
Improving Local Search Algorithms via Probabilistic Configuration Checking

Weilin Luo1, Rongzhen Ye1, Hai Wan1,2∗, Shaowei Cai3∗, Biqing Fang1, Delong Zhang1

1 School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
2 Key Laboratory of Machine Intelligence and Advanced Computing (Sun Yat-sen University), Ministry of Education, China

3 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China
{luowlin3,yerzh,fangbq3,zhangdlong3}@mail2.sysu.edu.cn, wanhai@mail.sysu.edu.cn, caisw@ios.ac.cn

Abstract

Configuration checking (CC) has been confirmed to alleviate
the cycling problem in local search for combinatorial opti-
mization problems (COPs). When using CC heuristics in local
search for graph problems, a critical concept is the configu-
ration of the vertices. All existing CC variants employ either
1- or 2-level neighborhoods of a vertex as its configuration.
Inspired by the idea that neighborhoods with different levels
should have different contributions to solving COPs, we pro-
pose the probabilistic configuration (PC), which introduces
probabilities for neighborhoods at different levels to consider
the impact of neighborhoods of different levels on the CC
strategy. Based on the concept of PC, we first propose prob-
abilistic configuration checking (PCC), which can be devel-
oped in an automated and lightweight favor. We then apply
PCC to two classic COPs which have been shown to achieve
good results by using CC, and our preliminary results con-
firm that PCC improves the existing algorithms because PCC
alleviates the cycling problem.

1 Introduction
Local search is a popular method for solving combinato-
rial optimization problems (COPs). One severe issue with
local search is the cycling problem, i.e., revisiting a candi-
date solution that has been visited recently (Michiels, Aarts,
and Korst 2007). More generally, the cycling problem refers
to the phenomenon that a local search algorithm spends too
much time in searching a small part of the search space.

Configuration checking (CC) (Cai, Su, and Sattar 2011)
is an effective mechanism to alleviate the cycling problem
for COPs, particularly those graph theoretic ones. It is an
interesting alternative to the standard use of tabu mecha-
nism (Glover 1989, 1990) to alleviate the cycling problem
in COPs. The main idea of the CC strategy is that if the con-
figuration of a vertex remains unchanged since its last re-
moval from the candidate solution, then it is forbidden to be
added back into the candidate solution. In recent years, there
have been variants of CC adapted to different COPs, such as
maximum weight clique problem (MWCP) (Wang, Cai, and
Yin 2016; Wang et al. 2020), minimum weight dominating

∗Corresponding authors.
Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

set problem (MWDS) (Wang, Cai, and Yin 2017), and max-
imum k-plex problem (Chen et al. 2020). Although there are
numerous variants of CC, the way of defining the configura-
tion relies on manual design. The configuration based on the
1-level neighborhoods of a vertex (Definition 1) is widely
used in CC-based local search algorithms. Another one is
the 2-level neighborhoods definition introduced for MWDS.

We argue that neighborhoods with more than two levels
can have an impact on a vertex and should be considered
in the configuration. To confirm that, we conduct a motiva-
tion experiment to give empirical evidence (details in Sec-
tion 4), where we consider the 1st-, 2nd- and 2+-level (Def-
inition 1) neighborhoods in the configuration for MWDS.
We randomly choose half vertices at each level as its new
configuration. The results show that the new configuration
improves the average performance for 71% instances.

In this paper, we focus on a new variant of CC that can
capture the contributions of neighborhoods with different
levels to the CC strategy. Our work revolves around the fol-
lowing two questions. Firstly, is there a general way to define
the configuration of a vertex? Then, how does the new con-
figuration lead to a further improvement of the CC strategy?

To answer the above questions, we propose a probabilis-
tic configuration (PC) which can be grounded into a specific
configuration by training for a given COP. The highlights
of PC are as follows. Firstly, it allows automatic design of
configurations, as its general form provides a design space
of every possible definition of configuration based on neigh-
borhoods. Secondly, it can easily lead to probabilistic con-
figuration checking (PCC) strategy by following the updat-
ing rules of CC strategy. Finally, by introducing probability,
it enhances the ability to explore new candidate solutions.

We apply PCC to two CC-based local search algo-
rithms (Wang, Cai, and Yin 2017, 2016) that achieve state-
of-the-art performance for MWDS and MWCP respectively.
Following the assessment of the methods (Wang, Cai, and
Yin 2017, 2016), we conduct experiments to compare the
improved algorithms using PCC with the original ones on a
wide range of benchmarks, which shows the superiority of
PCC over the original CC strategies. Besides, further anal-
yses show that by replacing the original CC strategies with
PCC, the number of different candidate solutions visited by
the algorithms in fixed steps significantly increases. This in-
dicates that PCC can better alleviate the cycling issue, which

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

10283

accounts for the performance improvement.

2 Preliminaries
An undirected graph G = (V,E) consists of a vertex set
V and an edge set E ⊆ V × V . For an edge e = {u, v},
vertices u and v are the endpoints of edge e. Two vertices
are neighboring vertices if and only if they belong to one
edge. For a vertex v, the set of its neighboring vertices is
N(v) = {u ∈ V | {u, v} ∈ E}, and its degree is deg(v) =
|N(v)|. The distance between two vertices u and v, denoted
by dist(u, v), is the number of edges in the shortest path
between them.

