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Abstract

Tensor optimization is crucial to massive machine learning
and signal processing tasks. In this paper, we consider tensor
optimization with a convex and well-conditioned objective
function and reformulate it into a nonconvex optimization
using the Burer-Monteiro type parameterization. We analyze
the local convergence of applying vanilla gradient descent
to the factored formulation and establish a local regularity
condition under mild assumptions. We also provide a linear
convergence analysis of the gradient descent algorithm started
in a neighborhood of the true tensor factors. Complementary
to the local analysis, this work also characterizes the global
geometry of the best rank-one tensor approximation problem
and demonstrates that for orthogonally decomposable tensors
the problem has no spurious local minima and all saddle points
are strict except for the one at zero which is a third-order saddle
point.

1 Introduction
Tensors, a multi-dimensional generalization of vectors and
matrices, provide natural representations for multi-way
datasets and find numerous applications in machine learn-
ing and signal processing, including video processing (Liu
et al. 2012), hyperspectral imaging (Li et al. 2015b; Sun
et al. 2020), collaborative filtering (Hou and Qian 2017),
latent graphical model learning (Anandkumar, Ge, and Janza-
min 2017), independent component analysis (ICA) (Cardoso
1989), dictionary learning (Barak, Kelner, and Steurer 2015),
neural networks compression (Phan et al. 2020; Bai et al.
2021), Gaussian mixture estimation (Sedghi, Janzamin, and
Anandkumar 2016), and psychometrics (Smilde, Bro, and
Geladi 2005). See (Sidiropoulos et al. 2017) for a review. All
these applications involve solving certain optimizations over
the space of low-rank tensors:

minimize
T

f(T ) subject to rank(T ) ≤ r. (1)

Here f(·) is a problem dependent objective function with
tensor argument and rank(·) calculates the tensor rank. The
rank of matrices is well-understood and has many equivalent
definitions, such as the dimension of the range space, or the
size of largest non-vanishing minor, or the number of nonzero
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singular values. The latter is also equal to the smallest number
of rank-one factors that the matrix can be written as a sum of.
The tensor rank, however, has several non-equivalent variants,
among which the Tucker rank (Kolda and Bader 2009) and
the Canonical Polyadic (CP) rank (Grasedyck, Kressner, and
Tobler 2013) are most well-known. The CP tensor rank is
a more direct generalization from the matrix case and is
precisely equal to the minimal number of terms in a rank-
one tensor decomposition. It is also the preferred notion of
rank in applications. Unfortunately, while the Tucker rank
can be found by performing the higher-order singular value
decomposition (HOSVD) of the tensor, the CP rank is NP-
hard to compute (Hillar and Lim 2013). Even though some
recent works (Yuan and Zhang 2016; Barak and Moitra 2016;
Li et al. 2016; Li and Tang 2017; Li et al. 2015a; Tang and
Shah 2015) study the convex relaxation methods based on
the tensor nuclear norm, which is also NP-hard to compute
(Hillar and Lim 2013). Therefore, this work seeks alternative
ways to solve the CP rank-constrained tensor optimizations.

General Burer-Monteiro Tensor Optimizations
Throughout this paper, we focus on third-order, symmetric
tensors and assume that f : Rn×n×n → R is a general
convex function and has a unique global minimizer T ? that
admits the following (symmetric-)rank-revealing decomposi-
tion:

T ? =
r∑
p=1

c?pûp ⊗ ûp ⊗ ûp ∈ Rn×n×n, (2)

where ûp’s are the normalized tensor factors living on the
unit spheres Sn−1 and c?p’s are the decomposition coefficients.
Without loss of generality, we can always assume c?p > 0,
since otherwise we can absorb its sign into the normalized
tensor factors.

