2016)). Let f and g be two mono-
tone submodular functions. Then there exists a polynomial-
time algorithm that approximates maxS⊆E

f(S)
g(S) within

O(
√
n log n) factor.

Hence, when all fi’s are monotone we can compute
p̂i’s with pi ≤ p̂i ≤ O(

√
n log n)pi in polynomial time

which leads to a polynomial-time randomized algorithm
that constructs an ε-sparsifier of the expected size at most
O(B·n

2.5 logn
ε2 ). This proves the second part of Theorem 2.

As we will see, in various applications, the expected size
of the sparsifier is often much better than the ones presented
in this section. Also, we emphasize that once a sparsifier is
constructed it can be reused many times (possibly for max-
imization/minimization under several different constraints).
Hence computing or approximating pi’s should be regarded
as a preprocessing step. Finally, it is straightforward to adapt
our algorithm to sparsify decomposable submodular func-
tions of the form

∑
i∈D αifi, known as mixtures of submod-

ular functions (Bairi et al. 2015; Tschiatschek et al. 2014).

Algorithm 2

Require: Submodular functions fi : {0, 1}E → R in
dataset D, matroidM = (E, I), and ε, δ ∈ (0, 1)

1: w ← 0
2: κ← 3 log(2nr+1/δ)/ε2, where r is the rank ofM.
3: for fi in D do
4: pi ← maxA∈I fi(A)/F (A)
5: κi ← min{1, κ · pi}
6: wi ← 1/κi with probability κi . do nothing with

probability 1− κi
7: return w ∈ RD.

Constructing a Sparsifier under Constraints
Here we are interested in constructing a sparsifier for a de-
composable submodular function F while the goal is to op-
timize F subject to constraints. One of the most commonly
used and general constraints are matroid constraints. That
is, for a matroid M = (E, I), the objective is finding
S∗ = argmaxS⊆E,S∈I F (S).

In this setting it is sufficient to construct a sparsifier that
approximates F only on independent sets. It turns out that
we can construct a smaller sparsifier than the one con-
structed to approximate F everywhere. For each submodular
function fi, let

pi = max
A∈I

fi(A)

F (A)
. (4)

Other than different definition for pi’s and different κ, Algo-
rithm 2 is the same as Algorithm 1.
Theorem 10. Algorithm 2 returns a vector w with expected
size at most O(B·r·nε2 ) such that, with probability at least
1− δ, for F ′ =

∑
i∈Dwifi we have

(1− ε)F ′(S) ≤ F (S) ≤ (1 + ε)F ′(S) ∀S ⊆M.

Theorem 10 proves the existence part of Theorem 4. Al-
gorithm 2 can be turned into a polynomial-time algorithm
if one can approximate pi’s (4). By modifying the proof of
Theorem 9 we prove the following.
Theorem 11. Let f and g be two monotone submod-
ular functions and M = (E, I) be a matroid. Then
there exists a polynomial-time algorithm that approximates
maxS⊆E,S∈I

f(S)
g(S) within O(

√
n log n) factor.

By this theorem, when all fis are monotone we can com-
pute p̂i’s with pi ≤ p̂i ≤ O(

√
n log n)pi in polynomial

time which leads to a polynomial-time randomized algo-
rithm that constructs an ε-sparsifier of the expected size at
most O(B·r·n

1.5 logn
ε2 ). This proves the second part of Theo-

rem 4.

Applications
Submodular Function Maximization with
Cardinality Constraint
Our sparsification algorithm can be used as a preprocess-
ing step and once a sparsifier is constructed it can be reused
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Algorithm 3

Require: Submodular function F =
∑
i∈D

fi with each fi :

{0, 1}E → R, constant k, and ε, δ ∈ (0, 1)
1: Compute F ′ =

∑
i∈Dwifi, an ε-sparsifier for F .

