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Abstract

Off-policy learning plays a pivotal role in optimizing and
evaluating policies prior to the online deployment. However,
during the real-time serving, we observe varieties of inter-
ventions and constraints that cause inconsistency between the
online and offline settings, which we summarize and term
as runtime uncertainty. Such uncertainty cannot be learned
from the logged data due to its abnormality and rareness na-
ture. To assert a certain level of robustness, we perturb the
off-policy estimators along an adversarial direction in view of
the runtime uncertainty. It allows the resulting estimators to be
robust not only to observed but also unexpected runtime un-
certainties. Leveraging this idea, we bring runtime-uncertainty
robustness to three major off-policy learning methods: the
inverse propensity score method, reward-model method, and
doubly robust method. We theoretically justify the robustness
of our methods to runtime uncertainty, and demonstrate their
effectiveness using both the simulation and the real-world
online experiments.

Introduction
The offline optimization and evaluation have been studied
intensively in the past few years, as deploying a sub-optimal
policy for real-time experiments can be costly and even risky
(Dudík, Langford, and Li 2011; Bottou et al. 2013; Swami-
nathan and Joachims 2015a; Athey and Wager 2017). Never-
theless, it is arguably true that off-policy learning can barely
represent real-world scenarios except for a few ideal settings.
In particular, real-time policy deployments are inevitably sub-
ject to various interventions and constraints that can not be
unaccounted for in standard off-policy learning. We catego-
rize these unexpected events as runtime uncertainty since
they are brought about by some anomalous events of the
online execution mechanism. Examples include:

1. in e-commerce recommendation, the product displace-
ment is sometimes subject to real-time business factors
such as trending popularity;

2. in personalized online advertisement, during peak hours,
the policy execution may be replaced by the backup plan
if the response-time agreement can not be satisfied;

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

3. in autonomous driving, the self-driving vehicle can be hit
by accidents, harsh weather, or intrusions that limit the
ability to carry out the designed policy.

We conclude that the impacts of runtime uncertainty are often
reflected in the changes to the policy’s execution. In the above
examples, one may expect the following consequences: 1).
the original exposure probabilities are adjusted by the instant
trends of the items; 2). the exceeding web traffic will be
directed to the rollback setting, e.g., non-personalized policy,
rather than calling the online inference service of the designed
policy; 3). the emergency mechanism, e.g., emergent brake,
is triggered and takes over the running policy.

In stark contrast to the issue of a non-stationary environ-
ment where the underlying reward mechanism changes over
time (Bubeck and Slivkins 2012), runtime uncertainty may
not alter the reward mechanism. Additionally, runtime un-
certainty does not cause distribution change or missing ob-
servation of the contextual features, so our problem clearly
distinguishes from the setting of distribution-robust and
confounding-robust policy optimization (see Section for
detail). The major challenge here is that the designed policy
cannot be executed as-is due to unexpected events on the ex-
ecutors, which leads to discrepancies between the online and
offline settings. It is implausible to remove or characterize
these exceptional uncertainties by learning from the logged
data, since they are abnormal and intractable by nature. As a
consequence, the runtime uncertainty raises a novel problem
for off-policy learning, which to the best of our knowledge,
has not been studied.

Our strategy is to incorporate a certain level of robustness
against potential runtime uncertainty via an offline max-min
learning. We search for an adversarial scenario where runtime
uncertainties induce the worst impact on a value function of
interest. Since runtime uncertainties act on policy’s execution,
we adversarially perturb the logging policy in search for the
worst case as if additional runtime uncertainties have played
a role. Then we identify the candidate policy with the best
offline performance under this worst case. Specifically, for
any candidate policy π, let V̂ (π, πu) be the estimated reward,
e.g., via inverse-propensity score weighting, assuming that
the logged feedback was generated under πu (u represents
some perturbation mechanism). The key is to introduce an
uncertainty set Uα(π0) that surrounds the logging policy π0,
constructed by such as the `2, `∞ or Wasserstein balls with
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radius α. To find the optimal policy that is robust to any
possible data-generating mechanism in Uα(π0), we formulate
adversarial learning objective as:

maximize
π

min
πu∈Uα(π0)

V̂ (π, πu),

where πu plays the role of the uncertainty-perturbed policy
as if it generated the logged feedback. We can also evaluate
the learned policy in such an adversarial scenario. When
α = 0, we revert to the standard off-policy learning where
the solution is only optimal under π0 and can be sensitive to
future online uncertainties. We will further elaborate on the
objective and the uncertainty set in Section .

Based on this framework, we enhance the robustness of the
most common offline estimation methods, i.e., the reward-
model (RM) method (Q-learning) (Jin et al. 2018), the inverse
propensity weighting (IPS) method (Horvitz and Thomp-
son 1952) and the doubly robust (DR) method (Robins,
Rotnitzky, and Zhao 1994). We provide a practical charac-
terization of the impact of runtime uncertainty. We find it
gives the most interpretable and tractable solutions to mea-
sure the point-wise deviation from the original design to
the final execution, which corresponds to constructing U
using the `∞ distance. Then, we study the bounds that re-
veal how the estimators may fluctuate if the same uncer-
tainty were applied to the logging policy, i.e. the range
of
[

minπu∈U(π0) V̂ (π, πu),maxπu∈U(π0) V̂ (π, πu)
]

for any
given π. The bounds provide a scope of the possible perfor-
mances, which in turn enables developing an efficient algo-
rithm for the max-min training objective. Furthermore, we
study the generalization behavior of the proposed algorithm
and rigorously analyze how it leads to robust estimators.

