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Abstract

Cross-modal hashing has attracted considerable attention for
large-scale multimodal data. Recent supervised cross-modal
hashing methods using multi-label networks utilize the se-
mantics of multi-labels to enhance retrieval accuracy, where
label hash codes are learned independently. However, all
these methods assume that label annotations reliably reflect
the relevance between their corresponding instances, which is
not true in real applications. In this paper, we propose a novel
framework called Bidirectional Reinforcement Guided Hash-
ing for Effective Cross-Modal Retrieval (Bi-CMR), which ex-
ploits a bidirectional learning to relieve the negative impact of
this assumption. Specifically, in the forward learning proce-
dure, we highlight the representative labels and learn the rein-
forced multi-label hash codes by intra-modal semantic infor-
mation, and further adjust similarity matrix. In the backward
learning procedure, the reinforced multi-label hash codes and
adjusted similarity matrix are used to guide the matching of
instances. We construct two datasets with explicit relevance
labels that reflect the semantic relevance of instance pairs
based on two benchmark datasets. The Bi-CMR is evaluated
by conducting extensive experiments over these two datasets.
Experimental results prove the superiority of Bi-CMR over
four state-of-the-art methods in terms of effectiveness.

Introduction
With the blooming of multimodal data (e.g., images and
texts) in the areas of search engines and social networks,
information retrieval across different types of data has at-
tracted wide attention. Accordingly, it gives rise to the
emerging real-world application of cross-modal retrieval,
which aims to search the semantically relevant instances in
all the modalities (e.g., images and texts) given a query of
one modality. In order to satisfy the requirements of low
storage, high query speed in real-world applications, hashing
has gained increasing attention in the field of cross-modal re-
trieval due to its capability of transforming variant modal in-
stances to uniform binary codes. However, as instances from
different modalities are heterogeneous in terms of feature
representation and character distribution, exploiting multi-
labels of instances from variant modalities to retrieve multi-
modal data effectively is a big challenge.
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Existing cross-modal hashing techniques can be mainly
classified into two lines: unsupervised learning (Song et al.
2013; Zhou, Ding, and Guo 2014; Wang et al. 2015; Ding
et al. 2016; Hu et al. 2019) and supervised learning (Yang
et al. 2017; Jiang and Li 2017; Liong et al. 2017; Li et al.
2018; Zhu et al. 2021). Supervised learning methods exploit
labels or the semantic affinities of training data to achieve a
performance superior to the unsupervised ones. Early stage
supervised methods use label annotations to guide cross-
modal hash learning (Liong et al. 2017; Jiang and Li 2017).
Multi-label network-based method (Li et al. 2018) and its
variant (Xu et al. 2020) improve the supervised learning by
integrating a self-supervised semantic network to capture the
semantic information from multi-label and supervise modal-
ity learning. All these methods assume that label annotations
can reliably reflect the relevance between their correspond-
ing instances. However, this assumption conflicts with hu-
man perception in real applications. Consider an example in
benchmark dataset MIRFlickr25K (Huiskes and Lew 2008)
for cross-modal retrieval as shown in Figure 1. Given two
images with same labels and a query text shown in the figure,
existing methods believe these images are equally relevant to
the query. However, it is clear that Figure 1(a) is relevant to
the query text, while Figure 1(b) is not, since both query text
and image in Figure 1(a) are mainly about “flower”, while
the image in Figure 1(b) is mainly about “structure”. There
is a semantic gap between the low-level annotations and the
high-level semantic understanding of images.

To address the problem of effective cross-modal retrieval,
we need to learn a new scheme which well narrows the se-
mantic gap between multi-label annotations and instance rel-
evance in the learning phase. A popular scheme of evalu-
ating instance relevance in existing supervised methods is
pairwise multi-label similarity matrix (PMLSM) denoted as
S:{Sij}. Here, in the learning phase, Sij indicates if the in-
stances xi and xj are relevant or not (Liong et al. 2017; Jiang
and Li 2017; Li et al. 2018). Two instances xi and xj are rel-
evant if they share any label annotations, their relevance is
set as Sij = 1. Otherwise, they are irrelevant with Sij = 0.
However, all these PMLSM-based methods highly rely on
an accurate similarity matrix S to guide model learning. The
similarity measure based on label annotation intersection is
also used as ground truth in testing phase to measure the rel-
evance of the retrieval results, resulting in wrong evaluations
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Text query: Beautiful flowers bloom in front of the castle.

