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Abstract
Modern neural networks can assign high confidence to inputs
drawn from outside the training distribution, posing threats
to models in real-world deployments. While much research
attention has been placed on designing new out-of-distribution
(OOD) detection methods, the precise definition of OOD is
often left in vagueness and falls short of the desired notion of
OOD in reality. In this paper, we present a new formalization
and model the data shifts by taking into account both the invari-
ant and environmental (spurious) features. Under such formal-
ization, we systematically investigate how spurious correlation
in the training set impacts OOD detection. Our results suggest
that the detection performance is severely worsened when the
correlation between spurious features and labels is increased
in the training set. We further show insights on detection meth-
ods that are more effective in reducing the impact of spurious
correlation, and provide theoretical analysis on why reliance
on environmental features leads to high OOD detection error.
Our work aims to facilitate better understandings of OOD
samples and their formalization, as well as the exploration of
methods that enhance OOD detection. Code is available at
https://github.com/deeplearning-wisc/Spurious_OOD.

Introduction
Modern deep neural networks have achieved unprecedented
success in known contexts for which they are trained, yet
they do not necessarily know what they don’t know (Nguyen,
Yosinski, and Clune 2015). In particular, neural networks
have been shown to produce high posterior probability for
test inputs from out-of-distribution (OOD), which should not
be predicted by the model. This gives rise to the importance of
OOD detection, which aims to identify and handle unknown
OOD inputs so that the algorithm can take safety precautions.

Before we attempt any solution, an important yet of-
ten overlooked problem is: what do we mean by out-of-
distribution data? While the research community lacks a
consensus on the precise definition, a common evaluation
protocol views data with non-overlapping semantics as OOD
inputs (Hendrycks and Gimpel 2017). For example, an image
of a cow can be viewed as an OOD w.r.t a model tasked to
classify cat vs. dog. However, such an evaluation scheme is
often oversimplified and may not capture the nuances and
complexity of the problem in reality.
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We begin with a motivating example where a neural net-
work can rely on statistically informative yet spurious fea-
tures in the data. Indeed, many prior works showed that
modern neural networks can spuriously rely on the biased
features (e.g., background or textures) instead of features of
the object to achieve high accuracy (Beery, Van Horn, and
Perona 2018; Geirhos et al. 2019; Sagawa et al. 2019). In
Figure 1, we illustrate a model that exploits the spurious cor-
relation between the water background and label waterbird
for prediction. Consequently, a model that relies on spuri-
ous features can produce a high-confidence prediction for
an OOD input with the same background (i.e., water) but
a different semantic label (e.g., boat). This can manifest in
downstream OOD detection, yet unexplored in prior works.
In this paper, we systematically investigate how spurious
correlation in the training set impacts OOD detection. We
first provide a new formalization and explicitly model the
data shifts by taking into account both invariant features and
environmental features (Section ). Invariant features can be
viewed as essential cues directly related to semantic labels,
whereas environmental features are non-invariant and can be
spurious. Our formalization encapsulates two types of OOD
data: (1) spurious OOD—test samples that contain environ-
mental (non-invariant) features but no invariant features; (2)
non-spurious OOD—inputs that contain neither the environ-
mental nor invariant features, which is more in line with the
conventional notion of OOD. We provide an illustration of
both types of OOD in Figure 1.

Under the new formalization, we conduct extensive ex-
periments and investigate the detection performance under
both spurious and non-spurious OOD inputs (Section ). Our
results suggest that spurious correlation in the training data
poses a significant challenge to OOD detection. For both
spurious and non-spurious OOD samples, the detection per-
formance is severely worsened when the correlation between
spurious features and labels is increased in the training set.
Further, we comprehensively evaluate common OOD detec-
tion approaches, and show that feature-based methods have a
competitive edge in improving non-spurious OOD detection,
while detecting spurious OOD remains challenging (Section ).
To further understand this, we provide theoretical insights on
why reliance on non-invariant features leads to high OOD
detection error (Section ). We provably show the existence
of spurious OOD inputs with arbitrarily high confidence,
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Figure 1: Left (train): The training examples x are generated by a combination of invariant features, dependent on the label y; and
environmental features, dependent on the environment e. In Waterbirds dataset (Sagawa et al. 2019), y ∈ {waterbird, landbird}
is correlated with the environment e ∈ {water, land}. Right (test): During test time, we consider two types of OOD inputs.
Spurious OOD inputs contain the environmental features, but no signals related to the in-distribution classes. Non-spurious OOD
inputs have neither environmental features nor invariant features. Confidence scores are computed from a ResNet-18 model
trained on Waterbirds (Sagawa et al. 2019).

which can fail to be distinguished from the ID data. Our key
contributions are as follows:
• We provide a new formalization of OOD detection by ex-

plicitly taking into account the separation between invari-
ant features and environmental features. Our formalization
encapsulates both spurious and non-spurious OOD. Our
work, therefore, provides a complementary perspective in
the evaluation of OOD detection.