We conduct comprehensive simulation studies to examine
the effectiveness of the proposed approach. We also conduct
real-world online testings on an e-commerce platform, where
our approach compares favorably to standard offline learning.
We conclude our contributions as follows.

• We study the novel problem of obtaining a runtime-robust
policy in the context of off-policy learning.

• We design a max-min framework to devise a runtime-
robust policy and propose the optimization procedures to
bound the estimators in the adversarial setting.

• We propose an off-policy algorithm for robust optimiza-
tion, and theoretically show the tradeoffs and guarantees.

• We rigorously examine the effectiveness of our approach
via both simulation and real-world experiments.

Background and Related Work
Different types of robust machine learning and optimization
have been intensively studied in the literature. They provide
powerful tools to tackle various problems affected by uncon-
trolled factors (Ben-Tal, El Ghaoui, and Nemirovski 2009;
Bertsimas, Brown, and Caramanis 2011). To better under-
stand the runtime uncertainty, which has not been investigated
before, we compare it with other four kinds of robustness, i.e.,
non-stationary environment, unobserved confounder, noisy
label & measurement error, as well as adversarial learning.

We use f0 to denote a reference distribution of the covari-
ates (or treatment) X , outcome (or reward) Y , and unknown
factors U , whose interpretations will be made case-specific.
We use ftrain, ftest and f̂train to denote the training distribution,
the testing distribution, and the learned distribution based on
the training data, respectively. See Table ?? for the summa-
rized comparisons.

Non-stationary environment (mechanism change). In
the context of off-policy learning, the uncertainties (or known
as mechanism change) caused by non-stationary environment
have been studied in the recent literature (Dudík et al. 2014;
Kallus and Zhou 2018; Jagerman, Markov, and de Rijke
2019; Si et al. 2020; Bareinboim, Forney, and Pearl 2015; Xu
et al. 2021). This field focuses on a problem where the con-
ditional distribution for Y |X under ftest differs from that of
the training distribution ftrain := f0. It is caused by changes
in environments, e.g., customers’ interests change over time.
To obtain a policy that can work for ftest, the precondition is
that there exists shared structures between ftrain and ftest.

Unobserved Confounder. When there exist unobserved
confounders U that affect both the response Y and the treat-
ment X , the true underlying distribution f0 is a function of
X , U and Y , but only ftrain(X,Y ) is observed. The policy de-
veloped ignoring these confounders can be sub-optimal and
risky to deploy. Research on this topic attempts to develop a
robust policy that does not malfunction in the worst case of
ftest = f0. In particular, the sensitivity analysis is often em-
ployed to characterize the robustness of inference outcome
when the non-confounding causal assumption is violated to
various extents, and confounding-robust techniques are pro-
posed accordingly (Rosenbaum and Rubin 1983; Rosenbaum
and Silber 2009; Ding and VanderWeele 2016; Zhao, Small,
and Bhattacharya 2019; Kallus and Zhou 2018).

Noisy Label & Measurement Error. The observed re-
sponse or reward Y may well be contaminated during the
collection of large datasets, which is referred to as noisy label
learning (Natarajan et al. 2013; Northcutt, Jiang, and Chuang
2021; Zheng et al. 2020; Ghosh, Kumar, and Sastry 2017).
In addition, the field of measurement error concerns the case
where there exist some errors in measuring the covariates X ,
or X is blurred by some systematic noise (Neumayer and
Plümper 2017; Blackwell, Honaker, and King 2017; Ye and
Bickel 2021). Most studies in this venue focus on recover-
ing the true underlying distribution f0(X,Y ) given the noisy
observed training distribution ftrain(X,Y ).

Adversarial Learning. Recent years have seen a flurry
of studies on the development of algorithms for generat-
ing and learning from adversarial examples (Goodfellow,
Shlens, and Szegedy 2015; Kurakin, Goodfellow, and Ben-
gio 2016; Carlini and Wagner 2017; Madry et al. 2018).
Such maliciously perturbed examples show little difference
from original samples in human perception but can mis-
lead machine learning models to incorrect decisions. In
this setting, we still expect ftrain(X,Y ) = f0(X,Y ), while
ftest(X,Y ) ≈ f0(X,Y ) since for the designed X that may
fool the algorithm, ftest(X,Y ) 6= f0(X,Y ) .

Runtime Uncertainty. The runtime uncertainty is caused
by unexpected events during execution. It drives ftrain and ftest
away from the expected f0 generated by the designed policy.
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Data distribution Goal Source of uncertainty

Non-stationary environment ftrain(Y |X) = f0(Y |X)
ftest(Y |X) 6= f0(Y |X)

Adapt f̂train to ftest ftrain and ftest only overlap to some extent
with perhaps shared common structures.

Unobserved Confounder ftrain(X,Y ) 6= f0(X,U, Y )
ftest(X,U, Y ) = f0(X,U, Y )

Develop a policy for
f0(X,U, Y )

Unable to observe some confounders U .

Noisy Label &
Measurement Error ftrain(X,Y ) 6= f0(X,Y ) Recover the true f0 X or Y might be contaminated.

Adversarial Learning ftrain(X,Y ) = f0(X,Y )
ftest(X,Y ) ≈ f0(X,Y )

Make f̂train robust to
adversarial examples.

ftest and ftrain are similar, but there are ad-
versarially designed cases that drive the for-
mer away from the latter.