2: A← ∅.
3: while |A| ≤ k do
4: ai ← argmaxa∈E\A(F ′(A ∪ {a})− F ′(A)).
5: A← A ∪ {ai}.
6: return A.

many times (possibly for maximization/minimization un-
der several different constraints). To elaborate on this, we
consider the problem of maximizing a submodular func-
tion subject to a cardinality constraint. That is finding S∗ =
argmaxS⊆E,|S|≤k F (S). Cardinality constraint is a special
case of matroid constraint where the independent sets are all
subsets of size at most k and the rank of the matroid is k. A
celebrated result of Nemhauser, Wolsey, and Fisher (1978)
states that for non-negative monotone submodular functions
a simple greedy algorithm provides a solution with (1−1/e)
approximation guarantee to the optimal (intractable) solu-
tion. For a ground set E of size n and a monotone submod-
ular function F =

∑
i∈D fi, this greedy algorithm needs

O(knN) function evaluations to find S of size k such that
F (S) ≥ (1 − 1/e)F (S∗). We refer to this algorithm as
GreedyAlg. In many applications where N � n, having
a sparsifier is beneficial. Applying GreedyAlg on an ε-
sparsifier of size O(Bkn/ε2) improves the number of func-
tion evaluations toO(Bk2n2/ε2) and yields S of size k such
that F (S) ≥ (1− 1/e− ε)F (S∗) with high probability (see
Algorithm 3).

We point out that sampling techniques such as (Mitro-
vic et al. 2018; Mirzasoleiman et al. 2015) sample elements
from the ground set E rather than sampling from func-
tions f1, . . . , fN . Hence their running time depend on N ,
which could be slow when N is large — the regime we
care about. Besides, our algorithm can be used as a pre-
processing step for these algorithms. For instance, the lazier
than lazy greedy algorithm (Mirzasoleiman et al. 2015) re-
quiresO(nN log 1

ε ) function evaluations. However, whenN
is much larger than n it is absolutely beneficial to use our
sparsification algorithm and reduce the number of submod-
ular functions that one should consider.

Two Well-known Examples

Maximum Coverage Problem. Let [N ] be a universe and
E = {S1, . . . , Sn} with each Si ⊆ N be a family of sets.
Given a positive integer k, in the MAX COVERAGE prob-
lem the objective is to select at most k of sets from E such
that the maximum number of elements are covered, i.e., the
union of the selected sets has maximal size. One can formu-
late this problem as follows. For every i ∈ [N ] and A ⊆ [n]
define fi(A) as

fi(A) =

{
1 if there exists a ∈ A such that i ∈ Sa,
0 otherwise.

Note that fi’s are monotone and submodular. Furthermore,
define F : 2n → R+ to be F (A) =

∑
i∈[N ] fi(A) which

is monotone and submodular as well. Now the MAX COV-
ERAGE problem is equivalent to maxA⊆[n],|A|≤k F (A). For
each submodular function fi, the corresponding pi is

pi = max
A⊆[n],|A|≤k

fi(A)

F (A)
= max
Sa∈E,i∈Sa

fi({a})
F ({a})

= max
Sa∈E,i∈Sa

1

F ({a})
= max
Sa∈E,i∈Sa

1

|Sa|
.

We can compute all the pi’s in O(
∑
|Si|) time, which is the

input size. Then we can construct a sparsifier in O(N) time.
In total, the time required for sparsification is O(

∑
|Si| +

N). On the other hand, for this case we have
N∑
i=1

pi =
N∑
i=1

max
Sa∈S,i∈Sa

1

|Sa|
≤

n∑
i=1

|Si|
|Si|

= n.

By Lemma 7, this upper bound provides that our algorithm
constructs an ε-sparsifier of size at most O(kn/ε2). Algo-
rithm 3 improves the running time of the GreedyAlg from
O(knN) to O(k2n2/ε2). Furthermore, Algorithm 3 returns
a setA of size at most k such that (1−1/e−ε)OPT ≤ F (A).
(OPT denotes F (S∗) where S∗ = argmaxS⊆E,|S|≤k F (S).)