Note that the global optimal tensor in (2) can be rewritten
as

T ? =

r∑
p=1

(c?p
1/3ûp)⊗ (c?p

1/3ûp)⊗ (c?p
1/3ûp)

.
= U? ◦ U? ◦ U?, (3)

where U? .
=
[
c?1

1/3û1 c
?
2

1/3û2 · · · c?r
1/3ûr

]
can be viewed

as the “cubic root” of T ?. Noting that the “cubic-root” rep-
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resentation (3) has permutation ambiguities, that is, differ-
ent columnwise permutations of U? would generate the
same tensor in (3): [u?i1 u

?
i2
· · · u?ir ] ◦ [u?i1 u

?
i2
· · · u?ir ] ◦

[u?i1 u
?
i2
· · · u?ir ] = U? ◦ U? ◦ U? for any permutation

(i1, i2, · · · , ir) of the index (1, 2, · · · , r). This immediately
implies that U? and its columnwise permutations all give rise
to global minimizers of the following reformulation of the
optimization (1):

minimize
U∈Rn×r

f(U ◦ U ◦ U). (4)

Note that this new factorized formulation has explicitly en-
coded the rank constraint rank(T ) ≤ r into the factoriza-
tion representation T = U ◦ U ◦ U . As a result, the rank-
constrained optimization problem (1) on tensor variables
reduces to the above unconstrained optimization of matrix
variables, avoiding dealing with the difficult rank constraint
at the price of working with a highly non-convex objective
function in U . Indeed, while the resulting optimization (4)
has no rank constraint, a smaller memory footprint, and is
more amenable for applying simple iterative algorithms like
gradient descent, the permutational invariance of f(U ◦U ◦U)
implies that saddle points abound the optimization landscape
among the exponentially many equivalent global minimiz-
ers. Unlike the original convex objective f(T ) that has an
algorithm-friendly landscape where all the stationary points
correspond to the global minimizers, the landscape for the
resulting nonconvex formulation f(U ◦ U ◦ U) is not well-
understood. On the other hand, simple local search algorithms
applied to (4) has exhibited superb empirical performance.
As a first step towards understanding of the power of using
the factorization method to solve tensor inverse problems,
this work will focus on characterizing the local convergence
of applying vanilla gradient descent to the general problem
(4), as well as the global convergence of a simple variant.

Related Work
Burer-Monteiro Parameterization Method The idea of
transforming the rank-constrained problem into an uncon-
strained problem using explicit factorization like T = U ◦
U ◦ U is pioneered by Burer and Monteiro (Burer and Mon-
teiro 2003, 2005) in solving matrix optimization problems
with a rank constraint

minimize
X∈Rn×n

f(X)

subject to rank(X) ≤ r and X � 0
(5)

To deal with the rank constraint as well as the positive
semidefinite constraint, the authors there proposed to firstly
factorize a low-rank matrix X = UU> with U ∈ Rn×r
and r chosen according to the rank constraint. Consequently,
instead of minimizing an objective function f(X) over all
symmetric, positive semidefinite matrices of rank at most r,
one can focus on an unconstrained nonconvex optimization:

minimize
U∈Rn×r

f(UU>).

Inspired by (Burer and Monteiro 2003, 2005), an intensive
research effort has been devoted to investigating the theoret-
ical properties of this factorization/parametrization method

(Ge, Lee, and Ma 2016; Ge, Jin, and Zheng 2017; Park et al.
2017; Chi, Lu, and Chen 2019; Li, Zhu, and Tang 2018; Zhu
et al. 2018, 2021; Li, Zhu, and Tang 2017; Zhu et al. 2019; Li
et al. 2020). In particular, by analyzing the landscape of the
resulting optimization, many authors have found that various
low-rank matrix recovery problems in factored form–despite
nonconvexity–enjoy a favorable landscape where all second-
order stationary points are global minima.