Runtime Uncertainty
ftrain(X,Y ) 6= f0(X,Y )
ftest(X,Y ) 6= f0(X,Y )
ftrain(X,Y ) 6= ftest(X,Y )

Make f̂train robust to
runtime uncertainties

ftrain and ftest deviate from f0 irregularly, so
we aim to develop a policy that is robust to
future uncertainty in ftest.

Table 1: A brief comparison of the runtime uncertainty to other four types of robustness learning.

The changes in distributions are irregular and unstructured,
which suggests that: 1). ftrain 6= f0 and ftest 6= f0; 2). the
deviations are unsystematic and cannot be learned from data.
In spite of certain similarities, the properties of the runtime
perturbations fundamentally differ from the above scenarios:
• the distribution-robust methods only assume the pertur-

bations of the contextual features X (Si et al. 2020); the
perturbations in the noisy label & measurement error oc-
cur marginally to the response Y or the covariates X; the
adversarial learning increases the likelihood of seeing the
problematic covariates (X,Y ) that the machine can make
mistakes on. On the other hand, the runtime perturbations
allow the entire policy to be perturbed;

• by the definition of confounders, most confounding-robust
methods assumes perturbations to be independent of the
actions that were taken, e.g., π(a|x, u) ∝ π0(a|x) + λu
(Kallus and Zhou 2018); however, the nature of runtime
uncertainty is much more complex since its effect can be
dependent on the actions, so the perturbation should be
able to adapt to any given policy.

Another line of research studies the estimator instability
caused by the variance issues of specific off-policy estima-
tors (Swaminathan and Joachims 2015b; Ma, Wang, and
Narayanaswamy 2019; Farajtabar, Chow, and Ghavamzadeh
2018; Xie, Ma, and Wang 2019; Thomas and Brunskill 2016;
Vlassis et al. 2019). Their methods for improving the estima-
tors’ stability can be adapted to our solutions.

Preliminary
In this section, we introduce the notations, basic concepts,
problem setup as well as the off-policy estimators of interest.

Notation. Let X be the context (feature) space, A =
{1, . . . , k} be the action space, and r(a, x) be the fixed
value (reward or regret) that is revealed under action a ∈ A
and context x ∈ X . The challenge of offline learning and
evaluation is largely due to the partial-observation of the
complete reward — we do not know the rewards of un-
taken actions. For an individual with context x(i) and pro-
vided with action a(i) ∈ A at the ith round, the feedback
data collected after T rounds is given by the set of triplets

hT =
{

(x(i), a(i), r(a(i), x(i)))
}T
i=1

. The logging policy,
which gives the conditional probability of an action under par-
ticular context and history, is denoted by: π0

(
a|x(T+1), hT

)
.

Since our primary focus is runtime uncertainty, we assume
the logging policy is stationary and the contexts are static
such that π0

(
a|x(T+1), hT

)
= π0

(
a|x(T+1)

)
.

Value function. For off-policy learning, given the context
x and the complete reward r(a, x) for all actions, the value
of a policy is: V (π) = Eπ(a|x)[r(a, x)]. Policy evaluation
estimates the value V̂ (π) using the collected feedback data
{(xi, ai, ri)}ni=1 and the logging policy π0(ai|xi) if available.
We aim at reward-maximization unless otherwise specified.
Policy optimization address the problem of finding the opti-
mal policy from a parametric family of candidate policies F ,
for instance, π∗ = arg maxπ∈F V̂ (π).

Estimating the value of an alternative policy π is challeng-
ing because we do not observe the potential value (defined
as below) for the actions that are not selected.
Definition 1. A potential value R(a, x) is the value that
would have been observed if the individual with context x
received action a.

By definition, the reward r(a, x) is an averaged version of
R(a, x) that integrates out all the possible actions under π0:

r(a, x) := Eπ0

[
R(a, x)

∣∣X = x
]

=
∑
ã∈A

E
[
R(a, x)

∣∣A = ã, X = x
]
π0(ã|x), (1)

which takes the form of the averaged potential value (APV).
In view of Pearl’s framework (Pearl and Mackenzie 2018),
R(a, x) is a rung-3 quantity and r(a, x) is a rung-2 quantity
that averages out the counterfactual effect. This viewpoint has
a profound implication for offline evaluation. For example, an
item is tagged with a price a while the true price suggested
by the market is ã. When ã is larger than a, the quantity
E
[
R(a, x)

∣∣A = ã, X = x
]

reveals how the customer may
react to the lowered price. In theory, averaging all possible
actions ã forms a comprehensive and systematic evaluation
for any specified action a and context x.

Offline estimators. It is unrealistic to observe (r(a), ã, xi)
for a 6= ã due to the partial-observation nature. A huge body
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of literature has been devoted to estimating the averaged
potential value Eπ0

[
R(a, x)

∣∣X = x
]
, such as the potential

outcome models (Robins, Rotnitzky, and Zhao 1994), struc-
tural models (Robins, Hernán, and Brumback 2000; Pearl
2009), two-stage regression models (Angrist and Imbens
1995). Broadly speaking, they attempt to model the reward
mechanism, and is also referred to as the Q-learning in re-
inforcement learning (Sutton and Barto 2018). Without loss
of generality, we refer to them as the reward-model (RM)
method denoted by V̂RM.

V̂RM(π;π0) =
1

n

n∑
i=1

∑
a∈A

π(a|xi)r̂(a, xi), (2)

where hatr is an estimate of Eq. (1). RM is often subject to
model misspecifications that lead to biased estimation. Using
the idea of importance sampling, the inverse-propensity score
method (IPS) described below can estimate the policy value
unbiasedly (Horvitz and Thompson 1952). By correcting for
the shift in action probability between π0 and π, IPS is less
prone to the bias issues.