• We provide systematic investigations on how the extent
of spurious correlation in the training set impacts OOD
detection. We further show insights on OOD detection
solutions that are more effective in mitigating the impact
of spurious correlation, with up to 46.73% reduction of
FPR95 in detecting non-spurious OOD data.

• We provide theoretical analysis, provably showing that
detecting spurious OOD samples remains challenging due
to the model’s reliance on the environmental features.

Our study provides strong implications for future research on
out-of-distribution detection. Our study signifies the impor-
tance for future works to evaluate OOD detection algorithms
on spurious OOD examples besides standard benchmarks
(most of which are non-spurious) to test the limits of the
approaches. We hope that our work will inspire future re-
search on the formalization of the OOD detection problem
and algorithmic solutions.

A New Formalization of Out-of-Distribution
Data Model. We consider supervised multi-class classifi-
cation, where X = Rd denotes the input space and Y =
{1, 2, ...,K} denotes the label space. We assume that the
data is drawn from a set of E environments (domains)
E = {e1, e2, . . . , eE}. An input x := τ(zinv, ze) is gener-
ated by a combination of invariant features zinv ∈ Rs which
are dependent on the label y, and environmental features
ze ∈ Rde . τ is a function transformation from the latent
features [zinv, ze]

⊤ to the pixel-space X . The signal zinv are

the cues essential for the recognition of x as y; examples
include the color, the shape of beaks and claws, and fur
patterns of birds for classifying waterbird vs. landbird. En-
vironmental features ze, on the other hand, are cues not
essential for the recognition but correlated with the target
y. For example, many waterbird images are taken in water
habitat, so water scenes can be considered as ze. Under the
data model, we have a joint distribution P (x, y, e). Each
g = (y, e) ∈ Y × E group has its own distribution over
features [zinv, ze] ∈ Rs+de . Let De

in denote the marginal dis-
tribution on X for environment e. The union of distributions
De

in over all environments is the in-distribution Din.

Out-of-distribution Data. In practice, OOD refers to sam-
ples from an irrelevant distribution whose label set has no
intersection with Y , and therefore should not be predicted
by the model. Under our data model, we define data distribu-
tional shifts by explicitly taking into account the separation
between invariant features and environmental features. Con-
cretely, our formalization encapsulates two types of OOD
data defined below.

• Spurious OOD is a particularly challenging type of in-
puts, which contain the environmental feature, but no
invariant feature essential for the label. Formally, we de-
note by x = τ(zȲ , ze), where zȲ is from an out-of-class
label Ȳ /∈ Y . For example, this can be seen in Figure 1
(middle right), where the OOD example contains the se-
mantic feature boat /∈ {waterbird, landbird}, yet it has
the environmental feature of water background.

• Non-spurious (conventional) OOD are inputs that con-
tain neither the environmental nor the invariant features,
i.e., x = τ(zȲ , zē). In particular, zȲ is sampled from
an out-of-class label Ȳ /∈ Y , and zē is sampled from a
different environment ē /∈ E . For example, an input of an
indoor cat falls into this category, where both the seman-
tic label cat and environment indoor are distinct from the
in-distribution data of waterbirds and landbirds.
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r=0.5 r=0.7 r=0.9
OOD Type Test Set FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC↑ FPR95 ↓ AUROC ↑

Spurious OOD 59.89± 12.40 88.54± 4.81 74.22± 13.12 80.98± 4.45 74.39± 12.50 79.81± 8.43

Non-spurious OOD

iSUN 19.69± 10.66 91.88± 4.52 43.22± 12.50 91.81± 3.32 57.40± 15.54 82.45± 7.98
LSUN 22.60± 12.08 90.80± 3.33 43.30± 16.66 90.09± 4.51 52.68± 13.70 84.56± 8.56
SVHN 15.32± 5.05 95.71± 2.20 25.53± 8.11 95.60± 2.45 43.89± 23.80 93.27± 6.90

Table 1: OOD detection performance of models trained on Waterbirds (Sagawa et al. 2019). Increased spurious correlation in the
training set results in worsen performance for both non-spurious and spurious OOD samples. In particular, spurious OOD is
more challenging than non-spurious OOD samples. Results (mean and std) are estimated over 4 runs for each setting.

Out-of-distribution Detection. OOD detection can be
viewed as a binary classification problem. Let f : X → RK

be a neural network trained on samples drawn from the data
distribution defined above. During inference time, OOD de-
tection can be performed by exercising a thresholding mech-
anism Gλ(x; f) = 1{S(x; f) ≥ λ}, where samples with
higher scores S(x; f) are classified as ID and vice versa. The
threshold λ is typically chosen so that a high fraction of ID
data (e.g., 95%) is correctly classified.

How Does Spurious Correlation Impact OOD
Detection?