Text-label:           0                  1 1                    0               0
people          flower          structure            tree            …

image-label (a):    0                  1 1                    0               0
image-label (b):    0                  1                     1 0               0

(a) (b)

Figure 1: An ignored mismatching example.

of all PMLSM-based methods. To overcome the above issue,
we manually mark pairwise ground truth matrix G:{Gij},
where Gij = 1 if the instances xi and xj are semantically
relevant, and Gij = 0 otherwise. An instance pair 〈xi, yi〉 is
misjudged if the ground truth shows Gij = 0 but Sij = 1.
Statistically, in PMLSM-based methods, 24.97% irrelevant
instance pairs are misjudged as relevant for MIRFlickr25K,
while around 13.51% pairs are misjudged in NUS-WIDE.

Motivated by the limitation of existing approaches, we
propose a Bidirectional Reinforcement Guided Hashing
method for Effective Cross-Modal Retrieval (Bi-CMR). The
superiority of using Bi-CMR is twofold. First, instances with
more common label annotations could be more similar than
those with less common labels. Second, for the instances
with same representative labels, we could identify the ones
that are dissimilar with each other at human perception level.
Our Bi-CMR achieves these goals by bidirectional learning.
Intra-modal semantic information can be forwarded to rein-
force the hash codes of multi-labels and further adjust sim-
ilarity matrix, while the adjusted similarity matrix is used
backward to guide the hash codes learning for multimodal
instance pairs. Specifically, in the forward learning proce-
dure, a deep self-supervised reconstruction model is pro-
posed over each modality network to learn more accurate
hash codes for intra-model instances, and further assist their
multi-label hash code learning. For an instance, we highlight
the importance of its representative labels based on its se-
mantics in forward learning. Furthermore, each multi-label
vector and its reinforced label hash codes are concatenated
to adjust similarity matrix and obtain a new reinforced sim-
ilarity evaluation, which decreases the false positives. In the
backward learning procedure, under the guide of adjusted
similarity matrix, the reinforced label hash codes are used to
reduce the mismatching under the situation discussed above
and guide the accurate learning of cross-modal instances
hash codes. We summarize our contributions as follows:

• We are the first to realize the assumption “label anno-
tations reliably reflect the instance relevance” conflicts
with human perception, thus the existing relevance mea-
surement based on PMLSM are inappropriate. We pro-
pose a new evaluation to guide the learning of instance
hash codes, which is consistent with human perception.

• We propose a novel bidirectional reinforcement guided
hashing method, which reinforces hash code learning in
a mutual promotion way. While the semantic correlation
of intra-modal is used forward to reinforce the learning of
label hash codes so that semantic similarity based on la-
bels can be tuned gradually, tuned similarity is used back-
ward to guide the learning of cross-modal hash codes.

• We manually mark relevant instance pairs over two
benchmark datasets to measure retrieval accuracy. Exten-
sive experiments are conducted over these two datasets to
evaluate the high effectiveness of Bi-CMR.

Related Work
Various hashing methods have been proposed for cross-
modal retrieval. Major techniques can be roughly divided
into two categories: unsupervised methods and supervised
methods. Unsupervised methods (Zhou, Ding, and Guo
2014; Wang et al. 2015; Ding et al. 2016; He et al. 2017; Li
et al. 2019) focus on learning hash functions by exploiting
the relationship of instances with unlabeled data. Latent se-
mantic sparse hashing (LSSH) (Zhou, Ding, and Guo 2014)
uses sparse coding to capture the image structure and models
text modality via matrix factorization. Semantic topic multi-
modal hashing (STMH) (Wang et al. 2015) uses multimodal
hashing and learns the relationship of two modalities in la-
tent semantic space. All these methods ignore the value of
the semantic labels, leading to inferior performance.