V̂IPS(π;π0) =
1

n

n∑
i=1

π(ai|xi)
π0(ai|xi)

ri. (3)

In practice, the variance-stabilized versions of IPS, e.g.,
the normalized and truncated IPS, are considered more of-
ten (Vlassis et al. 2019; Gilotte et al. 2018). We defer the
discussion to the appendix to avoid unnecessary repetitions.

The doubly robust estimator (DR) is a popular control
variate method that effectively leverages both RM and IPS
(Robins, Rotnitzky, and Zhao 1994). The notion comes from
the fact that DR gives consistent estimation when either RM
or IPS is consistent. Here, V̂DR is given by:

V̂DR(π;π0) =
1

n

n∑
i=1

{
r̂(xi) +

π(ai|xi)
π0(ai|xi)

(
ri − r̂(ai, xi)

)}
,

where r̂(xi) is the RM estimation:
∑
a∈A π(a|xi)r̂(a, xi).

Offline Estimators under `∞ Uncertainty
Unlike other domains where Uα can have many options, find-
ing the right uncertainty set is critical to the interpretation
and effectiveness of our approach. The reasons are:
1. The formulation of Uα should conform to how online

uncertainty arises in practice, which in turn explains the
type of robustness we are asserting. For instance, the
`2 ball would suffice if we believe the impact of online
uncertainty is close to average on each action.

2. The constraint optimization of minπu∈Uα(π0) V̂ (π, πu)
can be intractable or extremely challenging to solve; for
instance, when Uα(π0) is given by the Wasserstein ball1.

In our study, we find the `∞ distance gives a nice trade-
off in terms of the interpretability, practicality, and the ro-
bustness guarantee. We first discuss the interpretation of

1ERM under Wasserstein’s constraint are often converted to
another min-max optimization (Lee and Raginsky 2018); which
means our objective will become a max-min-max problem.

using `∞ distance. Recall from Section that runtime un-
certainty causes unexpected interventions and constraints
to the policy’s execution, which can impact π(a|x) for
any a and x. It means runtime uncertainty can cause de-
viation that is best measured in a point-wise fashion, e.g.
maxa

∣∣πu(a|x)−π0(a|x)
∣∣ for a given x, rather than by some

average, e.g. 1
k

∑
a

∣∣πu(a|x)− π0(a|x)
∣∣. To better leverage

the fraction format in IPS and DR, we replace the absolute
difference by the ratio of: max{πu(a|x)

π0(a|x) ,
π0(a|x)
πu(a|x)}. If we treat

the policies π0 and πu as vectors, by the same essence, their
deviation is exactly measured by the `∞ norm. Therefore, the
uncertainty set Uα(π0) follows:{

πu : max
a∈A,x∈X

max
{πu(a|x)

π0(a|x)
,
π0(a|x)

πu(a|x)

}
≤ eα

}
. (4)

Here, the adversarialness endowed in πu can depend on the
actions and contexts given the logged data, e.g. πu(a|x) ∝
π0(a|x)+u(a, x) where u is some random function. It means
the perturbation can be made policy-specific, as opposed to
policy-agnostic case where the perturbation is uniform for all
the actions (such as in confounding-robust optimization). It
more closely resembles the mechanism of real-world online
uncertainty. For the sake of notation, we also denote the
constraints by the short hand: e−α ≤ πu/π0 ≤ eα. We now
establish the minimax objective for robust off-policy learning
under the `∞ uncertainty set:

maximize
π

min
πu: e−α≤π0/πu≤eα

V̂ (π;πu). (5)

Note that the candidate policy π is not involved in the
constraints of the minimization step. Therefore, if we have a
subroutine that efficiently computes for any candidate πθ:

Ṽ (πθ) := min V̂ (πθ;πu) s.t. e−α ≤ π0/πu ≤ eα, (6)

or provides the lower bound, i.e. V̂ (πθ) ≤ Ṽ (πθ), we can
divide and conquer the minimax objective. This technique
resembles the well-known expectation-maximization and
minorize-maximization algorithms (Lange 2016; Dempster,
Laird, and Rubin 1977), whose implications are discussed in
the appendix. In the sequel, we focus on deriving the bounds
V̂ (πθ) for the three off-policy estimators of interest.

The Reward-model Estimator. To derive the constrained
lower bound of V̂RM defined in (2), it amounts to bounding
the APV of (1) such that πu satisfies the constraint (4). We
convert the constraint optimization into a subproblem of the
standard ERM, as we show in Lemma 1. The technical details
and proof are deferred to the appendix.
Lemma 1. When πu satisfies (4), then

Eπu
[
R(a, x)|A = a′, X = x

]
≥ min

fa,a′ (·)
E
[
`α
(
R(a, x) , fa,a′(x)

) ∣∣A = a,X = x
]
,

where the loss function `α is specified by:

`α
(
R(a, x) , fa,a′(x))

)
=
{
R(a, x)− fa,a′(x)

}2

+

+ e2α
{
R(a, x)− fa,a′(x)

}2

−.
(7)
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Here, {·}+ and {·}− are respectively the positive and nega-
tive parts. Since the potential valueR(a, x) is observed given
A = a, the above setting describes a subproblem of the ERM.