During training, a classifier may learn to rely on the associa-
tion between environmental features and labels to make its
predictions. Moreover, we hypothesize that such a reliance
on environmental features can cause failures in the down-
stream OOD detection. To verify this, we begin with the
most common training objective empirical risk minimization
(ERM). Given a loss function ℓ, ERM finds the model w that
minimizes the average training loss:

R̂(w) = E(x,y,e)∼P̂ [ℓ(w; (x, y, e))]. (1)

We now describe the datasets we use for model training
and OOD detection tasks. We consider three tasks that are
commonly used in the literature. We start with a natural
image dataset Waterbirds, and then move onto the CelebA
dataset (Liu et al. 2015). Due to space constraints, a third
evaluation task on ColorMNIST is in the Appendix1.

Evaluation Task 1: Waterbirds. Introduced in (Sagawa
et al. 2019), this dataset is used to explore the spurious corre-
lation between the image background and bird types, specif-
ically E ∈ {water, land} and Y ∈ {waterbirds, landbirds}.
We also control the correlation between y and e during train-
ing as r ∈ {0.5, 0.7, 0.9}. The correlation r is defined as
r = P (e = water | y = waterbirds) = P (e = land | y =
landbirds). For spurious OOD, we adopt a subset of images
of land and water from the Places dataset (Zhou et al. 2017).
For non-spurious OOD, we follow the common practice and
use the SVHN (Netzer et al. 2011), LSUN (Yu et al. 2015),
and iSUN (Xu et al. 2015) datasets.

Evaluation Task 2: CelebA. In order to further validate
our findings beyond background spurious (environmental)
features, we also evaluate on the CelebA (Liu et al. 2015)

1Appendix is available at https://arxiv.org/abs/2109.05642

dataset. The classifier is trained to differentiate the hair color
(grey vs. non-grey) with Y = {grey hair, nongrey hair}. The
environments E = {male, female} denote the gender of the
person. In the training set, “Grey hair” is highly correlated
with “Male”, where 82.9% (r ≈ 0.8) images with grey hair
are male. Spurious OOD inputs consist of bald male, which
contain environmental features (gender) without invariant
features (hair). The non-spurious OOD test suite is the same
as above (SVHN, LSUN, and iSUN). Figure 2 illustates ID
samples, spurious and non-spurious OOD test sets. We also
subsample the dataset to ablate the effect of r; see results are
in the Appendix.

Results and Insights. We train on ResNet-18 (He et al.
2016) for both tasks. See Appendix for details on hyperpa-
rameters and in-distribution performance. We summarize the
OOD detection performance in Table 1 (Waterbirds), Table 2
(CelebA) and Table 4 (ColorMNIST).

There are several salient observations. First, for both spu-
rious and non-spurious OOD samples, the detection perfor-
mance is severely worsened when the correlation between
spurious features and labels is increased in the training set.
Take the Waterbirds task as an example, under correlation
r = 0.5, the average false positive rate (FPR95) for spuri-
ous OOD samples is 59.89%, and increases to 74.39% when
r = 0.9. Similar trends also hold for other datasets. Second,
spurious OOD is much more challenging to be detected com-
pared to non-spurious OOD. From Table1, under correlation
r = 0.7, the average FPR95 is 37.35% for non-spurious
OOD, and increases to 74.22% for spurious OOD. Similar
observations hold under different correlation and different
training datasets. Third, for non-spurious OOD, samples that
are more semantically dissimilar to ID are easier to detect.
Take Waterbirds as an example, images containing scenes
(e.g. LSUN and iSUN) are more similar to the training sam-
ples compared to images of numbers (e.g. SVHN), resulting
in higher FPR95 (e.g. 43.22% for iSUN compared to 25.53%
for SVHN under r = 0.7).

Our results suggest that spurious correlation poses a signif-
icant threat to the model. In particular, a model can produce
high-confidence predictions on the spurious OOD, due to the
reliance on the environmental feature (e.g., background infor-
mation) rather than the invariant feature (e.g., bird species).
To verify that the spurious feature causes poor detection per-
formance, we show that the classifier frequently predicts the
spurious OOD as the ID class with the same environmental
feature. For Waterbirds, on average 93.9% of OOD samples
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Grey Hair Nongrey Hair

Spurious OOD Non-Spurious OOD
Training Examples (r = 0.8) Testing Examples
6136 1262 61361262# img

Bald

Figure 2: For CelebA, the classifier is trained to differentiate the hair color (grey vs. non-grey). Left: Training environments.
82.9% images with grey hair are male, whereas 82.9% images with non-grey hair are female. Middle: Spurious OOD inputs
contain the environmental feature (male) without invariant features (hair). Right: Non-spurious OOD samples consist of images
with diverse semantics without human faces.

with water background is classified as waterbirds, and 80.7%
of OOD samples with land background is classified as land
birds. For the CelebA dataset, on average 86.5% of spurious
OOD samples (bold male) are classified as grey hair. Note
that our results here are based on the energy score (Liu et al.
2020), which is one competitive detection method derived
from the model output (logits) and has shown superior OOD
detection performance over directly using the predictive con-
fidence score. Next, we provide an expansive evaluation using
a broader suite of OOD scoring functions in Section .