Definition 1. For a vertex v, we define its i-th-level neigh-
borhoods as Ni(v) = {u ∈ V | dist(u, v) = i}, i-level
neighborhoods as N≤i(v) =

⋃i
j=1 Nj(v), and its i+-level

neighborhoods as N>i(v) =
⋃

j=i+1 Nj(v), particularly,
N1(v) = N≤1(v) = N(v).

Configuration Checking. Let G = (V,E) be an undirected
graph, C ⊂ V the current candidate solution, and v a vertex.
sv ∈ {1, 0} is the state of v, where sv = 1 (resp. sv =
0) means v ∈ C (resp. v 6∈ C). The CC strategy is based
on the concept of configuration. In previous variants of CC
for COPs, the configuration of a vertex is a vector which
consists of the states of all vertices in its 1-level or 2-level
neighborhoods (Wang, Cai, and Yin 2017).

The CC strategy is usually implemented with a Boolean
array confCh for vertices. During the search procedure,
those vertices whose value in confCh is 0 are forbidden to
add into C. A typical CC strategy is as follows. The confCh
array is initialized as an all-1 array. After that, when a vertex
v is removed from C, confCh[v] is reset to 0, and when a
vertex v changes its state, for each vertex u in v’s configura-
tion, confCh[u] is set to 1.

3 Related Work
The variants of CC can be classified into three main cat-
egories: redefinition of configuration, multi-value CC, and
changes of CC rules.
Redefinition of configuration. Many variants consider the
1-level neighborhoods as configuration, such as (Cai et al.
2013; Cai and Su 2013; Wang, Cai, and Yin 2016). Wang,
Cai, and Yin (2017) proposed CC2 for MWDS, which takes
the 2-level neighborhoods into account, exploring more
search space. The same configuration design appeared in
CC2V3 (Wang et al. 2018).
Multi-value CC. Luo et al. (2015) proposed CSCC for
Boolean satisfiability problem (SAT), where the criterion of
adding a vertex is an integer rather than a Boolean. Wang
et al. (2018) proposed CC2V3 for MWDS problem in mas-
sive graphs, which allows configuration to have three values.
For maximum k-plex problem, Chen et al. (2020) proposed
DCC combined with incremental neighborhoods updating to
reduce configuration changing of the high-degree vertices.
Changes of CC rules. The third category of variants of
CC is the largest one. Many CC rules are added accord-
ing to analyzing different problems to obtain a better perfor-
mance, such as NCCA+ (Abramé, Habet, and Toumi 2017)

Algorithm 1: CC2FS(G, cutoff)
Input: a weighted graph G = (V,E,W), the cutoff time.
Output: a minimum dominating set of G.
1: S := InitGreedyConstruction() and S∗ := S;
2: while elapsed time < cutoff do
3: if there are no uncovered vertices then
4: if w(S) < w(S∗) then S∗ := S;
5: remove a vertex from S based on search strategy and up-

date confCh according to CC2-Rules;
6: continue;
7: end if
8: remove a vertex from S based on search strategy and update

confCh according to CC2-Rules;
9: while there are uncovered vertices do

10: add a vertex with confCh == 1 to S based on search
strategy and update confCh according to CC2-Rules;

11: end while
12: end while
13: return S∗;

Algorithm 2: LSCC(G, cutoff)
Input: a weighted graph G = (V,E,W), the cutoff time, the
search depth L.
Output: a maximum weight clique of G.
1: C∗ := ∅;
2: while elapsed time < cutoff do
3: C := GreedyConstruction() and update C∗ with C
4: for step = 0; step < L; step++ do
5: pick a vertex v /∈ C with confCh[v] == 1;
6: pick vertex pair (u, u′) with confCh[u′] == 1;
7: pick a vertex x ∈ C;
8: add v to C or remove x from C or swap u from C with

u′ according to search strategy;
9: update confCh according to SCC-Rules;

10: if w(C) > w(C∗) then C∗ := C;
11: end for
12: end while
13: return C∗;

for SAT, SCC (Wang, Cai, and Yin 2016) for MWCP, HC-
SCC (Luo et al. 2017) for weighted partial maximum satisfi-
ability problem, and CCA (Cai and Su 2012; Li et al. 2018)
for minimum weighted vertex cover problem, etc.

In this paper, we focus on the line of redefining the con-
figuration. We propose the PC that can represent all existing
configuration definitions of various CC heuristics based on
neighborhoods. We further propose the PCC heuristic.

To evaluate the effectiveness of our method, we ap-
ply PCC to two CC-based algorithms for two important
COPs: CC2FS (Wang, Cai, and Yin 2017) for MWDS and
LSCC (Wang, Cai, and Yin 2016) for MWCP. The outlines
of these two algorithms are shown in Algorithm 1 and Algo-
rithm 2. The reasons why we choose these algorithms will
be discussed in Section 6. The brief descriptions of MWDS
and MWCP are as follows.
MWDS. Given a vertex weighted graph, the minimum
weight dominating set problem (MWDS) consists in iden-
tifying a subset of vertices D ⊆ V with the smallest total
weight such that all vertices are either in D or adjacent to at

10284

least one vertex in D.
MWCP. The maximum clique problem is to find a clique
with the most vertices. When each vertex is associated with
a positive integer weight, MCP is extended to MWCP which
asks for a clique with the maximum total weight.

4 A Motivating Example
A main motivation of this work is the observation that CC
equipped with configurations including more levels (includ-
ing 1st-, 2nd- and 2+-levels) leads to improvements to the
algorithms based on only 1st- and 2nd-level neighborhoods.