Tensor Decomposition and Completion Another line of
related work is nonconvex tensor factorization/completion.
When the convex objective function f(T ) in (1) is the squared
Euclidean distance between the tensor variable T and the
ground-truth tensor T ?, i.e., f(T ) = ‖T − T ?‖2F , the result-
ing factorized problem (4) reduces to a (symmetric) tensor
decomposition problem:

minimize
U∈Rn×r

f(U ◦ U ◦ U) = ‖U ◦ U ◦ U − T ?‖2F . (6)

Tensor decomposition aims to identify the unknown rank-one
factors from available tensor data. This problem is the back-
bone of several tensor-based machine learning methods, such
as independent component analysis (Cardoso 1989) and col-
laborative filtering (Hou and Qian 2017). Unlike the similarly
defined matrix decomposition, which has a closed-form so-
lution given by the singular value decomposition, the tensor
decomposition solution generally has no analytic expressions
and is NP-hard to compute in the worst case (Hillar and Lim
2013). When the true tensor T ? is a fourth-order symmetric
orthogonal tensor, i.e., there is an orthogonal matrix U? such
that T ? = U? ◦ U? ◦ U? ◦ U?, Ge et al. (Ge et al. 2015)
designed a new objective function

f̃(U)
.
=
∑
i6=j

〈T ?,ui ⊗ ui ⊗ uj ⊗ uj〉

and showed that, despite its non-convexity, the objective
function f̃(U) has a benign landscape on the sphere where
all the local minima are global minima and all the saddle
points have a Hessian with at least one negative eigenvalue.
Later, (Qu et al. 2019) relax the orthogonal condition to
near-orthogonal condition, resulting to landscape analysis to
fourth-order overcomplete tensor decomposition. The work
(Ge et al. 2015) has spurred many followups that dedicate
on the analysis of the nonconvex optimization landscape of
many other problems (Ge, Lee, and Ma 2016; Ge, Jin, and
Zheng 2017; Bhojanapalli, Neyshabur, and Srebro 2016; Park
et al. 2017; Chi, Lu, and Chen 2019). The techniques devel-
oped in (Ge et al. 2015), however, are not directly applicable
to solve the original rank-constrained tensor optimization
problem (6). In addition, (Ge et al. 2015) mainly considered
fourth-order tensor decomposition, which cannot be trivially
extended to analyze other odd-order tensor decompositions.
More recently, Ge and Ma (Ge and Ma 2017) studied the
problem of maximizing

f̂(u) = 〈T,u⊗ u⊗ u⊗ u〉
on the unit sphere and presented a local convergence of ap-
plying vanilla gradient descent to the problem. Although this
formulation together with iterative rank-1 updates lead to

10267



algorithms with convergence guarantees for tensor decom-
position, it is not flexible enough to deal with general rank-
constrained problem (1). Similar rank-1 updating methods for
tensor decomposition have also been investigated in (Anand-
kumar, Ge, and Janzamin 2017, 2015, 2014; Anandkumar
et al. 2014).

More recently, (Chi, Lu, and Chen 2019; Cai et al. 2021)
apply the factorization formulation to the tensor completion
problem and focuses on solving

minimize
U∈Rn×r

‖PΩ (U ◦ U ◦ U − T ?)‖2F , (7)

where PΩ is the the orthogonal projection of any tensor T
onto the subspace indexed by the observation set Ω. (Chi,
Lu, and Chen 2019; Cai et al. 2021) proposed a vanilla gradi-
ent descent following a rough initialization and proved the
vanilla gradient descent could faithfully complete the tensor
and retrieve all individual tensor factors within nearly linear
time when the rank r does not exceed O(n1/6). Compared
with these prior state of the arts, our convergence analysis
improves the order of rank r and extends the focus to general
cost functions.

Main Contributions and Organization
To solve the rank-constrained tensor optimization problem
(1), we directly work with the Burer-Monteiro factorized
formulation (4) with a general convex function f(·) and focus
on solving (4) using (vanilla) gradient descent

U+ = U − η∇Uf(U ◦ U ◦ U), (8)

where U+ is the updated version of the current variable U , η
is the stepsize that will be carefully tuned to prevent gradient
descent from diverging, and ∇Uf is the gradient of f(U ◦
U ◦ U) with respect to U .

In this work, we show that the factorized tensor minimiza-
tion problem (4) satisfies the local regularity condition under
certain mild assumptions. With this local regularity condi-
tion, we further prove a linear convergence of the gradient
descent algorithm in a neighborhood of true tensor factors.
In particular, we have shown that solving the factored tensor
minimization problem (4) with gradient descent (8) is guar-
anteed to identify the target tensor T ? with high probability
if r = O

(
n1.25

)
and n is sufficiently large. This implies that

we can even deal with the scenario where the rank of the
target tensor T ? is larger than the individual tensor dimen-
sions, the so called overcomplete regime that are considered
challenging to tackle in practice.