OOD Type Test Set FPR95 ↓ AUROC ↑
Spurious OOD 71.28± 4.12 82.04± 2.64

Non-spurious OOD

iSUN 17.35± 2.97 97.03± 0.30
LSUN 18.85± 2.44 96.90± 0.17
SVHN 5.63± 2.60 98.64± 0.21

Table 2: OOD detection performance of models trained on
CelebA (Liu et al. 2015) with r ≈ 0.8. Spurious OOD test data in-
curs much higher FPR than non-spurious OOD data. Results (mean
and std) are estimated over 4 runs for each setting.

How to Reduce the Impact of Spurious
Correlation for OOD Detection?

The results in the previous section naturally prompt the ques-
tion: how can we better detect spurious and non-spurious
OOD inputs when the training dataset contains spurious cor-
relation? In this section, we comprehensively evaluate com-
mon OOD detection approaches, and show that feature-based
methods have a competitive edge in improving non-spurious
OOD detection, while detecting spurious OOD remains chal-
lenging (which we further explain theoretically in Section ).

Feature-based vs. Output-based OOD Detection. Sec-
tion suggests that OOD detection becomes challenging for
output-based methods especially when the training set con-
tains high spurious correlation. However, the efficacy of using
representation space for OOD detection remains unknown. In
this section, we consider a suite of common scoring functions
including maximum softmax probability (MSP) (Hendrycks
and Gimpel 2017), ODIN score (Liang, Li, and Srikant 2018;
Hsu et al. 2020), Mahalanobis distance-based score (Lee et al.
2018), energy score (Liu et al. 2020), and Gram matrix-based

score (Sastry and Oore 2020)—all of which can be derived
post hoc2 from a trained model. Among those, Mahalanobis
and Gram Matrices can be viewed as feature-based methods.
For example, Lee et al. (2018) estimates class-conditional
Gaussian distributions in the representation space and then
uses the maximum Mahalanobis distance as the OOD scoring
function. Data points that are sufficiently far away from all
the class centroids are more likely to be OOD.

Results. The performance comparison is shown in Table 3
(full table in the Arxiv version). Several interesting observa-
tions can be drawn. First, we can observe a significant per-
formance gap between spurious OOD (SP) and non-spurious
OOD (NSP), irrespective of the OOD scoring function in
use. This observation is in line with our findings in Section .
Second, the OOD detection performance is generally im-
proved with the feature-based scoring functions such as Ma-
halanobis distance score (Lee et al. 2018) and Gram Matrix
score (Sastry and Oore 2020), compared to scoring functions
based on the output space (e.g., MSP, ODIN, and energy).
The improvement is substantial for non-spurious OOD data.
For example, on Waterbirds, FPR95 is reduced by 46.73%
with Mahalanobis score compared to using MSP score. For
spurious OOD data, the performance improvement is most
pronounced using the Mahalanobis score. Noticeably, using
the Mahalanobis score, the FPR95 is reduced by 28.02% on
ColorMNIST, compared to using the MSP score. Our results
suggest that feature space preserves useful information that
can more effectively distinguish between ID and OOD data.

Analysis and Visualizations. To provide further insights
on why the feature-based method is more desirable, we show
the visualization of embeddings in Figure 3a. The visual-
ization is based on the CelebA task. From Figure 3a (left),
we observe a clear separation between the two class labels.
Within each class label, data points from both environments
are well mixed (e.g., see the green and blue dots). In Figure 3a
(middle), we visualize the embedding of ID data together
with spurious OOD inputs, which contain the environmental
feature (male). Spurious OOD (bold male) lies between the
two ID clusters, with some portion overlapping with the ID
samples, signifying the hardness of this type of OOD. This

2Note that Generalized-ODIN requires modifying the training
objective and model retraining. For fairness, we primarily consider
strict post-hoc methods based on the standard cross-entropy loss.
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Method MSP ODIN Mahalanobis Energy

Metric FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
ID Data SP NSP SP NSP SP NSP SP NSP SP NSP SP NSP SP NSP SP NSP
CMNIST 42.99 3.15 77.75 99.13 38.06 1.88 78.78 99.01 14.97 0.04 88.65 99.54 30.45 7.65 86.74 97.54
Waterbirds 74.68 47.53 79.22 92.34 77.25 34.06 81.04 93.48 69.35 0.80 82.73 99.51 74.22 37.35 80.98 92.50
CelebA 83.70 22.60 68.22 90.21 81.07 11.49 75.22 89.11 78.75 2.33 83.12 98.93 71.28 13.94 82.04 97.51

Table 3: Performance for different post-hoc OOD detection methods when the spurious correlation is high in the training set. We
choose r = 0.45 for ColorMNIST, r = 0.7 for Waterbirds, and r = 0.8 for CelebA. SP stands for Spurious OOD test set. NSP
denotes non-spurious OOD, where the results are averaged over 3 OOD test sets.