Supervised methods (Wang et al. 2015; Wu et al. 2015;
Lin et al. 2015; Yang et al. 2017; Liong et al. 2017; Jiang and
Li 2017; Xu et al. 2017; Li et al. 2018; Ye and Peng 2018;
Gu et al. 2019) leverage semantic labels of image-text pairs
as supervision to guide hash code learning and boost perfor-
mance. For example, DCMH (Wang et al. 2015) establishes
an end-to-end hashing framework with deep neural network,
which conducts feature learning and hash code learning si-
multaneously. PRDH (Yang et al. 2017) explores two pair-
wise constraints in inter and intra-modalities. SSAH (Li
et al. 2018) preserves label information to maximize the se-
mantic relevance across modalities. AGAH (Gu et al. 2019)
adopts adversarial learning with label attention map to pre-
serve label information and minimize semantic gap among
modalities. However, all these methods are limited to train-
ing data pairs, which lacks generality. Multi-label networks
are used to learn semantic features of multi-label (Li et al.
2018; Xu et al. 2020), which achieve good results. However,
simply raising dimensionality of multi-labels does not en-
rich the semantics of multi-labels. Our Bi-CMR adopts bidi-
rectional reinforcement learning to acquire reinforced repre-
sentation of multi-labels for effective instance matching.

Problem and Preliminary
Given a database D containing n multimodal data, each of
which has form of 〈xi, yi〉 (1 ≤ i ≤ n), where xi is a certain
modal instance and yi=[yi1, . . . , yiC] is its multi-label anno-
tation vector. Given an annotation yiv of modal instance xi,
each annotation yiv = 1 if xi belongs to the v-th class, and
yiv=0 otherwise (1≤v≤C). The cross-modal retrieval prob-
lem is to find relevant instances in D to a query instance q.
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To simplify the presentation, we focus on the cross-modal
retrieval for bi-modal data (i.e., images and texts). Without
loss of generality, our task can be easily extended to the
scenarios with multiple modalities. In particular, we aim to
learn the hash codes for modalities. Let D be a set includ-
ing an image set DI and a text set DT labelled by multi-
labels DL. For an instance xi in DI (or DT ), we learn an
l-bit hash code hI,Ti = {hI,T (xi) | xi ∈ DI,T , hI,T (xi) ∈
{−1, 1}l}. For a multi-label annotation vector yi, we also
learn hLi = {hL(yi) | yi ∈ DL, hL(yi) ∈ {−1, 1}l}. The
learned hash functions hI,T (·) are used to generate l-bit hash
codes hI,Ti for query and database instances in both modali-
ties. We adopt Hamming distance to determine the relevance
between the hash codes of query and those of database in-
stances. The notations used in this paper and their descrip-
tions are summarized in Table 1 for easy reference.

Not. Definition and description
D The database that contains different modal data
xi The i-th instance in D
yi The multi-label annotation vector of xi
C Category number of each multi-label annotation
Sij Semantic similarity between xi and xj
l The length of learned hash codes

hI,T,L The hash code of images, texts, and multi-labels
f I,T The learned feature vector of images and texts

dist(a, b) The hamming distance of hash codes a and b
q The query instance
k Number of nearest neighbors to retrieve

Table 1: Summary of the main notations.

The Proposed Bi-CMR
This section proposes a bidirectional reinforcement guided
hashing framework, Bi-CMR, for the hash code learning.

Framework Overview

Figure 2 depicts the framework of Bi-CMR. We use two
types of networks: (1) Image, Text Net (Jiang and Li 2017)
for learning features and hash codes of images and texts;
(2) Multi-label Net (Li et al. 2018) for generating guide in-
formation from multi-label annotations. With the support of
these networks, we propose a bidirectional reinforcement
module including forward and backward learning, which de-
creases the issue of false positive and false negative. For
the forward learning, the semantic correlation of intra-modal
can be used to reinforce the hash codes of multi-labels so
that the semantic similarity between instance pair Sij can
be tuned gradually. For the backward learning, the tuned
Sij and the reinforced label hash codes are used to guide
the learning of modal hash codes. The bidirectional learn-
ing could be run over many iterations. As a result, the hash
codes of relevant (irrelevant) instances will be more simi-
lar (dissimilar) through bidirectional reinforcement learning,
which bridges the semantic gap in cross-modal retrieval.