Finally, as a complement to the local analysis, we study
the global landscape of best rank-1 approximation of a third-
order orthogonal tensor and we show that this problem has no
spurious local minima and all saddle points are strict saddle
points except for the one at zero, which is a third-order saddle
point.

Organization The remainder of this work is organized as
follows. In Section 2, we first briefly introduce some basic
definitions and concepts used in tensor analysis and then
present the local convergence of applying vanilla gradient
descent to the tensor minimization problem (4) and provide

a linear convergence analysis for the gradient descent al-
gorithm (8). In Section 3, we switch to analyze the global
landscape of orthogonal tensor decomposition. Numerical
simulations are conducted in Section 4 to further support our
theory. Finally, we conclude our work in Section 5.

2 Local Convergence
In this section, we first briefly review some fundamental
concepts and definitions in tensor analysis. A tensor with
order higher than 3 can be viewed as a high-dimensional
extension of vectors and matrices. In this work, we mainly
focus on the third-order symmetric tensors. Any such tensor
admits symmetric rank-one decompositions of the following
form:

T =
r∑
p=1

cpup ⊗ up ⊗ up ∈ Rn×n×n

with ‖up‖2 = 1 and cp > 0, 1 ≤ p ≤ r. The
above decomposition is also called the Canonical Polyadic
(CP) decomposition of the tensor T (Hong, Kolda, and
Duersch 2020). The minimal number of factors r is de-
fined as the (symmetric) rank of the tensor T . Denote
T (i1, i2, i3) as the (i1, i2, i3)-th entry of a tensor T . We de-
fine the inner product of any two tensors X,Y ∈ Rn×n×n
as 〈X,Y 〉 .

=
∑n
i1,i2,i3=1X(i1, i2, i3)Y (i1, i2, i3). The in-

duced Frobenius norm of a tensor T is then defined as
‖T‖F

.
=
√
〈T, T 〉. For a tensor T ∈ Rn×n×n, we de-

note its unfolding/matricization along the first dimension
as T(1) = [T (:, 1, 1) T (:, 2, 1) · · · T (:, n, n)] ∈ Rn×n2

.

We proceed to present the local convergence of applying
vanilla gradient descent to the factored tensor minimization
problem (4). Before that, we introduce several definitions
used throughout the work.
Definition 1. A function f : Rn×n×n → R is (r,m,M)-
restricted strongly convex and smooth if
m‖Y −X‖F ≤ ‖∇f(Y )−∇f(X)‖F ≤M‖Y −X‖F

holds for any symmetric tensors X,Y ∈ Rn×n×n of rank at
most r with some positive constants m and M .

For example, f(T ) = 1
2‖T − T

?‖2F is such a (r,m,M)-
restricted strongly convex and smooth function for arbitrary
r ∈ N with M = m = 1, and its global minimizer is
T = T ?.
Definition 2. The distance between two factored matrices
U1 and U2 is defined as

dist(U1, U2) = min
PermutationP

‖U1 − U2P‖F .

Denote
PU1

= arg min
PermutationP

‖U1 − U2P‖F . (9)

Then, we can rewrite the distance between U1 and U2 as
dist(U1, U2) = ‖U1 − U2PU1

‖F . (10)
Define γ .

= polylog(n) that may vary from place to place
and Û .

=
[
û1 û2 · · · ûr

]
. Denote c .

= minp∈[r] c
?
p

1/3, c̄ .
=

maxp∈[r] c
?
p

1/3, and ω = c̄/c. We are ready to introduce the
assumptions needed to prove our main theorem as follows.
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Assumption 1. (Incoherence condition). The vector factors
û in the target tensor T ? satisfy

max
i6=j
|〈ûi, ûj〉| ≤

γ√
n
.