(a) UMAP (McInnes et al. 2018) Visualization of feature embeddings

(b) Histograms of different scores

Figure 3: (a) Left: Feature for in-distribution data only. (a) Middle: Feature for both ID and spurious OOD data. (a) Right: Feature
for ID and non-spurious OOD data (SVHN). M and F in parentheses stand for male and female respectively. (b) Histogram
of Mahalanobis score (top) and MSP score (bottom) for ID and the non-spurious OOD dataset SVHN. Full results for other
non-spurious OOD datasets (iSUN and LSUN) are in the Appendix.

is in stark contrast with non-spurious OOD inputs shown in
Figure 3a (right), where a clear separation between ID and
OOD (purple) can be observed. This shows that feature space
contains useful information that can be leveraged for OOD
detection, especially for conventional non-spurious OOD in-
puts. Moreover, by comparing the histogram of Mahalanobis
distance (top) and MSP score (bottom) in Figure 3b, we can
further verify that ID and OOD data is much more separable
with the Mahalanobis distance. Therefore, our results sug-
gest that feature-based methods show promise for improving
non-spurious OOD detection when the training set contains
spurious correlation, while there still exists large room for
improvement on spurious OOD detection.

Why Is It Hard to Detect Spurious OOD?
Given the results above, a natural question arises: why is it
hard to detect spurious OOD inputs? To better understand this
issue, we now provide theoretical insights. In what follows,
we first model the ID and OOD data distributions and then
derive mathematically the model output of invariant classi-
fier, where the model aims not to rely on the environmental
features for prediction.

Setup. We consider a binary classification task where y ∈
{−1, 1}, and is drawn according to η := P (y = 1). We
assume both the invariant features zinv and environmental

features ze are drawn from Gaussian distributions:

zinv ∼ N
(
y · µinv, σ

2
invI

)
, ze ∼ N

(
y · µe, σ

2
eI

)
where µe ∈ Rde , µinv ∈ Rs, and I is the identity matrix.
Note that the parameters µinv and σ2

inv are the same for all
environments. In contrast, the environmental parameters µe
and σ2

e are different across e, where the subscript is used to
indicate the dependence on the environment and the index
of the environment. In what follows, we present the results,
with detailed proof deferred in the Appendix.
Lemma 1 (Bayes optimal classifier) For any feature vector
which is a linear combination of the invariant and environ-
mental features Φe(x) = Minvzinv+Meze, the optimal linear
classifier for an environment e has the corresponding coeffi-
cient 2Σ−1

Φ µΦ, where:

µΦ = Minvµinv +Meµe

ΣΦ = MinvM
T
invσ

2
inv +MeM

T
e σ2

e

Note that the Bayes optimal classifier uses environmental
features which are informative of the label but non-invariant.
Rather, we hope to rely only on invariant features while ignor-
ing environmental features. Such a predictor is also referred
to as optimal invariant predictor (Rosenfeld, Ravikumar, and
Risteski 2021), which is specified in the following. Note that
this is a special case of Lemma 1 with Minv = I and Me = 0.
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Proposition 1 (Optimal invariant classifier using invariant
features) Assume the featurizer recovers the invariant feature
Φe(x) = [zinv] ∀e ∈ E , the optimal invariant classifier has
the corresponding coefficient 2µinv/σ

2
inv.3

The optimal invariant classifier explicitly ignores the envi-
ronmental features. However, an invariant classifier learned
does not necessarily depend only on the invariant features.
Next Lemma shows that it can be possible to learn an invari-
ant classifier that relies on the environmental features while
achieving lower risk than the optimal invariant classifier.

Lemma 2 (Invariant classifier using non-invariant features)
Suppose E ≤ de, given a set of environments E =
{e1, e2, . . . , eE} such that all environmental means are lin-
early independent. Then there always exists a unit-norm vec-
tor p and positive fixed scalar β such that β = pTµe/σ

2
e

∀e ∈ E . The resulting optimal classifier weights are

ŵ =

[
βinv
2β

]
=

[
2µinv/σ

2
inv

2p⊤µe/σ
2
e

]
.

Note that the optimal classifier weight 2β is a constant,
which does not depend on the environment (and neither does
the optimal coefficient for zinv). The projection vector p acts
as a "short-cut" that the learner can use to yield an insidious
surrogate signal p⊤ze. Similar to zinv, this insidious signal
can also lead to an invariant predictor (across environments)
admissible by invariant learning methods. In other words,
despite the varying data distribution across environments, the
optimal classifier (using non-invariant features) is the same
for each environment. We now show our main results, where
OOD detection can fail under such an invariant classifier.

Theorem 1 (Failure of OOD detection under invariant clas-
sifier) Consider an out-of-distribution input which contains
the environmental feature: Φout(x) = Minvzout + Meze,
where zout ⊥ µinv. Given the invariant classifier (cf. Lemma
2), the posterior probability for the OOD input is p(y =
1 | Φout) = σ

(
2p⊤zeβ + log η/(1− η)

)
, where σ is the

logistic function. Thus for arbitrary confidence 0 < c :=
P (y = 1 | Φout) < 1, there exists Φout(x) with ze such that
p⊤ze =

1
2β log c(1−η)

η(1−c) .