Instances
CC2FS CC2FS-H

min avg time min avg time (s)

frb30-15-1 212 214.2 2.59 212 212.0 0.11
frb30-15-2 242 242.0 8.81 242 242.0 0.18
frb30-15-3 175 175.0 0.01 175 175.0 0.03
frb30-15-4 166 168.6 0.19 166 166.0 0.08
frb30-15-5 160 160.0 0.01 160 160.0 0.02
frb35-17-1 274 274.9 0.57 274 274.0 0.11
frb35-17-2 208 208.3 67.44 208 208.0 0.29
frb35-17-3 201 201.0 0.38 201 201.0 0.10
frb35-17-4 286 286.8 0.73 286 286.0 0.45
frb35-17-5 295 295.7 5.60 295 295.0 0.11
frb40-19-1 262 262.0 1.99 262 262.0 0.14
frb40-19-2 243 243.9 0.66 243 243.0 0.18
frb40-19-3 250 251.8 102.43 250 250.0 3.88
frb40-19-4 250 250.0 0.07 249 249.0 95.82
frb40-19-5 272 282.3 0.31 272 277.6 82.50
frb45-21-1 328 328.3 7.82 328 328.0 0.64
frb45-21-2 259 261.7 46.82 259 259.1 1.39
frb45-21-3 233 233.9 9.19 233 233.0 0.89
frb45-21-4 399 399.2 22.67 399 399.0 0.95
frb45-21-5 312 318.8 128.19 312 312.0 1.82
frb50-23-1 261 264.7 90.71 261 261.0 8.97
frb50-23-2 277 277.0 0.01 277 277.0 0.17
frb50-23-3 299 301.9 1.21 281 292.2 31.13
frb50-23-4 265 265.0 3.04 265 265.0 0.47
frb50-23-5 410 418.8 128.09 410 411.1 158.96
frb53-24-1 229 230.0 95.41 229 229.0 2.35
frb53-24-2 298 298.0 1.04 298 298.0 0.38
frb53-24-3 182 182.1 0.01 182 182.0 0.26
frb53-24-4 189 189.0 0.02 189 189.0 0.27
frb53-24-5 204 204.0 0.01 204 204.0 0.29
frb56-25-1 229 229.2 0.32 229 229.0 0.41
frb56-25-2 319 319.5 25.27 319 319.0 3.46
frb56-25-3 336 338.7 30.21 336 336.0 38.80
frb56-25-4 268 268.0 0.21 268 268.0 0.41
frb56-25-5 425 427.6 103.13 425 425.0 1.83
frb59-26-1 262 264.0 1.62 262 262.0 25.31
frb59-26-2 383 391.1 97.04 383 383.0 5.64
frb59-26-3 248 248.0 1.13 246 246.0 14.24
frb59-26-4 248 248.9 47.47 248 248.0 0.62
frb59-26-5 288 288.8 195.62 288 288.0 3.26
frb100-40 350 350.0 2.04 350 350.0 9.70

#win 0 0 7 3 29 25

Table 1: Comparison results of CC2FS and CC2FS-H on
BHOSLIB benchmark, where ‘min’ means the best solution
found in all runs, ‘avg’ means the average value of the so-
lutions found, ‘time’ means the average time to find the op-
timal solution, and ‘#win’ means the number of instances
where the solver is better. All algorithms are executed 10
times on each instance independently with a cutoff time of
1000 seconds. We use boldface to indicate the better results.

In the experiment, we consider neighborhoods of all lev-
els. We run the MWDS algorithm CC2FS, the first algorithm
with 2-level (i.e., N≤2(v)) CC strategy. As in the paper of
CC2FS, the experiment is conducted with the BHOSLIB
benchmark. Interestingly, a simple variant of the CC strategy
leads to obvious improvements. In this variant, we randomly
choose half neighborhoods of each level as the configuration
of a vertex. The obtained algorithm by replacing the CC2

with this half-neighborhood CC is denoted as CC2FS-H.
The comparison results of CC2FS and CC2FS-H are

shown in Table 1. The statistics show that CC2FS-H finds
better solutions than CC2FS on 3 instances, and on the other
instances they have the same solutions. CC2FS-H also domi-
nates CC2FS on the average solution quality, where CC2FS-
H outperforms CC2FS on 29 out of 41 instances. These re-
sults motivate us to reconsider the definition of configura-
tion. Traditional definition based on only 1st- and 2nd-level
neighborhoods is far from an optimal configuration design.
This paper proposes a general form of configuration, which
can represent all existing configurations based on neighbor-
hoods and also can be designed in an automated way via
training the algorithm on the benchmarks. More importantly,
this leads to significant improvements for two state-of-the-
art CC-based algorithms.

5 Probabilistic Configuration Checking
In this section, we first give the definition of PC. Then we
show the PCC strategies for MWDS and MWCP. After that,
we analyze the complexity. Finally, we show how to obtain
the optimized PC for a COP.

5.1 Probabilistic Configuration
We first introduce probabilistic configuration (PC).
Definition 2. Given an undirected graph G = (V,E) and
a candidate solution S, the probabilistic configuration (PC)
of a vertex v ∈ V is a vector consisting of the states of
all vertices in (

⋃2
i=1(Ni(v))pi) ∪ (N>2(v))p3 , where pi ∈

[0, 1], i = 1, 2, 3, and {∗}pi is randomly chosen vertices
from the set {∗} with the size of d|{∗}| · pie.