Forward Learning: Tuning Similarity Matrix
To tune Sij , we need to do the followings: (1) using semantic
correlation to reinforce the hash codes of multi-labels, and
(2) designing a new formula to calculate Sij so that hash
codes of two instances xi and xj become more similar (dis-
similar) if they are relevant (irrelevant) for each iteration.

Reinforcement from Intra-modality to Label Hash
Codes To reinforce multi-label hash codes using semantic
correlation, we need to capture the semantic information of
instances as much as possible. However, hash mapping from
modality feature vectors to hash codes inevitably results in
the loss of semantics. Thus, we need to address this prob-
lem for ensuring the quality of the reinforcement process.
We propose a two-stage strategy to overcome this problem.
First, we minimize the semantic loss of intra-modal hash
mapping. Then, we reinforce the hash codes of multi-labels.

We develop a deep self-supervised reconstruction (SSR)
mechanism to reduce the semantic loss of intra-modality.
Extending the idea of reconstruction in (Wang et al. 2014),
SSR is a two-layer fully-connected network with an addition
of SSR loss on the Fc2′ layer as in Figure 2. Intuitively, if
no semantic loss occurs in the hashing process, the outputs
of network reconstructed from each modal hash code should
be similar to its originl feature vector. Thus, we adopt well
known Euclidean norm as a metric, which can evaluate the
change of modal feature vector caused by the reconstruction
without any supervision. Let f I(xi) and fT (xi) (abbr. f Ii
and fTi ) denote the original feature vector of instance xIi
and xTi , respectively. The SSR loss function of image and
text modalities is formulated as follows:

Lssr =
n∑
i=1

(||f Ii − f ′I
i ||

2

2 + ||fTi − f ′T
i ||

2

2), (1)

where f I,Ti ∈RdI ,dT , f ′I,T
i ∈RdI ,dT is the reconstructed fea-

ture generated by image (or text) SSR mechanism, and dI
(or dT ) is the dimension of image (or text) feature vectors.

We use intra-modal semantic correlation to reinforce the
hash codes of multi-labels. According to the smoothness as-
sumption (Zhu 2005), instances close to each other are more
likely to own common representative labels. We use the se-
mantic correlation of instances with less semantic loss to re-
inforce the multi-labels hash codes. Let aI,Tij =ecos(h

I,T
i ,hI,T

j )

measure the similarity of two hash codes with same modal,
where cos(a, b) is used to measure the semantic correlation
of two vectors a and b since it focuses more on the vectors’
differences in distribution, and has the advantage of being
stable and accurate for the similarity evaluation of differ-
ent dimensions. Similar we specify aLij = ecos(h

L
i ,h

L
j ). Obvi-

ously, if intra-modal instances xi and xj have a high degree
of similarity as measured by aI,Tij , hLi and hLj should be
close to each other. Thus, we minimize the following objec-
tive function:

Lm2l =
∑
ij

(η ∗
aIij
aLij

+ (1− η) ∗
aTij
aLij

), (2)

where 0 < η < 1 is the weighting factor for balancing the
contribution of each modality to reinforce the hash codes of
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Figure 2: Framework of our proposed Bi-CMR.

multi-labels. The larger aI,Tij is, the larger aLij will be, while
irrelevant instances cause less effect.

Adjusted Similarity Matrix Recall that label annotations
are not the only factor for evaluating relevance between two
instances. We hope each Sij in the similarity matrix S could
better reflect the true relevance of instances xi and xj . Be-
sides label annotations, we also consider the semantic corre-
lation of instances to determine Sij . For each iteration in for-
ward learning, we concatenate multi-label annotation vector
yi of instance xi and its learned multi-label hash code hLi
into one label measure vector L

′

i = concat(yi, δhLi ), where
δ is used to control the degree of reinforcement. For any
two label measure vectors L

′

i and L
′

j , we tune Sij = 1 if
their cosine similarity cos(L

′

i,L
′

j)>λ, and Sij = 0 other-
wise1. Here, λ is the relevance threshold for a dataset, which
will be evaluated in experiments. The tuned similarity ma-
trix S : {Sij} considers both multi-labels and the reinforced
multi-label hash codes. As such, the instances with more
common label annotations could be more similar than those
with less common ones, and the semantic correlation of in-
stances are captured as well.