Facility Location Problem. Let I be a set of N clients
and E be a set of facilities with |E| = n. Let c : I ×E → R
be the cost of assigning a given client to a given facility. For
each client i and each subset of facilities A ⊆ E, define
fi(A) = maxj∈A c(i, j). For any non-empty subset A ⊆ E,
the value of A is given by

F (A) =
∑
i∈I

fi(A) =
∑
i∈I

max
j∈A

c(i, j).

For completeness, we define F (∅) = 0. An instance of the
MAX FACILITY LOCATION problem is specified by a tuple
(I, E, c). The objective is to choose a subset A ⊆ E of size
at most k maximizing F (A). For each submodular function
fi, the corresponding pi is

pi = max
A⊆E,|A|≤k

max
j∈A

c(i, j)

F (A)
= max

j∈E

c(i, j)

F ({j})
It is clear that pi’s can be computed in O(|I| · |E|) time,
which is the input size. In this case, we have

∑
i∈I

pi =
∑
i∈I

max
j∈E

c(i, j)

F ({j})
≤
|E|∑
j=1

∑
i∈I

c(i, j)

F ({j})
=

|E|∑
j=1

F ({j})
F ({j})

= |E| = n.

Hence, by Lemma 7, our algorithm construct a sparsifier of
size O(kn/ε2). Algorithm 3 improves the running time of
the GreedyAlg from O(knN) to in O(k2n2/ε2). Further-
more, Algorithm 3 returns a set A of size at most k such that
(1− 1/e− ε)OPT ≤ F (A).
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Remark 12. Lindgren, Wu, and Dimakis (2016) sparsify an
instance of the FACILITY LOCATION problem by zeroing
out entries in the cost matrix — this is not applicable to the
general setting. The runtime of the GreedyAlg applied on
their sparsified instance is O(nN/ε). This runtime is huge
when N is large — the regime we care about. Moreover, we
can first construct our sparsifier and apply the algorithm of
Lindgren, Wu, and Dimakis on it.

Submodular Function Minimization
Besides the applications regarding submodular maximiza-
tion, our sparsification algorithm can be used as a pre-
processing step for submodular minimization as well. In
many applications of the submodular minimization prob-
lem such as image segmentation (Shanu, Arora, and Singla
2016), Markov random field inference (Fix et al. 2013;
Kohli, Ladicky, and Torr 2009; Vicente, Kolmogorov, and
Rother 2009), hypergraph cuts (Veldt, Benson, and Klein-
berg 2020b), covering functions (Stobbe and Krause 2010),
the submodular function at hand is a decomposable sub-
modular function. Many of recent advances on decompos-
able submodular minimization such as (Ene, Nguyen, and
Végh 2017; Axiotis et al. 2021) have leveraged a mix of
ideas coming from both discrete and continuous optimiza-
tion. Here we discuss that our sparsifying algorithm approx-
imates the so called Lovász extension, a natural extension of
a submodular function to the continuous domain [0, 1]n.

Lovász extension. Let x ∈ [0, 1]n be the vector
(x1,x2, . . . ,xn). Let π : [n] → [n] be a sorting per-
mutation of x1,x2, . . . ,xn, which means if π(i) = j,
then xj is the i-th largest element in the vector x. Hence,
1 ≥ xπ(1) ≥ · · · ≥ xπ(n) ≥ 0. Let xπ(0) = 1
and xπ(n+1) = 0. Define sets Sπ0 = ∅ and Sπi =
{π(1), . . . , π(i)}. The Lovász extension of f is defined as
follows fL(x) =

∑n
i=0(xπ(i) − xπ(i+1))f(Sπi ). It is well-

known that fL(x) = maxy∈B(f)〈y,x〉.
For a decomposable submodular function F =

∑
i∈D fi,

its Lovász extension is

FL(x) =
n∑
j=0

∑
i∈D

(xπ(j) − xπ(j+1))fi(S
π
j ).

Recall the definition of pi’s (2), they can be expressed in an
equivalent way in terms of permutations as follow

pi = max
A⊆E

fi(A)

F (A)
= max

π
max
j∈[n]

fi(S
π
j )

F (Sπj )
. (5)

Furthermore, note that FL(x) is a linear combination of
F (S), S ⊆ E. Given these, we prove Algorithm 1 outputs a
sparsifier that not only approximates the function itself but
also approximates its Lovász extension.