Intuitively, the PC generically captures the vertices in-
cluding the remote and near ones that are supposed to be
the configuration of a vertex. The PC contains a set of prob-
abilities (p1, p2, p3 ∈ [0, 1]) characterizing the contributions
of vertices at different distances to improve results. Resort to
an automatic configuration process (training), we will train
the optimized configuration, i.e., the set of probabilities, on
the standard benchmarks for a specific COP. The details of
this training process will be explained in Section 5.4.

Note that the existing configurations are special cases of
the PC as shown in Table 2.

Configuration Probabilistic configuration form

N1(v) (N1(v))1.0 ∪ (N2(v))0.0 ∪ (N>2(v))0.0

N1(v) ∪N2(v)
⋃2

i=1(Ni(v))1.0 ∪ (N>2(v))0.0

Table 2: Configurations in the form of PC.

10285

5.2 Probabilistic Configuration Checking
Strategy

Now, we introduce how to obtain a PC with a SelectConf
procedure, and how to obtain PCC strategy based on the PC.

Algorithm 3: SelectConf(v, N1(v), N2(v), N>2(v), P)
Input: a vertex v and N1(v), N2(v), N>2(v), P = {p1, p2, p3} a
set of probabilities.
Output: the configuration Conf .
1: Q1 ← randomly choose d|N1(v)| · p1e vertices from N1(v);
2: Q2 ← randomly choose d|N2(v)| · p2e vertices from N2(v);
3: Q3 ← randomly choose d|N>2(v)| · p3e vertices from

N>2(v);
4: Conf(v)← Q1 ∪Q2 ∪Q3;
5: return Conf(v);

Firstly, we carry out a preprocessing to compute the 1st-
, 2nd-, and 2+- level neighborhoods for each vertex, which
can be quickly implemented with a breadth-first search algo-
rithm with the time complexity of O(|V | · |E|), which only
needs to be run once.

In each search step, for the operated vertex v, we select
vertices from N1(v), N2(v) and N>2(v) to form its config-
uration (Algorithm 3). Then, by defining the updating rules
for configuration checking, we obtain a concrete PCC strat-
egy. In this work, we apply PCC to two important problems
namely MWDS and MWCP. As for the updating rules, we
follow those in CC2FS and LSCC algorithms.

A PCC Strategy for MWDS
When removing a vertex u from the candidate solution S

• confCh[u] := 0;
• calculate Conf [u] according to Algorithm 3;
• for each vertex w ∈ Conf [u], confCh[w] is set to 1.

When adding a vertex v to the candidate solution S

• calculate Conf [v] according to Algorithm 3;
• for each vertex w ∈ Conf [v], confCh[w] is set to 1.

A PCC Strategy for MWCP
When removing a vertex u from the candidate solution S

• confCh[u] := 0;

When adding a vertex v to the candidate solution S

• calculate Conf [v] according to Algorithm 3;
• for each vertex w ∈ Conf [v], confCh[w] is set to 1.

When swapping a vertex u from the candidate solution S
with a vertex v

• confCh[u] := 0;
• calculate Conf [v] according to Algorithm 3;
• for each vertex w ∈ Conf [v], confCh[w] is set to 1.

A notable thing for the PC is that the configuration Conf
is determined until applying CC rules to confCh array.
Therefore, each time we update the states of the configu-
ration, the configuration Conf for the same vertex could be
totally different, which favors exploration.

5.3 Complexity Analysis
We compare the complexity of two existing configurations
and PC. Given an undirected graph G = (V,E), we use
∆(G) to denote max{|N(v)| | v ∈ V }. For the updating
rules of the 1-level neighborhoods configuration, the worst
time complexity is O(∆(G)). As for the rules of the 2-level
neighborhoods configuration, the worst time complexity is
O(∆(G)2). For PC, the worst time complexity is O(|V |)
(pi = 1.0 for all 1 ≤ i ≤ 3), which is the amount of
the vertices in the graph. This could result in a rather time-
consuming CC strategy. Fortunately, pi is not 1.0 after a
training process in most cases. As a result, the complexity
of PCC is roughly comparable with CC.

5.4 Automatic Configuration Process
There are three parameters, p1, p2, and p3, in the definition
of PC. In order to obtain a good configuration for a given
COP, we use a configurator similar to the state-of-the-art au-
tomatic algorithm configurator – SMAC (Hutter, Hoos, and
Leyton-Brown 2011) to configure the probabilistic config-
uration. We will illustrate the training process for different
training sets in Section 6 as follows.

6 Preliminary Results
We conduct extensive experiments to evaluate the viability
of the PCC. We first apply it to two different COPs, i.e.,
MWDS and MWCP. Secondly, we study the performance
of special PCC trained for different problems and different
benchmarks. Thirdly, we verify the effectiveness of PCC in
alleviating the cycling problem. Finally, we analyze param-
eter sensitivity for p1, p2, and p3.
Benchmarks. We carry out experiments to evaluate the
performance of the algorithms using PC for MWDS and
MWCP on two standard benchmarks, i.e., DIMACS (37
instances) and BHOSLIB (41 instances). DIMACS bench-
mark is from the Second DIMACS Implementation Chal-
lenge (Johnson and Trick 1996) including problems from
real applications and randomly generated graphs. BHOSLIB
instances are generated randomly based on the model RB at
the phase transition area (Xu et al. 2005). These instances
are originally unweighted, and to obtain the corresponding
weighted instances, we use the same method as in (Pul-
lan 2008; Wu, Hao, and Glover 2012). For the i-th ver-
tex vi, we set w(vi) = (i mod 200) + 1 to obtain the
weighted benchmarks DIMACS and BHOSLIB for MWCP
and MWDS. And we also adopt T1 (530 instances), T2 (530
instances), and UDG (120 instances) from (Jovanovic, Tuba,
and Simian 2010) for MWDS problem.
Competitors. For each problem, we select the algorithm
that achieves state of the art due to the variants of CC.