Backward Learning: Reinforcement from Label to
Cross-modal Instance Pairs
Using the reinforced label hash codes hL that highlight
the representative labels with the semantics from intra-
modalities, we can reduce the mismatching of instance pairs.
Similar to the design principle of Lm2l, the loss function of

1Other similarity or distance functions can also be used to de-
termine the similarity between label measure vectors L

′
i and L

′
j .

reinforcement from multi-label to modalities is:

Ll2m =
∑
ij

(
aLij
aIij

+
aLij
aTij

+
aLij
aI&Tij

), (3)

where aI&Tij = ecos(h
I
i ,h

T
j ) measures the similarity of cross-

modal instance hash codes. Note that our reinforcement is
applied equally for each intra-modality, thus we do not set
the intra-modal weighting factor.

Like (Li et al. 2018), we consider the pairwise loss be-
tween an instance hash code hI,Ti and its label hash code
hLi . Two modal instance hash codes hIi and hTj are associ-
ated through their label hash codes. Unlike (Li et al. 2018),
we use the adjusted similarity matrix to continuously correct
the learning of cross-modal hash codes since the accuracy
of similarity evaluation is critical for cross-modal learning.
Guided by this matrix, the reinforced multi-label hash codes
act as a bridge between modalities, achieving the co-learning
with modal instances. Thus, we propose a supervised learn-
ing of label hash code to enhance the cross-modal matching
of hTi and hIj base on the tuned similarity matrix S. We use
the well known likelihood function to express the probabil-
ity of Sij under the learned hash codes hLi ,h

L
j as follows:

p(Sij |hLi ,h
L
j ) = σ(ΩLij)

Sij (1− σ(ΩLij))
1−Sij , (4)

where σ(ΩLij) = 1

1+e
−ΩL

ij
and ΩLij = 1

2h
L
i

>
hLj . The relation-

ship between their Hamming distance dist(hLi ,h
L
j ) and in-

ner product 1
2h

L
i

>
hLj is formulated as dist(hLi ,h

L
j ) = 1

2 (l-
1
2h

L
i

>
hLj ). Therefore we can use the inner product to mea-

sure the hash code similarity. A larger inner product indi-
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cates a bigger probability of Sij , thus hLi and hLj are classi-
fied as similar and vice versa.

Similar to Eq. 4, we aim to maximize the summation of
the probabilities p(Sij |hLi ,h

L
j ) and p(Sij |hLi ,h

I,T
j ). Here,

p(Sij |hLi ,h
I,T
j ) determines whether a label hash code hLi

and instance hash code hI,Tj can be classified as similar or
not. For ease of computation, we use negative log likelihood
to express the correlation loss as follows:

Lcor =
n∑

i,j=1

((log(1 + eΩL
ij )− SijΩLij)

+(log(1 + eΩL,I
ij )− SijΩL,Iij )

+(log(1 + eΩL,T
ij )− SijΩL,Tij )),

(5)

where ΩL,Iij = 1
2h

L
i

>
hIj , ΩL,Tij = 1

2h
L
i

>
hTj . As a result, the

adjusted similarity matrix can guide the learning of modal
hash codes with iterations.

Overall Objective Function
We could further enhance the leaning of instance hash code
by incorporating the classification mechanism. Based on the
reinforced instance hash codes, we classify the instances ac-
cording to C class categories and generate learned multi-
label, denoted Ii (or T i) ∈ [0, 1]C . We minimize cross en-
tropy (Li et al. 2018) between Ii (or T i) and yi as follows:

Lc =
n∑
i=1

−((log(Ii) + log(T i))yi). (6)

Then, we have the objective function toward the cross-modal
function h(·), where θ is the parameter set of Bi-CMR.

argmin
θ
L = αLssr + βLm2l + γLl2m + Lcor + Lc. (7)

Minimizing L enables Bi-CMR to learn more accurate hash
codes and minimize the distances between the hash codes of
semantically similar instances.