Our theorem above signifies the existence of OOD inputs that
can trigger high-confidence predictions on in-distribution
classes yet contain no meaningful feature related to the labels
in Y = {1,−1} at all. An OOD detector can fail to detect
these inputs with predictions that are indistinguishable from
ID data. We provide a simple toy example to explain this
phenomenon further.

An Intuitive Example. An illustrative example with two
environments is in Figure 4 (Left). The feature represen-
tations for examples in environments 1 and 2 are shown as
circle and diamond, respectively. In-distribution samples with
different colors correspond to different labels: yellow indi-
cates y = 1 and green indicates y = −1. The decision bound-
ary of classification is denoted by the dashed line, which

3The constant term in the classifier weights is log η/(1 − η),
which we omit here and in the sequel.

Φ!! 𝑥 |	𝑦 = 1
Φ!" 𝑥 |	𝑦 = 1
Φ!! 𝑥 |	𝑦 = −1
Φ!" 𝑥 |	𝑦 = −1
Φ""# 𝑥

𝒑$𝒛𝒆

𝑧&'(

𝒑$𝒛𝒆

𝑧&'(

Figure 4: Left: The invariant decision boundary (dashed line)
is based on both the invariant feature zinv and environmental
features ze. OOD inputs (red triangles) can be predicted as
in-distribution with high confidence, therefore can fail to be
detected by OOD methods (e.g., using predictive confidence
threshold). Right: An ideal case when the invariant decision
boundary is purely based on zinv (red dashed line). The OOD
inputs lie on the decision boundary and will be predicted as
y = 1 or y = −1 with probability 0.5.

relies on both the invariant features zinv and environmental
features ze. It can be seen that if the feature representation
relies on environmental features p⊤ze, spurious OOD sam-
ples (red triangles) can trick the classifier into recognizing
OOD samples as one of the in-distribution classes with high
confidence, posing severe threats to OOD detection.

In contrast, under an ideal case when the invariant clas-
sifier only uses invariant features zinv, the optimal decision
boundary is a horizontal dashed line, as shown in Figure 4
(Right). OOD inputs (red triangles) will be predicted with a
probability of 0.5 since they lie on the decision boundary.

Remark. As a special case, if the representation consists
purely of environmental features, i.e., Φe(x) = [ze], the
resulting optimal classifier weights are 2p⊤µe/σ

2
e = 2β,

a fixed scalar that is still invariant across environments.
Lemma 3 below shows that such a predictor can yield low
risks under certain conditions. Our main theorem above still
holds under such a predictor.
Lemma 3 (Existence of purely environmental predictors
with low risks (Rosenfeld, Ravikumar, and Risteski 2021))
There exists a representation constructed purely relying on
environmental features based on the short-cut direction p
that achieves lower risk than the optimal invariant predictor
on every environment e such that σeβ > σ−1

inv ∥µinv∥2 and
2σeβσ

−1
inv ∥µinv∥2 ≥ |log η/(1− η)|.

Summary. To summarize, the theoretical analysis demon-
strates the difficulty of recovering the invariant classifier
without using environmental features. In particular, there ex-
ists an invariant classifier that uses non-invariant features,
and achieves lower risks than the classifiers only based on
invariant features. As a result, spurious OOD samples can
utilize environmental clues to deteriorate the OOD detection
performance. Our main theorem provably shows the exis-
tence of OOD inputs with arbitrarily high confidence, and
can fail to be distinguished from the ID data.

Extension: Empirical Validation of Theoretical Analysis.
To further validate our analysis above, we evaluate the OOD
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detection performance of models that are trained with recent
prominent domain invariance learning objectives (Arjovsky
et al. 2019; Bahng et al. 2020; Krueger et al. 2020; Ganin
et al. 2016; Li et al. 2018b; Sagawa et al. 2019) (Section E in
Appendix). The results align with our theoretical analysis.

Discussion and Related Works
Out-of-Distribution Uncertainty Estimation. The phe-
nomenon of neural networks’ overconfidence to out-of-
distribution data is revealed by Nguyen et al. (Nguyen,
Yosinski, and Clune 2015). Early works attempt to im-
prove the OOD uncertainty estimation by proposing the
ODIN score (Liang, Li, and Srikant 2018) and Mahalanobis
distance-based confidence score (Lee et al. 2018). Recent
work by Liu et al. (Liu et al. 2020) proposed using an energy
score for OOD detection, which demonstrated advantages
over the softmax confidence score both empirically and the-
oretically. Huang and Li (Huang and Li 2021) proposed a
group-based OOD detection method for large-scale datasets.
Recent work by Lin et al. (Lin, Roy, and Li 2021) proposed
a dynamic OOD inference framework to improve the com-
putational efficiency. However, previous methods primarily
focused on convention non-spurious OOD. We introduce a
new formalization of OOD detection that encapsulates both
spurious and non-spurious OOD data.