For MWDS, we select CC2FS (Wang, Cai, and Yin 2017),
the algorithm with the first 2-level neighborhoods CC strat-
egy, as the competitor. We implemented the version of
CC2FS with PC, namely CC2FS-P. We do not select the al-
gorithm (Wang et al. 2018) because it applies the same con-
figuration as CC2FS, and it is proposed for massive graphs.

For MWCP, we compare with LSCC, the algorithm with
SCC strategy (Wang, Cai, and Yin 2016), which is the first

10286

variant that introduces a strict strategy to reduce more un-
necessary search spaces. We also implemented the version
of LSCC with PC, namely LSCC-P. Note that we do not use
the optimized version of LSCC, i.e., LSCC+BMS, because
it is optimized for massive graphs. And we do not select the
algorithm (Wang et al. 2020) because this algorithm applies
the same configuration.
Settings. All competitors are implemented by their authors.
All algorithms are implemented in C++ and compiled by
g++ with ‘-O3’ option. All experiments are run on a Linux
computer with an Intel i7-9800x processor with 3.6 GHz and
64 GB RAM. The cutoff time of all instances is 1000s except
that the cutoff time of instances with the number of vertices
less than 500 is 50s in T1, T2, and UDG benchmark.

6.1 Comparison PCC with CC
We first separately train PCs for MWDS and MWCP, then
compare the performance of CC and PCC in each problem.

Benchmarks #inst.
CC2FS CC2FS-P sum of diff

#w.m. #w.a. #w.m. #w.a. min avg

tr
ai

n

T1 5 0 0 5 5 -167 -167.0
T2 5 0 0 3 3 -49 -49.0
UDG 4 4 4 0 0 30 30.0
BHOSLIB 4 0 0 1 4 -1 -8.4
DIMACS 8 0 0 0 0 0 0.0

te
st

T1 525 10 10 152 152 -2129 -2129.0
T2 525 0 0 57 57 -697 -697.0
UDG 116 81 81 16 16 541 541.0
BHOSLIB 37 0 0 6 26 -52 -105.1
DIMACS 29 0 0 2 9 -4 -27.2

Total 1258 95 95 242 272 -2528 -2611.7

Table 3: Comparison results of CC2FS and CC2FS-P on 7
benchmarks, where ‘#inst.’ means the number of instances
for training or testing, ‘#w.m.’ means the number of in-
stances where the solver is better in ‘min’, ‘w.a.’ means the
number of instances where the solver is better in ‘avg’. We
also report the sum of difference (‘sum of diff’) between
CC2FS-P and CC2FS in ‘min’ and ‘avg’. The smaller the
difference, the better for CC2FS-P.

Training process. To obtain the best PC of the algorithm
for a COP, we randomly selected a graph from each type of
graphs with the largest number of vertices in each bench-
mark as the training set. Note that for DIMACS, where the
graphs are generated for different applications, we chose the
graphs with the largest number of vertices in each applica-
tion. It is reasonable to use the graphs with the largest num-
ber of vertices because these graphs potentially contain a
number of patterns that show the impact of remote and near
vertices on the PCC strategy. Following the recommended
protocol (Hutter et al. 2017), we utilize the configurator to
optimize solution quality. We allow a time budget of 24
hours for the entire configuration process.
Results for MWDS. Table 3 shows that CC2FS-P is the
better solver on these benchmarks except the UDG bench-
mark. Particularly, CC2FS-P achieves much better minimum
and average weights than those of CC2FS on instances. The
performance of CC2FS-P for UDG benchmark is not good
because it performs worse even in the training set with re-

spect to the UDG benchmark. Therefore, we argue that it
results from the adverse bias generated from training data
from other benchmarks. We will discuss the bias of training
in this Section 6.2 as follows.
Results for MWCP. Table 4 illustrates that LSCC-P
achieves better performance than LSCC in BHOSLIB
benchmark, while it shows comparable performance with
LSCC in DIMACS (the sum of difference is not significant).

Benchmarks #inst.
LSCC LSCC-P sum of diff

#w.m. #w.a. #w.m. #w.a. min avg

tr
ai

n BHOSLIB 4 1 0 2 4 13 67
DIMACS 8 0 1 3 3 124 166.8

te
st BHOSLIB 37 2 3 14 26 315 462.7

DIMACS 29 2 2 0 2 -19 52.9
Total 78 5 6 19 35 433 749.4

Table 4: Experimental results of LSCC and LSCC-P on DI-
MACS and BHOSLIB benchmarks. We report the sum of
difference between LSCC-P and LSCC in ‘min’ and ‘avg’.
The larger the difference, the better for LSCC-P.