Experiments
Experiment Setting
We choose two commonly used datasets, MIRFlickr25K
(Huiskes and Lew 2008) and NUS-WIDE10.5K, and manu-
ally label relevant pairs in each dataset for evaluation.

MIRFlickr25K2 is a benchmark dataset collected from
Flickr. It consists of 25, 000 image-text pairs selected from
24 categories. We keep 20, 015 text instances that have at
least one of top 20 frequent text tags for our test. NUS-
WIDE10.5K is a dateset created by filtering NUS-WIDE
3. NUS-WIDE contains 269, 648 image-text pairs, each of
which is annotated by one or more labels within 81 concepts.
Only the pairs belonging to the 21 most frequent categories
are selected for our tests. In total, 195, 834 pairs were se-
lected. We randomly select 10, 500 multi-label image-text

2http://press.liacs.nl/mirflickr/mirdownload.html
3https://lms.comp.nus.edu.sg/wp-

content/uploads/2019/research/nuswide/NUS-WIDE.html

pairs and keep them uniformly distributed over 21 label
categories. We construct two training sets by randomly se-
lecting 10, 000 from MIRFlickr25K and 4, 000 from NUS-
WIDE10.5K. 2, 000 pairs are randomly selected as query set
and the remaining as the retrieval database.

To evaluate the effectiveness of all the approaches, we
manually mark the ground truth relevant instance pairs for
each dataset based on human relevance judgments. We con-
duct a subjective user study to mark the ground truth as
in (Zhou et al. 2017), where the reliability of this user study
has been proved. Specifically, five postgraduate students ma-
jored in computer science participate in the user study. Each
individual is given all the instance pairs in the datasets in a
random order. After viewing these pairs, they are asked to
give a rating score from 1 to 5 indicating if the instance pair
is relevant. Here, higher score indicates more relevance. An
instance pair with the rating no smaller than 4 is considered
as semantically relevant. For each query instance, we use its
manually marked relevant instances as ground truth.

Implementation detail and parameter setting The text
modality on MIRFlickr25K and NUS-WIDE10.5K is repre-
sented as 1, 386-dimensional and 1, 000-dimensional bag-
of-words (BoW) vectors respectively. The dimensions of
BoW vectors are decided by the high frequency vocabulary
defined in all text annotations. BoW vectors are fed into two
fully-connected layers with the hidden sizes of 1, 024 and
4, 096 to get the final text features. The hidden sizes of the
SSR network are set to 1, 024. We extract image features
from two datasets using fc7 layer CNN-F network (Chatfield
et al. 2014) and each image feature is initially described as
a 4, 096-dimensional vector. We also use a 4, 096-fc layer to
construct multi-label features for all labels. Following (Song
et al. 2015; Gu et al. 2019; Yang et al. 2017), we use tanh as
the activation function of hash layer outputs, and sign as a
function for generating the final hash codes. The hash layer
size for final hash codes is set as 16, 32, and 64 respectively.

We implement our method in PyTorch, and train our
model using the ADAM optimizer with an initialized learn-
ing rate of 1e−4 in image, text network and 1e−3 in multi-
label network with a batch size of 128, respectively. We set
the maximum number of epochs as 120 to ensure the con-
vergence. The training time for one epoch does not exceed 2
minutes on a singleRTX2070 GPU. After every 20 epochs,
the learning rate decreases by half.

Evaluation metrics and baselines We adopt two query
styles: Image query Text (abbr. IQT) and Text query Image
(abbr. TQI), where we use images (texts) in query set as
queries and retrieve texts (images) from retrieval database.

We adopt two widely used standard evaluation metrics,
Mean average precision (MAP) and precision-recall curve,
for effeciveness evaluation (Liu et al. 2014). Following
AGAH (Gu et al. 2019), we also evaluate the retrieval based
on top-K precision curves (Wei et al. 2018).