Assumption 2. (Bounded spectrum). The spectral norm of
Û is bounded above as

‖Û‖ ≤ 1 + c1

√
r

n
.

Assumption 3. (Isometry of Gram-matrix). The Gram matrix
satisfies the following isometry property

‖(Û>Û)� (Û>Û)− Ir‖ ≤
γ
√
r

n
.

where � is the Hadamard product.
Assumption 4. (Warm start). The distance between the cur-
rent variable U and the matrix factor U? is bounded with

dist(U,U?) ≤ 0.07
m

M

c

ω3
.

We remark that Assumptions 1-3 hold with high probabil-
ity if the factors {ûp}rp=1 are generated independently ac-
cording to the uniform distribution on the unit sphere (Anand-
kumar, Ge, and Janzamin 2015, Lemmas 25, 31).

Main Results
We now present our main theorem in the following:
Theorem 1. Suppose that a (r,m,M)-restricted strongly
convex and smooth function f : Rn×n×n → R has a unique
global minimizer at T ?, which admits a CP decomposition
T ? = U? ◦U? ◦U? ∈ Rn×n×n as given in (3). Then, under
Assumptions 1-4 and in addition assuming r = O

(
n1.25

)
,

the following local regularity condition holds for sufficiently
large n:

〈∇Uf(U ◦ U ◦ U), U − U?PU 〉 ≥
1

2
η‖∇Uf(U ◦ U ◦ U)‖2F

+ 0.13mc4dist(U,U?)2,
(11)

as long as

η ≤ 1

18‖[∇f(T )](1)‖ · ‖U‖+ 9M‖U‖4
. (12)

Here T = U◦U◦U and [∇f(T )](1) denotes the matricization
of ∇f(T ) along the first dimension.

The local regularity condition further implies linear conver-
gence of the gradient descent algorithm (8) in a neighborhood
of the true tensor factors U? with proper choice of the step-
size, as summarized in the following two corollaries.
Corollary 1 (Linear Convergence with adaptive stepsize).
Under the same assumptions as in Theorem 1, we have the
following (adaptive) linear convergence

dist(U+, U?)2 ≤ (1− 0.26ηmc4)dist(U,U?)2

.
= α(η) · dist(U,U?)2

(13)

when we run the gradient descent algorithm (8) with the
stepsize η satisfying (12).

Corollary 2 (Linear Convergence with constant stepsize).
Under the same assumptions as in Theorem 1, except that
Assumption 4 is replaced by a good initial condition:

dist(U0, U?) ≤ 0.07
m

M

c

ω3
, (14)

and the stepsize selection requirement (12) is replaced with
the constant stepsize satisfying η0 = 1

21.6M‖U0‖4 , the se-
quence {U t : t = 0, 1, 2, · · · } generated by

U t+1 = U t − η0∇f(U t ◦ U t ◦ U t), t = 0, 1, 2, · · ·
satisfies

dist(U+, U?)2 ≤ α(η0) · dist(U,U?)2 (15)

with α(η0)
.
= 1− 0.26η0mc

4.
As a consequence, we conclude that solving the factored

problem (4) using the gradient descent algorithm (8) with
a good initialization is guaranteed to recover the tensor fac-
tor matrix U? with high probability if r = O

(
n1.25

)
. The

proof of the above theorem and corollaries can be found in
supplementary material.

3 Global Convergence
The local convergence analysis of applying vanilla gradi-
ent descent to tensor optimization, though developed for a
class of sufficiently general problems, is not completely sat-
isfactory as a good initialization might be difficult to find.
Therefore, we are also interested in characterizing the global
optimization landscape for these problems. Considering the
difficulty of this task, we focus on a special case where the
ground-truth third-order tensor admits an orthogonal decom-
position and we are interested in finding its best rank-one
approximation. We aim to characterize all its critical points
and classify them into local minima, strict saddle points, and
degenerate saddle points if there is any. We also want to ex-
ploit the properties of critical points to design a provable and
efficient tensor decomposition algorithm.