COP Configuration p1 p2 p3

MWDS
CC2 1.00 1.00 0.00
PC 0.24 0.13 0.06

MWCP
SC 1.00 0.00 0.00
PC 0.49 0.81 0.29

Table 5: The PCs for MWDS and MWCP. CC and CC2 are
original configurations, and PC the train configuration.

Discussion. We report the comparison results between the
original configuration designed manually and optimized PCs
for each problem after the automatic training process in Ta-
ble 5. The results show that the optimized PCs are quite
different from the configurations designed by human. For
example, p3 = 0.29 for MWCP means that there are 29%
vertices in the 2+-level neighborhoods as the configuration.

6.2 Discussion About the Bias of Training
From the results in this Section 6.1, we notice that training a
PC based on all benchmarks leads to a decrease in the perfor-
mance for some specific benchmarks, e.g., UDG benchmark.
A natural question raised is whether different benchmarks
have different biases for PC. We argue that the bias leads to
the PC that is not good for some specific benchmarks.

COP Benchmarks
Configuration

p1 p2 p3

MWDS

T1 0.05 0.06 0.02
T2 0.60 0.02 0.05
UDG 0.94 0.02 0.95
BHOSLIB 0.27 0.02 0.99
DIMACS 0.00 0.45 0.51

MWCP
BHOSLIB 0.58 0.15 0.98
DIMACS 0.49 0.81 0.29

Table 6: The PCs for each benchmark.

10287

Training process. To investigate this problem, we retrain
the special PCs for each benchmark for each problem. We
follow the same training set in Section 6.1. The only differ-
ence is that we train PCs for each benchmark using their own
training instances. The consistent training setting allows us
to compare the newly obtained algorithms (CC2FS-SP for
MWDS, LSCC-SP for MWCP) with CC2FS and LSCC-P
more clearly. The trained PCs are shown in Table 6.

Benchmarks #inst.
CC2FS CC2FS-SP sum of diff

#w.m. #w.a. #w.m. #w.a. min avg

tr
ai

n

T1 5 0 0 5 5 -184 -184.0
T2 5 0 0 3 3 -49 -49.0
UDG 4 1 1 2 2 -8 -8.0
BHOSLIB 4 0 0 1 4 -1 -8.4
DIMACS 8 0 0 0 0 0 0.0

te
st

T1 525 10 10 154 154 -2205 -2205.0
T2 525 0 0 58 58 -697 -697.0
UDG 116 47 47 41 41 -14 -14.0
BHOSLIB 37 0 0 6 26 -52 -109.1
DIMACS 29 0 0 2 9 -4 -27.1

Total 1258 58 58 272 302 -3214 -3301.6

Table 7: Comparison results of CC2FS and CC2FS-SP.

Benchmarks #inst.
CC2FS-P CC2FS-SP sum of diff

#w.m. #w.a. #w.m. #w.a. min avg

tr
ai

n

T1 5 0 0 2 2 -17 -17.0
T2 5 0 0 0 0 0 0.0
UDG 4 0 0 4 4 -38 -38.0
BHOSLIB 4 0 0 0 0 0 0.0
DIMACS 8 0 0 0 0 0 0.0

te
st

T1 525 17 17 36 36 -76 -76.0
T2 525 1 1 1 1 0 0.0
UDG 116 22 22 82 82 -555 -555.0
BHOSLIB 37 0 0 0 1 0 -4.0
DIMACS 29 0 1 0 0 0 0.1

Total 1258 40 41 125 126 -686 -689.9

Table 8: Comparison results of CC2FS-P and CC2FS-SP.

Results for MWDS and MWCP. We report the results of
MWDS in Table 7 and Table 8. CC2FS-SP achieves a bet-
ter performance than CC2FS on three benchmarks. In UDG
benchmark, CC2FS-SP and CC2FS are comparable. Com-
pared with CC2FS-P, CC2FS-SP shows obvious advantages
on T1 and UDG benchmarks, particularly UDG benchmark.
Table 9 shows the runtime comparison among three algo-
rithms on MWDS benchmark. For most cases, compared
with CC2FS, CC2FS-P and CC2FS-SP faster find better re-
sults and are more robust (‘#best’ is higher). Combined with
the differences between the PCs for UDG benchmark in Ta-
ble 6 and that in Table 5, this improvement suggests that
different benchmarks have their own best PCs.

The experiment for MWCP illustrates the similar results
(Table 10 and Table 11): the PC specially trained for each
benchmark can improve the performance. Surprisingly, in
DIMACS benchmark, the performance of LSCC-SP and
LSCC-P are the same because they share the same PC. Ta-
ble 12 illustrates the runtime comparison among three al-
gorithms on MWCP benchmark. It shows that LSCC-P and

Benchmarks
CC2FS CC2FS-P CC2FS-SP

time #best time #best time #best

tr
ai

n

T1 - 0 467.81 3 174.28 5
T2 0.23 2 156.64 5 29.98 5
UDG 44.69 2 - 0 4.45 3
BHOSLIB 5 12 18.21 40 6.47 40
DIMACS 7.56 80 6.02 80 5.39 80

te
st

T1 5.93 370 20.36 485 21.48 503
T2 5.32 467 7.8 524 1.97 524
UDG 14.7 72 50.99 25 25.11 61
BHOSLIB 14.39 219 30.24 361 10.31 366
DIMACS 1.53 240 11.4 288 6.35 287

Table 9: Runtime and solution comparison, where ‘#best’
means the number of runs where the solver obtains the best
result of the instances among these three algorithms and
‘time’ means the average runtime for the best result.