We compare our Bi-CMR with four state-of-the-art
deep hashing cross-modal retrieval methods, including
DCMH (Jiang and Li 2017), PRDH (Yang et al. 2017),
SSAH (Li et al. 2018) and AGAH (Gu et al. 2019). The
source codes of baselines are coded according to their de-
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Methods
MIRFlickr25K NUS-WIDE10.5K

IQT TQI IQT TQI
16bit 32bit 64bit 16bit 32bit 64bit 16bit 32bit 64bit 16bit 32bit 64bit

DCMH 0.4463 0.4730 0.4878 0.4568 0.4734 0.4835 0.4322 0.4364 0.4394 0.4759 0.4849 0.4884
PRDH 0.4723 0.4815 0.4875 0.4702 0.4724 0.4792 0.4393 0.4315 0.4098 0.4713 0.4837 0.4603
SSAH 0.4760 0.4923 0.4970 0.4854 0.5025 0.4740 0.4645 0.4502 0.4674 0.4867 0.4707 0.4683
AGAH 0.4937 0.4946 0.4975 0.4832 0.4705 0.4808 0.4792 0.4515 0.4707 0.5005 0.4674 0.4699

Bi-CMR 0.5655 0.5822 0.5862 0.5445 0.5553 0.5586 0.5113 0.5118 0.5002 0.5118 0.4971 0.5045

Table 2: MAP comparison results, where the best performance is boldfaced and the runner-up is underlined.
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Figure 3: Precision-recall curves on two datasets. The baselines are based on CNN-F features (code length = 64).
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Figure 4: Precision@top-K curves on two datasets. The baselines are based on CNN-F features (code length = 64).
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Figure 5: Misjudging proportion of false negative (FN) and
false positive (FP)(code length = 64).

scriptions. Parameters are carefully tuned accordingly. Re-
mind that the existing relevance measurement based on the
similarity matrix S conflicts with human perception, we
adopt the manually marked relevance matrixG as evaluation
metric. Table 3 shows the comparison of different measure-
ments in terms of MAP. We can see that MAPs based on the
wrong evaluation are much larger than the real values.

DCMH PRDH SSAH AGAH
IQT TQI IQT TQI IQT TQI IQT TQI

S 0.7501 0.7734 0.7221 0.7514 0.7932 0.8030 0.8075 0.8050
G 0.4878 0.4835 0.4875 0.4792 0.4970 0.4740 0.4975 0.4808

Table 3: MAP on MIRFlickr25K (code length = 64).
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Figure 6: Parameter sensitivity analysis on MIRFlickr25K.

Experimental Results and Analysis
Comparison of Effectiveness We compare four state-of-
the-art cross-modal methods with Bi-CMR by conducting
cross-modal retrieval over two benchmark datasets in terms
of MAP, precision-recall curves and top-K precision curves.

We first report the MAP results in Table 2 under the
new similarity evaluation with threshold λ of each dataset.
Clearly, our Bi-CMR consistently achieves the best MAP,
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Bi-CMR

DCMH

Figure 7: Comparison of ranking results for the text query “The architecture under the sky with clouds.”.

demonstrating its superiority against all the counter parts.
For MIRFLickr25K, Bi-CMR improves the competitors,
IQT and TQI, by 16.69% and 12.74%respectively. For NUS-
WIDE10.5K, Bi-CMR improves IQT and TQI by 8.77%
and 2.69% respectively. The accuracy improvement over
MIRFLickr25K is more significant compared with that
over NUS-WIDE10.5K. This is because MIRFLickr25K has
more multi-label instances than NUS-WIDE10.5K.