The result in Lemma 1 holds for all the alternative a′ ∈ A
with a′ 6= a, so we only need to compute fa := fa,a′ under
any a′. The lower bound V̂RM(πθ) is easily obtained with:∑

a′∈A
E
[
R(a, x)

∣∣A = a′, X = x
]
πu(a′|x)

≥ min
πu:e−α≤π0/πu≤eα

{(
1− πu(a|x)

)
f̂a(x)+

πu(a|x)E
[
R(a, x)

∣∣A = a, x
]}

where f̂a is the solution to the auxiliary ERM problem in
(7), and E

[
R(a, x)

∣∣A = a, x
]

can be estimated as in the
standard off-policy setting. Therefore, computing the lower
bound for RM involves solving a standard and a subprob-
lem of the ERM, which is computationally efficient. Upper
bound: we point out that lower-bounding the DR estimator
also requires the upper bound of RM. Using the same ar-
guments, the upper bound can be obtained using a similar
auxiliary ERM approach, by replacing the e2α in (7) with
e−2α. We denote the upper bounds by

{
ĝa
}
a∈A.

The IPS Estimator. Lower-bounding the IPS estimator
is more straightforward according to our design. The lower-
bounding objective in (6) directly becomes:

minimize 1
n

∑n
i=1

π(ai|xi)
p(ai|xi)

ri

s.t. e−απ0(ai|xi) ≤ p(ai|xi) ≤ eαπ0(ai|xi),∑
a∈A p(a|xi) = 1, for i ∈ [n],

where we use p(·|·) to denote the optimization variables. The
second set of constraints is necessary because it makes sure
that the solution constitutes a valid policy. The optimization
problem for IPS can be solved explicitly using a change of
variable: w(ai, xi) := 1/p(ai|xi). It follows that both the
objective and constraints are convex in w. In practice, the
IPS estimator can suffer from the variance issues, so the
variants such as the normalized and truncated IPS are often
used instead in practice (Vlassis et al. 2019; Gilotte et al.
2018). We defer the discussions for the variant methods to
the appendix to avoid unnecessary repetitions.

The DR Estimator. Lower-bounding DR is a straightfor-
ward combination of what we have shown for RM and IPS:

minimize V̂DR(πθ; p, r) :=
1

n

n∑
i=1

{∑
a∈A

π(a|xi)r(ai, xi)

+
π(ai|xi)
p(ai|xi)

(
ri − r(ai, xi)

}
s.t. r(ai, xi) ∈ R(π0, α) and p(ai, xi) ∈ Π(π0, α),

with the constraint sets given by:

R(π0, α) :=
{
r(ai, xi) : f̂ai(xi) ≤ r(ai, xi) ≤ ĝai(xi); i ∈ [n]

}
,

Π(π0, α) :=
{
p(ai|xi) : e−α ≤ p(ai|xi)

π0(ai|xi)
≤ eα;∑

a∈A
p(a|xi) = 1; i ∈ [n]

}
.

The first set of constraints use the RM bounds to characterize
the uncertainty of the reward models, and both the f̂a and ĝa
can be computed beforehand. Although the objective for DR
is not jointly convex in r(a, x) and w(a, x) := 1/p(a|x), it
is coordinate-wise convex (affine). Therefore, we can employ
any off-the-shelf solver. Also, the objectives for the IPS and
DR are separable for each xi, so we can efficiently parallelize
the computations for each observation.

Learning Algorithm and Guarantee
The learning objective can be nonconcave-nonconvex in gen-
eral, so we cannot switch the min and max. Therefore, the
lower-bounding methods from the previous section, which
holds for any given πθ, play an essential role in finding the
approximate solution. We illustrate how to plug in the lower
bounds for DR as an example since it includes both the IPS
and RM estimator as special cases (see Algorithm 1).

From the learning-theoretical perspective, it is important
to understand how the proposed approach affects the gen-
eralization performance while asserting robustness against
runtime uncertainty. In the following theorem, we character-
ize the generalization of policy improvement of the max-min
solution for DR, given any α > 0.

Theorem 1. Suppose that for all α > 0, there exists
a constant Mα such that maxa,x |f̂a(x)| ≤ Mα and
maxa,x |ĝa(x)| ≤Mα. Also, we assume π0(a|xi) ∈ (q, 1−
q) for some q > 0. Let r̄ := maxi |ri|, then for all πθ ∈ F
and ∀δ > 0, with probability as least 1− δ:

V (πθ)− V (π0) ≥ min
p∈Π,r∈R

V̂DR(πθ; p, r)− V̂ (π0)︸ ︷︷ ︸
I

−6
(q + 1

q
Mα + r̄

)√2 log 3
δ

n
− 2 max

{
Mα,

r̄

q

}
Rn(F)︸ ︷︷ ︸

II

,

where V̂ (π0) is the logging policy’s value on the training
data, and V (π) = EV̂ (π) is defined as in Section .

The proof is relegated to the appendix. The significance
of Theorem 1 is to reveal the two critical components that
control generalization: I. the empirical policy improvement
under the proposed minorize-maximization algorithm; II. the
composite terms of the policy complexity and the degree of
uncertainty reflected via Mα (see Appendix A for detail).

In particular, by enriching F , we are more likely to make
I positive on training data, but we then suffer from a larger
negativity of II. This tradeoff is consistent with the standard
generalization for supervised learning. More importantly, the
magnitude of II also increases with Mα. Notice that Mα is
often non-decreasing in α as the RM bounds get looser. As
a consequence, having α > 0 further penalizes the model
complexity and the slack term in II, so increasing α will
encourage the algorithm to select the policy that achieves
less empirical improvement but has smaller complexity. It
explains from the theoretical perspective how our approach
can lead to a policy that performs better under runtime uncer-
tainty. To summarize, the result in Theorem 1 shows rigor-
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ously how and why introducing πu with e−α ≤ π0/πU ≤ eα
can improve the robustness of the learned policy.