A parallel line of approaches resorts to generative mod-
els (Goodfellow et al. 2014; Kingma and Dhariwal 2018) that
directly estimate in-distribution density (Nalisnick et al. 2019;
Ren et al. 2019; Serrà et al. 2020; Xiao, Yan, and Amit 2020;
Kirichenko, Izmailov, and Wilson 2020). In particular, Ren
et al. (2019) addressed distinguishing between background
and semantic content under unsupervised generative models.
Generative approaches yield limiting performance compared
with supervised discriminative models and typically suffer
from high computational complexity. Notably, none of the
previous works systematically investigate the influence of
spurious correlation for OOD detection. Our work presents
a novel perspective for defining OOD data and investigates
the impact of spurious correlation in the training set. More-
over, our general formulation extends beyond the background
spurious correlation (e.g. gender bias).

Hard OOD Evaluations. Our proposed spurious OOD
can be viewed as a form of hard OOD evaluation. Orthogo-
nal to our work, previous works (Winkens et al. 2020; Roy
et al. 2021) considered the hard cases where the semantics
of OOD inputs are similar to that of ID data (e.g., CIFAR-10
vs. CIFAR-100). In our setting, spurious OOD inputs may
have very different semantic labels but are statistically close
to the ID data due to shared environmental features (e.g., boat
vs. waterbird in Figure 1). While other works have consid-
ered domain shift (Hsu et al. 2020) or covariate shift (Ovadia
et al. 2019), they are more relevant for evaluating model
generalization—in which case the goal is to make the model
classify accurately into the ID classes and should not be con-
fused with OOD detection. We emphasize that semantic label
shift (i.e., change of invariant feature) is more akin to OOD
detection, where the inputs have disjoint labels from ID data
and therefore should not be predicted by the model.

Out-of-Distribution Generalization. Recently, various
works have been proposed to tackle the issue of domain
generalization, which aims to achieve high classification ac-
curacy on new test environments consisting of inputs with
invariant features, and does not consider the change of in-
variant features at test time (i.e., label space Y remains the
same)—a key difference from our focus. Literature in OOD
detection is commonly concerned about model reliability and
detection of shifts where the OOD inputs have disjoint la-
bels and therefore should not be predicted by the model. In
other words, we consider samples without invariant features,
regardless of the presence of environmental features or not.

A plethora of algorithms are proposed: learning invariant
representation across domains (Ganin et al. 2016; Li et al.
2018b; Sun and Saenko 2016; Li et al. 2018a), minimizing
the weighted combination of risks from training domains
(Sagawa et al. 2019), using different risk penalty terms to
facilitate invariance prediction (Arjovsky et al. 2019; Krueger
et al. 2020), causal inference approaches (Peters, Bühlmann,
and Meinshausen 2016), and forcing the learned representa-
tion different from a set of pre-defined biased representations
(Bahng et al. 2020), mixup-based approaches (Zhang et al.
2018; Wang, Li, and Kot 2020; Luo, Song, and Zhang 2020),
etc. A recent study (Gulrajani and Lopez-Paz 2021) shows
that no domain generalization methods achieve superior per-
formance than ERM across a broad range of datasets.

Contextual Bias in Recognition. There has been a rich
literature studying the classification performance in the pres-
ence of contextual bias (Torralba 2003; Beery, Van Horn, and
Perona 2018; Barbu et al. 2019). The reliance on contextual
bias such as image backgrounds, texture, and color for ob-
ject detection are investigated in (Zhu, Xie, and Yuille 2017;
Baker et al. 2018; Geirhos et al. 2019; Zech et al. 2018; Xiao
et al. 2021; Sagawa et al. 2019). However, the contextual bias
for OOD detection is underexplored. In contrast, our study
systematically investigates the impact of spurious correlation
on OOD detection and how to mitigate it.

Conclusion

Out-of-distribution detection is an essential task in open-
world machine learning. However, the precise definition is
often left in vagueness, and common evaluation schemes can
be too primitive to capture the nuances of the problem in
reality. In this paper, we present a new formalization where
we model the data distributional shifts by considering the
invariant and non-invariant features. Under such formaliza-
tion, we systematically investigate the impact of spurious
correlation in the training set on OOD detection and further
show insights on detection methods that are more effective in
mitigating the impact of spurious correlation. Moreover, we
provide theoretical analysis on why reliance on environmen-
tal features leads to high OOD detection error. We hope that
our work will inspire future research on the understanding
and formalization of OOD samples, new evaluation schemes
of OOD detection methods, and algorithmic solutions in the
presence of spurious correlation.

10057



Acknowledgements
This work is supported by the Office of the Vice Chancel-
lor for Research and Graduate Education (OVCRGE) with
funding from the Wisconsin Alumni Research Foundation
(WARF).