LSCC-SP are better solvers than LSCC in BHOSLIB bench-
mark, while they are comparable in DIMACS benchmark.
Their comparable results show that the manual designed
configuration and the training configuration are both suit-
able for MWCP on the DIMACS benchmark.

Benchmarks #inst.
LSCC LSCC-SP sum of diff

#w.m. #w.a. #w.m. #w.a. max avg
tr

ai
n BHOSLIB 4 1 0 2 4 8 69.4

DIMACS 8 0 1 3 3 124 166.8

te
st BHOSLIB 37 2 2 14 27 371 502.3

DIMACS 29 2 2 0 2 -19 52.9
Total 78 5 5 19 36 484 791.4

Table 10: Comparison results of LSCC and LSCC-SP.

Benchmarks #inst.
LSCC-P LSCC-SP sum of diff

#w.m. #w.a. #w.m. #w.a. max avg

tr
ai

n BHOSLIB 4 1 2 2 2 -5 2.4
DIMACS 8 0 0 0 0 0 0

te
st BHOSLIB 37 9 8 6 15 56 39.6

DIMACS 29 0 0 0 0 0 0

Total 78 10 10 8 17 51 42

Table 11: Comparison results of LSCC-P and LSCC-SP.

Summary. Overall, our method can automatically provide
an excellent configuration for a CC strategy by training with-
out the need for careful design. Besides, our experiment con-
firms that the bias of training does affect the performance.
We can improve the performance by training special PCs for
different benchmarks for different COPs.

We also compare the performance among PCC, SPCC and
HCC which we introduce in Section 4 to confirm our moti-
vation. The results show that it is necessary to train for the
best PC rather than just setting all probabilities to 0.5.

6.3 Performance on Reducing the Cycling
Problem

To verify that PCC can bring more potential explorations, we
calculate the number of different candidate solutions each

10288

(a) (b) (c)

Figure 1: (a) Comparison of the number of different candidate solutions of non-CC, CC, PCC, SPCC. The X-axis and Y-axis
represent the number of different candidate solutions in 105 candidate solutions. Non-CC includes CC2FS and LSCC without
CC strategy. CC includes CC2FS and LSCC. PCC includes CC2FS-P and LSCC-P. SPCC includes CC2FS-SP and LSCC-SP. (b)
Comparison of CPU time. The X-axis and Y-axis represent the execution time in seconds to search for 105 candidate solutions.
(c) The scores of CC2FS-P with different configurations on MWDS benchmark. The X-axis, Y-axis, and Z-axis represent p1, p2,
and p3 respectively.

Benchmarks
LSCC LSCC-P LSCC-SP

time #best time #best time #best

tr
ai

n BHOSLIB 664.02 5 439.36 8 590.35 7
DIMACS 93.3 49 116.76 56 116.76 56

te
st BHOSLIB 237.67 147 176.61 194 158.42 191

DIMACS 22.44 269 13.14 265 13.14 265

Table 12: Runtime comparison of LSCC, LSCC-P and
LSCC-SP on BHOSLIB and DIMACS benchmarks.

algorithm has found in the first 105 candidate solutions. In
addition, we report the cost of time to search the 105 candi-
date solutions, in order to show that PCC does not cost much
time to make the improvement in exploration.
Competitors. We compare among CC2FS, CC2FS-P and
CC2FS-SP for MWDS and compare among LSCC, LSCC-
P, and LSCC-SP for MWCP. CC2FS-P and LSCC-P use the
PCs in Table 5. CC2FS-SP and LSCC-SP use the PCs in Ta-
ble 6. To show the improvement in the exploration of CC,
PCC, and SPCC, we also choose the non-CC versions of
CC2FS and LSCC, where the CC strategy is removed.
Settings and Benchmarks. Experimental settings and
benchmarks are the same as those described in Section 6.
Results. As Figure 1(a) shows, CC, PCC, and SPCC en-
hance the ability to explore new candidate solutions, PCC
and SPCC improve much more than CC in nearly all in-
stances. Meanwhile, the cost of time (Figure 1(b)) of PCC
and SPCC are comparable with that using the other two con-
figurations and even better when the cost of time is large.
Summary. The result shows that PCC does not have much
more time consumption to improve the exploration in local
search and potentially alleviates the cycling problem.

To verify that it is necessary to tune for an optimal PC
for a given COP rather than using a random PC, we discuss
the parameter sensitivity. We calculate the scores of CC2FS-

P with different PCs for MWDS, where p1, p2, and p3 vary
from 0 to 1 in steps of 0.25. The score of the i-th PC is
calculated as Equation 1, where scorei,j means the average
value of the solutions found in the j-th instance with the
i-th PC. Equation 1 shows that the score of the better PC
is nearer to 1. In Figure 1(c), the scores of different PCs
are quite different, which suggests that it is hard to obtain a
best performance with a random PC. The performance under
most of the PCs we enumerate is worse than the PC used for
MWDS in Table 5. So it is necessary to tune for an optimal
PC for a given COP.

scorei = meanj
maxk scorek,j − scorei,j

maxk scorek,j −mink scorek,j
(1)

7 Conclusions and Future work
The cycling problem is an intractable problem for COPs.
We have observed that neighborhoods with different lev-
els should have different contributions to alleviate the cy-
cling problem. Therefore, we have expanded the configura-
tion with probability, i.e., probabilistic configuration (PC),
to capture the contributions of vertices at different levels,
resulting in the probabilistic configuration checking (PCC)
strategy. Our experimental results have confirmed that the
PC can improve existing local search algorithms in two clas-
sic COPs, i.e., MWDS and MWCP, due to alleviating the
cycling problem.