Theorem 13. Algorithm 1 returns a vector w with expected
size at most O(B·n

2

ε2 ) such that, with probability at least 1−
δ, for F ′ =

∑
i∈Dwifi it holds that

(1− ε)F ′L(x) ≤ FL(x) ≤ (1 + ε)F ′L(x) ∀x ∈ [0, 1]n.

Remark 14 (Relation to spectral sparsification of graphs).
The cut function of a graph G = (V,E) can be seen as
a decomposable submodular function F (S) =

∑
e∈E fe,

where fe(S) = 1 if and only if e ∩ S 6= ∅ and
e ∩ (V \ S) 6= ∅. The goal of spectral sparsifica-
tion of graphs (Spielman and Teng 2011) is to preserve
the quadratic form of the Laplacian of G, which can be
rephrased as

∑
e∈E f

L
e (x)

2. In contrast, our sparsification
preserves FL(x) =

∑
e∈E f

L
e (x). Although we can con-

struct a sparsifier that preserves
∑
e∈E f

L
e (x)

2 in the gen-
eral submodular setting, we adopted the one used here
because, in many applications where submodular func-
tions are involved, we are more interested in the value of∑
e∈E f

L
e (x) than

∑
e∈E f

L
e (x)

2, and the algorithm for
preserving the former is simpler than that for preserving the
latter.

Because our algorithm gives an approximation on the
Lovász extension, it can be used as a preprocessing step for
algorithms working on Lovász extensions such as the ones in
(Axiotis et al. 2021; Ene, Nguyen, and Végh 2017). For in-
stance, it improves the running time of Axiotis et al. (2021)
from Õ(Tmaxflow(n, n + N) log 1

ε ) to Õ(Tmaxflow(n, n +
n2

ε2 ) log 1
ε ) in cases where each submodular function fi ∈ D

acts on O(1) elements of the ground set which implies
B = maxi |B(fi)| is O(1). An example of such cases is
hypergraph cut functions with O(1) sized hyperedges.

Next we discuss several examples for which computing
pi’s is a computationally efficient task, thus achieving a
polynomial-time algorithm to construct sparsifiers. Recall
that the cut function of a graph G = (V,E) can be seen as a
decomposable submodular function. In this case, computing
each pe for an edge e = st ∈ E is equivalent to finding the
minimum s-t cut in the graph, which is a polynomial time
task. A more general framework is the submodular hyper-
graph minimum s-t cut problem discussed in what follows.

Submodular hypergraphs (Li and Milenkovic 2018;
Yoshida 2019). Let H be a hypergraph with vertex set V
and set of hyperedgesE where each hyperedge is a subset of
vertices V . A submodular function fe is associated to each
hyperedge e ∈ E. In the submodular hypergraph minimum
s-t cut problem the objective is

minimizeS⊂V
∑
e∈E

fe(e ∩ S) (6)

subject to s ∈ S, t ∈ V \S. This problem has been studied by
Veldt, Benson, and Kleinberg (2020a) and its special cases
where submodular functions fe take particular forms have
been studied with applications in semi-supervised learning,
clustering, and rank learning (see Li and Milenkovic (2018);
Veldt, Benson, and Kleinberg (2020a) for more details). Ex-
amples of such special cases include:

• Linear penalty: fe(S) = min{|S|, |e \ S|}
• Quadratic Penalty: fe(S) = |S| · |e \ S|

We refer to Table 1 in Veldt, Benson, and Kleinberg (2020a)
for more examples. These examples are cardinality-based,
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(a) Uber pickup (b) Discogs (c)

Figure 1: Figures (a) and (b) show the relative performance of the greedy method on sparsifiers on Uber pickup and Discogs
datasets, respectively. Figure (c) shows relative size of sparsifiers and relative runtime of the greedy method on sparsifiers.

that is, the value of the submodular function depends on the
cardinality of the input set (see Definition 3.2 of Veldt, Ben-
son, and Kleinberg (2020a)). It is known that if all the sub-
modular functions are cardinality-based, then computing the
s-t minimum cut in the submodular hypergraph can be re-
duced to that in an auxiliary (ordinary) graph (Theorem 4.6
of Veldt, Benson, and Kleinberg (2020a)), which allows us
to compute pe’s in polynomial time.