Main Results
Consider the best rank-one approximation problem of an
orthogonally decomposable tensor:

g(u) = ‖u⊗ u⊗ u− T ?‖2F , (16)

where T ? =
∑r
i=1 u

?
i ⊗u?i ⊗u?i and these true tensor factors

{u?i } are orthogonal to each other. This is a special case of
(4) (and (6)). We characterize all possible critical points and
their geometric properties in the following theorem:
Theorem 2. Assume T ? =

∑r
i=1 u

?
i ⊗ u?i ⊗ u?i , where

{u?i } are orthogonal to each other. Then any critical point
û of g(u) in (16) takes the form û =

∑r
i=1 λiu

?
i for λ .

=
[λ1 · · · λr]> ∈ Rr and
1. when ‖λ‖0 = 0, û = 0 is a third-order saddle point, i.e.,
∇2g(û) = 0 and ∇3g(û) 6= 0;

2. when ‖λ‖0 = 1, û = u?i with i ∈ {1, 2, . . . , r} is a strict
local minimum;

3. when ‖λ‖0 ≥ 2, û is a strict saddle point, i.e., ∇2g(u)
has a negative eigenvalue.
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Algorithm 1: Iterative Gradient Descent for Tensor Decom-
position
Input: T ?
Initialization: T = T ?, û = 0
Output: Estimated factors {u?i }

1: Let i = 0.
2: while T 6= 0 do
3: if û 6= 0 then
4: i = i+ 1.
5: u?i = û

6: T ← T − 〈T,û⊗û⊗û〉û⊗û⊗û‖û‖32
7: end if
8: Find a second-order stationary point û of g(u) =

‖u⊗ u⊗ u− T‖2F .
9: end while

10: return solution

Here the `0 “norm” ‖ · ‖0 counts the number of non-zero
entries in a vector. Analytic expression for λ is given in the
proof.

Theorem 2 implies that all second-order critical points are
the true tensor factors except for zero. Based on this, we de-
velop a provable conceptual tensor decomposition algorithm
as follows:

Corollary 3. Assume T ? is a third-order orthogonal tensor
with the tensor factors {u?i }. Then with the input T ?, Algo-
rithm 1 almost surely recovers all the tensor factors {u?i }.

Proof of Corollary 3. It mainly follows from the many itera-
tive algorithms can find a second-order stationary point (Lee
et al. 2016; Li, Zhu, and Tang 2019; Li et al. 2019; Nes-
terov and Polyak 2006; Jin et al. 2017). Then by Theorem 2,
applying these iterative algorithms to g(u), it converges to
either a true tensor factor u?i for i ∈ [r] or the zero point
(as a third-order saddle point is essentially a second-order
stationary point). If it converges to a nonzero point, it must
be a true tensor factor and we record it. Then we can remove
this component by projecting the target tensor T into the
orthogonal complement of u?i . We repeat this process to the
new deflated tensor until we get a zero deflated tensor. That
means, we have found all the true factors {u?i }.

Proof of Theorem 2
Recall that

T ? =
r∑
i=1

u?i ⊗ u?i ⊗ u?i
.
=

r∑
i=1

λiûi ⊗ ûi ⊗ ûi.

Without loss of generality, we can extend the orthonormal set
{ûi}ri=1 to {ûi}ni=1 as a full orthonormal basis of Rn and
define

λi
.
= 0, i ∈ [r]c

.
= {r + 1, . . . , n}.

Then, we have T ? =
∑n
i=1 λiûi ⊗ ûi ⊗ ûi. Since {ûi}ni=1

is a full orthonormal basis of Rn, Û .
= [û1 · · · ûn] is an

orthonormal matrix, i.e., Û Û> = I. Then the best rank-1
tensor approximation problem is equivalent to

g(u) = ‖u⊗ u⊗ u− T ?‖2F
=
∥∥∥(Û Û>u)⊗ (Û Û>u)⊗ (Û Û>u)

−
n∑
i=1

λiûi ⊗ ûi ⊗ ûi
∥∥∥2

F
.