Algorithm 1: Robust Off-policy Learning with DR
Input :The uncertainty level α, history logging

policy π0, feedback data.
Initialize θnew, p∗, r∗;
Compute the constraints setsR(π0;α) for RM by
solving the ERM subproblem as in Lemma 1;

Compute the constraints sets Π(π0;α);
while minp,r V̂DR(πθnew) ≥ minp,r V̂DR(πθold) do

Let θold = θnew, compute
θnew = arg maxθ V̂DR(πθ; p

∗, r∗) using suitable
optimization method;

Solve: p∗, r∗ = arg minp∈Π,r∈R V̂DR(πθnew ; p, r).
end

Experiment and Result
We first conduct simulation experiments to examine the fol-
lowing questions:

Q1: how does the lower-bounding methods for RM, IPS
and DR described in Section perform under different α?

Q2: does the proposed Algorithm 1 improve the robustness
of the learned policy against runtime uncertainty?

We also show the real-world performance of our robust off-
policy learning approach by deploying the trained policy to
an online e-commerce platform, where runtime uncertainties
are frequent, for personalized product recommendation. Due
to the space limitation, we only show the key outcome in
this paper and leave the complete numerical results in the
appendix. All the results are obtained from ten repetitions.

Simulation. We adopt the classical setting that generates
bandit feedback according to multiclass classification (Dudík,
Langford, and Li 2011; Vlassis et al. 2019). In particular, a
k-class classification task is turned into the k-arm contex-
tual bandit problem. In the classification problem, the data
{(x, c)} for the classification task are i.i.d observations where
x ∈ X is the context (feature) vector and c ∈ {1, . . . , k} is
the class label. Here, each data point (x, c) is converted into
a cost-sensitive classification sample (x, r1, . . . , rk), where
ra = I[a = c] is the 0-1 reward for predicting with label a.

We now describe the data-generating mechanism. The
feedback data under a given policy π is constructed as fol-
lows. For each classification instance, we sample the label
a with the probability π(a|x), and reveal the corresponding
reward ra. We use the same benchmark datasets from the
UCI repository as in (Dudík, Langford, and Li 2011; Vlassis
et al. 2019), with the descriptions provided below. We design
the logging policy as: π0(a|x) ∝ θᵀax for all a = 1, . . . , k,
where θa are sampled i.i.d from the standard multivariate
normal distribution. We use π0 for off-policy learning.

Dataset Ecoli Glass Letter PenDigits SatImage Vehicle
#samples 336 214 20000 10992 6435 846
#classes 8 6 26 10 6 4

Adding Runtime uncertainty. Since the real-world run-
time uncertainty can depend on a and x, given a policy π,

we add noise to π and obtain the uncertainty-injected policy
from which the feedback data is actually generated:

π̃(a|x) :=
π(a|x) · Ua,x(α)∑
ã π(ã|x) · Uã,x(α)

,

where Ua,x(α) is sampled from the truncated normal distri-
bution with unit variance and mean γᵀax, where γa is also
sampled from standard multivariate normal distributions. We
set the truncation interval to be

[
0, exp(α)

]
. Then it is easy

to check that e−α ≤ π̃(a|x)
/
π(a|x) ≤ eα almost surely for

all a and x, which conforms to (4).
Estimators & Experiment setting. We experiment with

the IPS, RM and DR estimators as described in Section .
The model family of the RM estimator (and the RM part
of DR), as well as the bounding functions f̂a and ĝa, are
given by the standard Regression Tree. The tuning and other
implementation details are left in the appendix. We obtain
the feedback data using the noise-injected π̃0, do the train-
validation-test split detailed in the appendix, and conduct
off-policy estimation & learning with π0. To answer Q1, we
first compute the RM estimator together with its bounding
functions f̂a and ĝa using the training & valuation data, and
plot their values on the testing data (Figure 1). IPS does not
require further training, so we directly report their values, as
well as the corresponding (lower) bounds, on the testing data.
We combine IPS and RM to obtain the results for DR. To
answer Q2, we first conduct off-policy optimization using
both the standard off-policy learning and the proposed mini-
max learning method, with DR as the estimator, to obtain the
trained policies π∗. We then report their associated regrets on
the testing data after adding the runtime uncertainty to π∗’s
execution. We also study their robustness by measuring how
much their values may fluctuate on the testing data, quantified
by V̂DR(π∗, π0)− V̂DR(π∗, π0), computed on testing data.

Simulation results and analysis. We consider a wide
range of uncertainty, i.e. α ∈ {0.01, 0.2, 0.4, 0.6}. We first
examine the proposed bounding methods for a given pol-
icy. Here, we use π∗ obtained from the standard off-policy
learning. From the results in Figure 1, we first observe that
the solutions to the ERM subproblem (f̂a and ĝa) provide
reasonable bounds for the RM method. The solutions to the
proposed optimization problems in Section also reasonably
provide lower bounds to the IPS and DR estimators. Other
than the fact that IPS estimator suffers from variance issues,
the performances of the bounding methods are generally con-
sistent. It is also expected that a larger α leads to looser
bounds for all the estimators.