We also evaluate our Bi-CMR under precision-recall and
top-K precision curves. Figures 3, 4 show the comparison of
our Bi-CMR and existing competitors. As we can see that
Bi-CMR defeats all the other methods on MIRFlickr25K
and NUS-WIDE10.5K under the precision-recall and top-
K precision curves. In Figures 3, the closer to the top right,
the higher the accuracy is, which indicate that Bi-CMR can
reduce false negatives and thus improve recall. As shown
above, our approach achieves the best performance in terms
of different evaluation metrics. This has further confirmed
that Bi-CMR can retrieve semantically similar instances
more accurately. Figure 4(b) shows an exception when per-
forming IQT on NUS-WIDE10.5K dataset. When K is less
than 50, the precision of Bi-CMR is lower than AGAH (Gu
et al. 2019) and DCMH (Jiang and Li 2017). This is due to
the addition of direct inter-modal operations, which restricts
these methods to two modalities only. Please notice that the
overall curve of Bi-CMR is greater than all the other meth-
ods. With the increase of K, it has the most stable precision.

Hyper-parameters Analysis To evaluate the four hyper-
parameters in Eq. 7, we construct validation set by randomly
choosing 2, 000 data from database. A sensitivity analysis of
these hyper-parameters is provided in Figure 6, which indi-
cates that the best choice of α is around 0.01 ∼ 0.05; β and
γ is around 0.01, and their excessive disparity will lead to
an imbalance in reinforcement; the optimal setting for δ is
from 0.01 to 0.1. Since the image quality is higher than the
text quality in our datasets, we set η to 0.9. To select the
threshold λ for new similarity evaluation, the proportion of
false negative (FN) and false positive (FP) for multi-labels
at different thresholds on datasets are calculated as shown
in Figure 5, the best choices for λ is around 0.4 on MIR-
Flickr25K and 0.7 on the NUS-WIDE10.5K.

Ablation Studies We conduct extensive ablation studies
on two datasets. We define five alternatives to study the
impact of independently training strategy. Here, Bi-CMR1
does not consider forward learning. Bi-CMR2 trains multi-
label network without considering Ll2m in backward learn-

ing. Bi-CMR3 trains multi-label network without consider-
ing Lcor in backward learning. Bi-CMR4 does not adjust
Sij . Bi-CMR5 does not consider Lclass. For a fair com-
parison, all these variants adopt the same network archi-
tecture, settings and the evaluation metric. Table 4 shows
the performance comparison of full Bi-CMR with five dif-
ferent ablations for IQT and TQI on two datasets. We can
see that full Bi-CMR performs best compared with other al-
ternatives. Removing each component results in slight rel-
ative performance degeneration. It reflects the effectiveness
of each component of Bi-CMR, and shows the mutual pro-
motion of our method. It would be unable to train if the en-
tire backward is removed, so we split it into Bi-CMR2, 3.
The results also validate that the improvement of Bi-CMR
mainly benefits from the bidirectional reinforcement based
on multi-label network, which results in higher MAP scores.

Methods MIRFlick25K NUS-WIDE
IQT TQI IQT TQI

Bi-CMR1 0.5810 0.5496 0.4895 0.4832
Bi-CMR2 0.5790 0.5499 0.4813 0.4752
Bi-CMR3 0.4589 0.4597 0.4221 0.4263
Bi-CMR4 0.5731 0.5366 0.4963 0.4931
Bi-CMR5 0.5782 0.5559 0.4892 0.4955
Bi-CMR 0.5862 0.5586 0.5002 0.5045

Table 4: MAP for ablation analysis (code length = 64).

Case Study We provide certain intuitive retrieval results
of Bi-CMR and DCMH on MIRFlickr25K. The top 8 im-
age results retrieved from the whole database are listed in
Figure 7, where the incorrect results are highlighted by red
boxes. Compared with DCMH, Bi-CMR returns less irrele-
vant images and generates a better result ranking.

Conclusion
In this paper, we propose a novel cross-modal retrieval
framework Bi-CMR, which exploits a bidirectional rein-
forcement to well capture the semantics of instances. First,
we propose a new evaluation to guide the learning of in-
stance hash codes to overcome the gap between label anno-
tations and semantic understanding of instances. Then, we
propose a novel bidirectional reinforcement guided method
for enhancing the hash code learning in a mutual promotion
way. We construct two datasets with explicit relevant ground
truth based on two benchmark datasets. Extensive experi-
ment results have proved the high effectiveness of Bi-CMR.
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