Remark 15. Our sparsification algorithm can also be used
to construct submodular Laplacian based on the Lovász
extension of submodular functions. Submodular Laplacian
was introduced by Yoshida (2019) and has numerous appli-
cations in machine learning, including in learning ranking
data, clustering based on network motifs (Li and Milenkovic
2017), network analysis (Yoshida 2016), and etc.

Experimental Results
In this section, we empirically demonstrate that our algo-
rithm (Algorithm 2) generates a sparse representation of a
decomposable submodular function F : 2E → R+ with
which we can efficiently obtain a high-quality solution for
maximizing F . We consider the following two settings.

Uber pickup. We used a dataset of Uber pickups in New
York city in May 2014 consisting of a set R of 564,517
records1. Each record has a pickup position, longitude and
latitude. Consider selecting k locations as waiting spots for
idle Uber drivers. To formalize this problem, we selected a
set L of 36 popular pickup locations in the database, and
constructed a facility location function F : 2L → R+ as
F (S) =

∑
v∈R fv(S), where fv(S) = maxu∈L d(u, v) −

minu∈S d(u, v) and d(u, v) is the Manhattan distance be-
tween u and v. Then, the goal of the problem is to maximize
F (S) subject to |S| ≤ k.

Discogs (Kunegis 2013). This dataset provides informa-
tion about audio records as a bipartite graph G = (L,R;E),
where each edge (u, v) ∈ L × R indicates that a label v
was involved in the production of a release of a style u. We
have |L| = 383 and |R| = 243, 764, and |E| = 5, 255, 950.
Consider selecting k styles that cover the activity of as

1Available at https://www.kaggle.com/fivethirtyeight/uber-
pickups-in-new-york-city

many labels as possible. To formalize this problem, we con-
structed a maximum coverage function F : 2L → R as
F (S) =

∑
v∈R fv(S), where fv(S) is 1 if v has a neighbor

in S and 0 otherwise. Then, the goal is to maximize F (S)
subject to |S| ≤ k.

Figure 1 (a) and (b) show the objective value of the solu-
tion obtained by the greedy method on the sparsifier relative
to that on the original input function with its 25th and 75th
percentiles. Although our theoretical results do not give any
guarantee when ε > 1, we tried constructing our sparsifier
with ε > 1 to see its performance. The solution quality of
our sparsifier for Uber pickup is more than 99.9% even when
ε = 4, and that for Discogs is more than 90% performance
when ε ≤ 1.0. The performance for Uber pickup is higher
than that for Discogs because the objective function of the
former saturates easily. These results suggest that we get a
reasonably good solution quality by setting ε = 1.

Number of functions and speedups. Figure 1 (c) shows
the size, that is, the number of functions with positive
weights, of our sparsifier relative to that of the original func-
tion and the runtime of the greedy method on the sparsifier
relative to that on the original function with their 25th and
75th percentiles when k = 8. The size and runtime are de-
creased by a factor of 30–50 when ε = 1. To summarize, our
experimental results suggest that our sparsifier highly com-
presses the original function without sacrificing the solution
quality.

Conclusion
Decomposable submodular functions appear in many data
intensive tasks in machine learning and data mining. Thus,
having a sparsifying algorithm is of great interest. In this
paper, we introduce the notion of sparsifier for decompos-
able submodular functions. We propose the first sparsifying
algorithm for these types of functions which outputs accu-
rate sparsifiers with expected size independent of the size of
original function. Our algorithm can be adapted to sparsify
mixtures of submodular functions. We also study the effec-
tiveness of our algorithm under various constraints such as
matroid and cardinality constraints. Our experimental results
complement our theoretical results on real world data. This
work does not present any foreseeable societal consequence.
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