Next, we compare the testing performance and the robust-
ness of π∗ optimized by standard off-policy learning and
our approach. In particular, the testing regret is computed
by first adding the runtime uncertainty to π∗. Then we ex-
amine the robustness of π∗ by checking how much it might
fluctuate via the gap of: V̂DR(π∗, π0)− V̂DR(π∗, π0). The gap
provides a reasonable measurement since V̂DR(π∗, π0) gives
the worst-possible performance downgrade caused by run-
time uncertainty. The results are in Figure 2. In the upper
panel, we see that the proposed approach achieves better
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Figure 1: The bounds for the RM, IPS and DR estimators for the uncertainty-perturbed data, under different values of α. The
values for the original estimators are in blue, and the values of the bounding methods are given by orange and gray. We only
show the lower bounds for IPS and DR for the sake of presentation as their tail gets loose under large α, which is caused by the
extreme (small) propensity weights.

Figure 2: Upper: the regret (1− reward) on the uncertainty-perturbed testing data under different α; Lower: the robustness of the
trained policies using standard off-policy learning (direct optimization) and our approach (minimax optimization), measured on
the uncertainty-perturbed testing data by how much they would fluctuate, i.e. V̂ ∗DR − V̂ ∗DR, where V ∗ denotes the trained policies.

regrets for most cases, especially under larger α. The simula-
tion results justify the effectiveness of our learning approach,
particularly as runtime uncertainty increases. In the lower
panel of Figure 2, we see the proposed algorithm significantly
improves the robustness of the optimized policy π∗, and the
degree of improvement increases with α. In the appendix, we
provide in-depth analysis of the impact of α on off-policy
learning, as well as the comparisons with the oracle regret.

Real-world deployment and analysis. We conduct both
offline and online experiments via the production platform of
a major e-commerce website in the U.S. We use contextual
bandit to personalize the daily homepage product recommen-
dations, and we consider the click-through rate (CTR) as
the reward. We leave the background detail, offline results
and analysis in the appendix, and discuss the online testing
below. We conduct online A/B testing to compare the pro-
posed approach and the standard off-policy learning; both
rely on the DR method with properly truncated propensity
scores. The value of α is treated as a tuning parameter and
selected via the validation data. For a typical e-commerce

platform, runtime uncertainties can be induced by special
offers, stock availability, upselling events, and infrastructural
malfunction with the pipeline, caching, front-end computa-
tion and interleaving experiments. Trained under the same
data and model family, during the 21-day testing period, the
proposed approach consistently outperforms the standard
off-policy learning, which often suffers from the previously
identified runtime uncertainties. We defer the details of the
onine experiments and results to the appendix.

Conclusion
We study the novel problem of robust off-policy learning for
runtime uncertainty. We propose a principled solution with
max-min learning, and justify the theoretical implications
and guarantees. Our solution is examined via simulation and
real-world testings. In the presence of runtime uncertainty,
our approach compares favorably to standard off-policy learn-
ing, and can extend directly to diverse problem settings. We
hope our work promotes future research on practical post-
deployment robustness of AI solutions.

10107



References
Angrist, J. D.; and Imbens, G. W. 1995. Two-stage least
squares estimation of average causal effects in models with
variable treatment intensity. Journal of the American statisti-
cal Association, 90(430): 431–442.
Athey, S.; and Wager, S. 2017. Efficient policy learning.
arXiv preprint arXiv:1702.02896.
Bareinboim, E.; Forney, A.; and Pearl, J. 2015. Bandits with
unobserved confounders: A causal approach. In Advances in
Neural Information Processing Systems, 1342–1350.
Ben-Tal, A.; El Ghaoui, L.; and Nemirovski, A. 2009. Robust
optimization, volume 28. Princeton University Press.
Bertsimas, D.; Brown, D. B.; and Caramanis, C. 2011. Theory
and applications of robust optimization. SIAM review, 53(3):
464–501.
Blackwell, M.; Honaker, J.; and King, G. 2017. A unified
approach to measurement error and missing data: overview
and applications. Sociological Methods & Research, 46(3):
303–341.
Bottou, L.; Peters, J.; Quiñonero-Candela, J.; Charles, D. X.;
Chickering, D. M.; Portugaly, E.; Ray, D.; Simard, P.; and
Snelson, E. 2013. Counterfactual reasoning and learning
systems: The example of computational advertising. The
Journal of Machine Learning Research, 14(1): 3207–3260.
Bubeck, S.; and Slivkins, A. 2012. The best of both worlds:
Stochastic and adversarial bandits. In Conference on Learn-
ing Theory, 42–1.
Carlini, N.; and Wagner, D. A. 2017. Towards evaluating the
robustness of neural networks. CoRR abs/1608.04644 (2016).
IEEE Symposium on Security and Privacy, 39–57.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Maxi-
mum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society: Series B (Method-
ological), 39(1): 1–22.
Ding, P.; and VanderWeele, T. J. 2016. Sensitivity analysis
without assumptions. Epidemiology (Cambridge, Mass.),
27(3): 368.
Dudík, M.; Erhan, D.; Langford, J.; Li, L.; et al. 2014. Doubly
robust policy evaluation and optimization. Statistical Science,
29(4): 485–511.
Dudík, M.; Langford, J.; and Li, L. 2011. Doubly robust pol-
icy evaluation and learning. arXiv preprint arXiv:1103.4601.
Farajtabar, M.; Chow, Y.; and Ghavamzadeh, M. 2018. More
robust doubly robust off-policy evaluation. arXiv preprint
arXiv:1802.03493.
Ghosh, A.; Kumar, H.; and Sastry, P. 2017. Robust loss
functions under label noise for deep neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence,
volume 31.
Gilotte, A.; Calauzènes, C.; Nedelec, T.; Abraham, A.; and
Dollé, S. 2018. Offline a/b testing for recommender sys-
tems. In Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, 198–206.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and harnessing adversarial examples. Proceedings of the
International Conference on Learning Representations.