(17)

Expanding the squared norm and using the fact that Û is
orthonormal, we get

g(u) = ‖(Û>u)⊗ (Û>u)⊗ (Û>u)− diag3(λ)‖2F
.
= ĝ(Û>u)

(18)

where we denote

ĝ(u)
.
= ‖u⊗ u⊗ u− diag3(λ)‖2F ,

diag3(λ)
.
=

n∑
i=1

λiei ⊗ ei ⊗ ei.

Lemma 1. The landscape of g(u) and ĝ(u) are rotationally
equivalent: u is a first/second-order stationary point of g if
and only if Û>u is a first/second-order stationary point of ĝ.

Proof of Lemma 1. Since g(u) = ĝ(Û>u), by chain rule,

∇g(u) = Û∇ĝ(Û>u),

∇2g(u) = Û∇2ĝ(Û>u)Û>.
(19)

Then it directly follows from the definitions of first/second
stationary points.

Therefore by Lemma 1, to understand the landscape of
g(u), it suffices to study that of

ĝ(u) = ‖u⊗ u⊗ u− diag3(λ)‖2F .

We compute its derivatives up to third-order:

∇ĝ(u)=6‖u‖42u−6λ� u� u,
∇2ĝ(u)=6‖u‖42I + 24‖u‖22uu>−12diag3(λ� u),

∇3ĝ(u)=24‖u‖22Sym(I⊗u)+48u⊗ u⊗ u−12diag3(λ)

where � is the Hadamard product and Sym(T ) is the sum of
all the three permutations of T .

Now define J as the index set of any critical point u such
that ui 6= 0 for i ∈ J , i.e.,

uJ 6= 0, uJc = 0, ‖u‖0 = |J |.

By the critical point equation

û‖42û− λ� û� û = 0 (20)

and λi = 0 for i ∈ [r]c, we conclude that J ⊂ [r]. In the
following, we divide the problem into three cases: |J | =
0, |J | = 1, and |J | ≥ 2.
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• Case I: |J | = 0. That is û = 0. Then, we have

∇ĝ(û) = 0, and ∇2ĝ(û) = 0,

but
∇3ĝ(û) = −12diag3(λ).

This implies û = 0 is a third-order saddle point of ĝ.
• Case II: |J | = 1. Since J ⊂ [r], let J = {k} for some
k ∈ [r]. Then,

û = ûkek and ∇ĝ(û) = 6û5
kek − 6λkû

2
kek = 0,

which implies that ûk = 3
√
λk. We also have

∇2ĝ(û) = 6λ
4/3
k I + 24λ

4/3
k eke

>
k − 12λ

4/3
k eke

>
k

= 6λ
4/3
k I + 12λ

4/3
k eke

>
k � 0

Therefore, any critical point û with ‖û‖0 = 1 has the
form û = 3

√
λkek for k ∈ [r], and is a strict local mini-

mum of ĝ.
• Case III: |J | ≥ 2. Also, we know that J ⊂ [r]. With the

critical point equation, we get

λJ � ûJ = ‖û‖421|J|.

Further notice that

diag3(λJ � ûJ) = ‖û‖42I|J|.

Plugging this to the sub-Hessian

[∇2ĝ(û)]J,J = 24‖û‖22ûJ û
>
J − 6‖û‖42I|J|.

Now for any d ∈ Rn with d>J uJ = 0,dJc = 0, we have

[∇2ĝ(û)](d,d) = −6‖û‖42‖dJ‖22 = −6‖û‖42‖d‖22,

implying that

λmin(∇2ĝ(û)) ≤ −6‖û‖42 < 0.

Therefore, any critical point û with ‖û‖0 ≥ 2 has the
form ûJ =

‖ûJ‖42
λJ

(pointwise), and is a strict saddle point
of ĝ.

Together with Lemma 1, we complete the proof of Theo-
rem 2.

4 Numerical Experiments
Computing Infrastructure All the numerical experiments
are performed on a 2018 MacBook Pro with operating system
of macOS version 10.15.7, processor of 2.6 GHz 6-Core Intel
Core i7, memory of 32 GB, and MATLAB version of R2020a.