Future work include making the method suitable for mas-
sive graphs and extending our approach to other COPs.

Acknowledgments
We thank anonymous referees for helpful comments. This
paper was supported by the National Natural Science Foun-
dation of China (No. 61976232), Guangdong Basic and Ap-
plied Basic Research Foundation (No. 2022A1515011355
and 2020A1515010642), Guizhou Science Support Project

10289

(No. 2022-259), Humanities and Social Science Research
Project of Ministry of Education (18YJCZH006).

References
Abramé, A.; Habet, D.; and Toumi, D. 2017. Improving con-
figuration checking for satisfiable random k-SAT instances.
Annals of Mathematics and Artificial Intelligence, 79(1-3):
5–24.
Cai, S.; and Su, K. 2012. Configuration Checking with As-
piration in Local Search for SAT. In AAAI.
Cai, S.; and Su, K. 2013. Local search for Boolean Satisfi-
ability with configuration checking and subscore. Artificial
Intelligence, 204: 75–98.
Cai, S.; Su, K.; Luo, C.; and Sattar, A. 2013. NuMVC: An
efficient local search algorithm for minimum vertex cover.
Journal of Artificial Intelligence Research, 46: 687–716.
Cai, S.; Su, K.; and Sattar, A. 2011. Local search with edge
weighting and configuration checking heuristics for mini-
mum vertex cover. Artificial Intelligence, 175(9-10): 1672–
1696.
Chen, P.; Wan, H.; Cai, S.; Li, J.; and Chen, H. 2020. Lo-
cal Search with Dynamic-Threshold Configuration Check-
ing and Incremental Neighborhood Updating for Maximum
k-plex Problem. In Proceedings of the Thirty-Fourth AAAI
Conference on Artificial Intelligence, (AAAI 2020), 2343–
2350.
Glover, F. 1989. Tabu search—part I. ORSA Journal on
computing, 1(3): 190–206.
Glover, F. 1990. Tabu search—part II. ORSA Journal on
computing, 2(1): 4–32.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Se-
quential model-based optimization for general algorithm
configuration. In LION, 507–523.
Hutter, F.; Lindauer, M.; Balint, A.; Bayless, S.; Hoos, H.;
and Leyton-Brown, K. 2017. The Configurable SAT Solver
Challenge (CSSC). Artificial Intelligence, 243: 1–25.
Johnson, D. S.; and Trick, M. A. 1996. Cliques, coloring,
and satisfiability: second DIMACS implementation chal-
lenge, October 11-13, 1993, volume 26. American Math-
ematical Soc.
Jovanovic, R.; Tuba, M.; and Simian, D. 2010. Ant colony
optimization applied to minimum weight dominating set
problem. In Proceedings of the 12th WSEAS international
conference on Automatic control, modelling & simulation,
(ACMOS-2010), 322–326.
Li, R.; Cai, S.; Hu, S.; Yin, M.; and Gao, J. 2018.
NuMWVC: A Novel Local Search for Minimum Weighted
Vertex Cover Problem. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-2018),
8107–8108.
Luo, C.; Cai, S.; Su, K.; and Huang, W. 2017. CCEHC: An
efficient local search algorithm for weighted partial maxi-
mum satisfiability. Artificial Intelligence, 243: 26–44.
Luo, C.; Cai, S.; Su, K.; and Wu, W. 2015. Clause States
Based Configuration Checking in Local Search for Satis-
fiability. IEEE Transactions on Cybernetics, 45(5): 1014–
1027.

Michiels, W.; Aarts, E.; and Korst, J. 2007. Theoretical as-
pects of local search. Springer Science & Business Media.
Pullan, W. 2008. Approximating the maximum vertex/edge
weighted clique using local search. Journal of Heuristics,
14(2): 117–134.
Wang, Y.; Cai, S.; Chen, J.; and Yin, M. 2018. A Fast Lo-
cal Search Algorithm for Minimum Weight Dominating Set
Problem on Massive Graphs. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelli-
gence, (IJCAI-2018), 1514–1522.
Wang, Y.; Cai, S.; Chen, J.; and Yin, M. 2020. SCCWalk:
An efficient local search algorithm and its improvements for
maximum weight clique problem. Journal of Artificial In-
telligence, 280: 103230–103263.
Wang, Y.; Cai, S.; and Yin, M. 2016. Two efficient local
search algorithms for maximum weight clique problem. In
Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, (AAAI-2016), 805–811.
Wang, Y.; Cai, S.; and Yin, M. 2017. Local Search for Mini-
mum Weight Dominating Set with Two-Level Configuration
Checking and Frequency Based Scoring Function. Jour-
nal of Artificial Intelligence Research, 58: 267–295. ArXiv:
1702.04594.
Wu, Q.; Hao, J.-K.; and Glover, F. 2012. Multi-
neighborhood tabu search for the maximum weight clique
problem. Annals of Operations Research, 196(1): 611–634.
Xu, K.; Boussemart, F.; Hemery, F.; and Lecoutre, C. 2005.
A simple model to generate hard satisfiable instances. arXiv
preprint cs/0509032.

10290