Horvitz, D. G.; and Thompson, D. J. 1952. A generaliza-
tion of sampling without replacement from a finite universe.
Journal of the American statistical Association, 47(260): 663–
685.
Jagerman, R.; Markov, I.; and de Rijke, M. 2019. When peo-
ple change their mind: Off-policy evaluation in non-stationary
recommendation environments. In Proceedings of the Twelfth
ACM International Conference on Web Search and Data Min-
ing, 447–455.
Jin, C.; Allen-Zhu, Z.; Bubeck, S.; and Jordan, M. I. 2018.
Is Q-learning provably efficient? In Advances in Neural
Information Processing Systems, 4863–4873.
Kallus, N.; and Zhou, A. 2018. Confounding-robust policy
improvement. In Advances in neural information processing
systems, 9269–9279.
Kurakin, A.; Goodfellow, I.; and Bengio, S. 2016. Ad-
versarial machine learning at scale. arXiv preprint
arXiv:1611.01236.
Lange, K. 2016. MM optimization algorithms. SIAM.
Lee, J.; and Raginsky, M. 2018. Minimax statistical learning
with wasserstein distances. In Advances in Neural Informa-
tion Processing Systems, 2687–2696.
Ma, Y.; Wang, Y.-X.; and Narayanaswamy, B. 2019.
Imitation-regularized offline learning. In The 22nd Inter-
national Conference on Artificial Intelligence and Statistics,
2956–2965. PMLR.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and Vladu,
A. 2018. Towards deep learning models resistant to adversar-
ial attacks. International Conference on Learning Represen-
tations.
Natarajan, N.; Dhillon, I. S.; Ravikumar, P. K.; and Tewari,
A. 2013. Learning with noisy labels. Advances in neural
information processing systems, 26: 1196–1204.
Neumayer, E.; and Plümper, T. 2017. Robustness tests for
quantitative research. Cambridge University Press.
Northcutt, C.; Jiang, L.; and Chuang, I. 2021. Confident
learning: Estimating uncertainty in dataset labels. Journal of
Artificial Intelligence Research, 70: 1373–1411.
Pearl, J. 2009. Causality. Cambridge university press.
Pearl, J.; and Mackenzie, D. 2018. The book of why: the new
science of cause and effect. Basic books.
Robins, J. M.; Hernán, M. A.; and Brumback, B. 2000.
Marginal Structural Models and Causal Inference in Epi-
demiology. Epidemiology, 11(5): 551.
Robins, J. M.; Rotnitzky, A.; and Zhao, L. P. 1994. Esti-
mation of regression coefficients when some regressors are
not always observed. Journal of the American statistical
Association, 89(427): 846–866.
Rosenbaum, P. R.; and Rubin, D. B. 1983. Assessing sensi-
tivity to an unobserved binary covariate in an observational
study with binary outcome. Journal of the Royal Statistical
Society: Series B (Methodological), 45(2): 212–218.
Rosenbaum, P. R.; and Silber, J. H. 2009. Amplification of
sensitivity analysis in matched observational studies. Jour-
nal of the American Statistical Association, 104(488): 1398–
1405.

10108



Si, N.; Zhang, F.; Zhou, Z.; and Blanchet, J. 2020. Distri-
butional Robust Batch Contextual Bandits. arXiv preprint
arXiv:2006.05630.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learning:
An introduction. MIT press.
Swaminathan, A.; and Joachims, T. 2015a. Counterfactual
risk minimization: Learning from logged bandit feedback. In
International Conference on Machine Learning, 814–823.
Swaminathan, A.; and Joachims, T. 2015b. The self-
normalized estimator for counterfactual learning. In advances
in neural information processing systems, 3231–3239.
Thomas, P.; and Brunskill, E. 2016. Data-efficient off-policy
policy evaluation for reinforcement learning. In International
Conference on Machine Learning, 2139–2148.
Vlassis, N.; Bibaut, A.; Dimakopoulou, M.; and Jebara, T.
2019. On the Design of Estimators for Bandit Off-Policy
Evaluation. In International Conference on Machine Learn-
ing, 6468–6476.
Xie, T.; Ma, Y.; and Wang, Y.-X. 2019. Towards optimal off-
policy evaluation for reinforcement learning with marginal-
ized importance sampling. In Advances in Neural Informa-
tion Processing Systems, 9668–9678.
Xu, D.; Ye, Y.; Ruan, C.; Korpeoglu, E.; Kumar, S.; and
Achan, K. 2021. From Intervention to Domain Transporta-
tion: A Novel Perspective to Optimize Recommendation. In
International Conference on Learning Representations.
Ye, Y.; and Bickel, P. J. 2021. Binomial Mixture Model With
U-shape Constraint. arXiv preprint arXiv:2107.13756.
Zhao, Q.; Small, D. S.; and Bhattacharya, B. B. 2019. Sen-
sitivity analysis for inverse probability weighting estimators
via the percentile bootstrap. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 81(4): 735–761.
Zheng, S.; Wu, P.; Goswami, A.; Goswami, M.; Metaxas,
D.; and Chen, C. 2020. Error-bounded correction of noisy
labels. In International Conference on Machine Learning,
11447–11457. PMLR.

10109