In the first experiment, we illustrate the linear convergence
of the gradient descent algorithm within the contraction re-
gion dist(U0, U?) ≤ 0.07mM

c
ω3 in solving the tensor decom-

position problem (6), where M = m = 1 in this case. We set
n = 64 and vary r with three different values: n/2, n, 3n/2
to get an undercomplete, complete, and overcomplete tar-
get tensor T ?, respectively. We generate the r columns of
U? independently according to the uniform distribution on
the unit sphere and form T ? = U? ◦ U? ◦ U?. According
to (Anandkumar, Ge, and Janzamin 2015, Lemmas 25, 31)

and Corollary 2, if dist(U0, U?) ≤ 0.07mM
c
ω3 = 0.07 (be-

cause ‖u?i ‖2 = 1 implies c̄ = c = ω = 1), the gradient
descent with a sufficiently small constant stepsize would con-
verge linearly to the true factor U?. To illustrate this, we
initialize the starting point as U? + αD with α = 0.07 and
set D as a normalized Gaussian matrix with ‖D‖F = 1. We
record the three metrics ‖∇f(U)‖F , ‖U ◦U ◦U−T ?‖F , and
dist(U,U?) for total 103 iterations with different stepsizes η
in Figure 1, which is consistent with the linear convergence
analysis of gradient descent on general Burer-Monteiro tensor
optimizations in Corollary 2.

In the second experiment, with the same settings as above
except varying α, we record the success rate by running
100 trials for each fixed (r, α)-pair and declare one success-
ful instance if the final iterate U satisfies dist(U,U?) ≤
10−3. We repeat these experiments for different α ∈
{0.5, 1, 2, 4, 8, 16}. Table 1 shows that when α is small
enough (α ≤ 2), the success rate is 100% for all the un-
dercomplete (r = n/2), complete (r = n), and overcom-
plete (r = 3n/2) cases; and when α is comparatively large
(α ∈ [4, 8]), the success rate degrades dramatically when r
increases. Finally, when α is larger than certain threshold,
the success rate is 0%. This in consistence with Corollaries 1
and 2.

α 0.5 1 2 4 8 16
r=n/2 100% 100% 100% 100% 100% 0%
r=n 100% 100% 100% 100% 100% 0%
r=3n/2 100% 100% 100% 100% 5% 0%

α 0.5 1 2 4 8 16
r=n/2 100% 100% 100% 100% 100% 0%
r=n 100% 100% 100% 100% 0% 0%
r=3n/2 100% 100% 100% 100% 0% 0%

α 0.5 1 2 4 8 16
r=n/2 100% 100% 100% 100% 38% 0%
r=n 100% 100% 100% 100% 0% 0%
r=3n/2 100% 100% 100% 83% 0% 0%

Table 1: Success ratio with η = 0.02 (top), η = 0.04 (middle),
and η = 0.06 (bottom).

5 Conclusion
In this work, we investigated the local convergence of third-
order tensor optimization with general convex and well-
conditioned objective functions. Under certain incoherent
conditions, we proved the local regularity condition for
the nonconvex factored tensor optimization resulted from
the Burer-Monteiro reparameterization. We highlighted that
these assumptions are satisfied for randomly generated tensor
factors. With this local regularity condition, we further pro-
vided a linear convergence analysis for the gradient descent
algorithm started in a neighborhood of the true tensor factors.
Complimentary to the local analysis, we also presented a
complete characterization of the global optimization land-
scape of the best rank-one tensor approximation problem.
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Figure 1: Linear convergence of gradient descent when applied to tensor factorization problem (6). Here, r = n/2 (top row),
r = n (middle row), and r = 3n/2 (bottom row) with n = 64. We initialize the starting point as U? +αD with α = 0.07 and set
D as a normalized Gaussian matrix with ‖D‖F = 1. We record the three metrics ‖∇f(U)‖F (left column), ‖U ◦U ◦U − T ?‖F
(middle column), and dist(U,U?) (right column) for total 103 iterations with different stepsize η, which is consistent with the
linear convergence analysis of gradient descent on general Burer-Monteiro tensor optimizations.
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