References
Arjovsky, M.; Bottou, L.; Gulrajani, I.; and Lopez-Paz,
D. 2019. Invariant risk minimization. arXiv preprint
arXiv:1907.02893.
Bahng, H.; Chun, S.; Yun, S.; Choo, J.; and Oh, S. J. 2020.
Learning de-biased representations with biased representa-
tions. In International Conference on Machine Learning,
528–539. PMLR.
Baker, N.; Lu, H.; Erlikhman, G.; and Kellman, P. J. 2018.
Deep convolutional networks do not classify based on global
object shape. PLOS Computational Biology, 14(12): 1–43.
Barbu, A.; Mayo, D.; Alverio, J.; Luo, W.; Wang, C.; Gut-
freund, D.; Tenenbaum, J.; and Katz, B. 2019. Objectnet: A
large-scale bias-controlled dataset for pushing the limits of
object recognition models. Advances in neural information
processing systems, 32: 9453–9463.
Beery, S.; Van Horn, G.; and Perona, P. 2018. Recognition in
terra incognita. In Proceedings of the European Conference
on Computer Vision (ECCV), 456–473.
Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle,
H.; Laviolette, F.; Marchand, M.; and Lempitsky, V. 2016.
Domain-adversarial training of neural networks. The journal
of machine learning research, 17(1): 2096–2030.
Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wich-
mann, F. A.; and Brendel, W. 2019. ImageNet-trained CNNs
are biased towards texture; increasing shape bias improves
accuracy and robustness. In International Conference on
Learning Representations.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014.
Generative adversarial nets. In Advances in neural informa-
tion processing systems, 2672–2680.
Gulrajani, I.; and Lopez-Paz, D. 2021. In Search of Lost Do-
main Generalization. In International Conference on Learn-
ing Representations.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 770–
778.
Hendrycks, D.; and Gimpel, K. 2017. A Baseline for De-
tecting Misclassified and Out-of-Distribution Examples in
Neural Networks. Proceedings of International Conference
on Learning Representations.
Hsu, Y.-C.; Shen, Y.; Jin, H.; and Kira, Z. 2020. Gen-
eralized odin: Detecting out-of-distribution image without
learning from out-of-distribution data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 10951–10960.

Huang, R.; and Li, Y. 2021. MOS: Towards Scaling Out-of-
distribution Detection for Large Semantic Space. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition.
Kingma, D. P.; and Dhariwal, P. 2018. Glow: Generative
flow with invertible 1x1 convolutions. In Advances in Neural
Information Processing Systems, 10215–10224.
Kirichenko, P.; Izmailov, P.; and Wilson, A. G. 2020. Why
Normalizing Flows Fail to Detect Out-of-Distribution Data.
Advances in Neural Information Processing Systems, 33.
Krueger, D.; Caballero, E.; Jacobsen, J.-H.; Zhang, A.; Binas,
J.; Zhang, D.; Priol, R. L.; and Courville, A. 2020. Out-of-
distribution generalization via risk extrapolation (rex). arXiv
preprint arXiv:2003.00688.
Lee, K.; Lee, K.; Lee, H.; and Shin, J. 2018. A simple
unified framework for detecting out-of-distribution samples
and adversarial attacks. In Advances in Neural Information
Processing Systems, 7167–7177.
Li, H.; Pan, S. J.; Wang, S.; and Kot, A. C. 2018a. Domain
generalization with adversarial feature learning. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 5400–5409.
Li, Y.; Tian, X.; Gong, M.; Liu, Y.; Liu, T.; Zhang, K.; and
Tao, D. 2018b. Deep domain generalization via conditional
invariant adversarial networks. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 624–639.
Liang, S.; Li, Y.; and Srikant, R. 2018. Enhancing the reliabil-
ity of out-of-distribution image detection in neural networks.
In International Conference on Learning Representations,
ICLR.
Lin, Z.; Roy, S. D.; and Li, Y. 2021. MOOD: Multi-level Out-
of-distribution Detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.
Liu, W.; Wang, X.; Owens, J.; and Li, Y. 2020. Energy-
based Out-of-distribution Detection. Advances in Neural
Information Processing Systems.
Liu, Z.; Luo, P.; Wang, X.; and Tang, X. 2015. Deep Learning
Face Attributes in the Wild. In Proceedings of International
Conference on Computer Vision (ICCV).
Luo, C.; Song, C.; and Zhang, Z. 2020. Generalizing Person
Re-Identification by Camera-Aware Invariance Learning and
Cross-Domain Mixup. In European Conference on Computer
Vision.
McInnes, L.; Healy, J.; Saul, N.; and Grossberger, L. 2018.
UMAP: Uniform Manifold Approximation and Projection.
The Journal of Open Source Software, 3(29): 861.
Nalisnick, E.; Matsukawa, A.; Teh, Y. W.; Gorur, D.; and
Lakshminarayanan, B. 2019. Do Deep Generative Models
Know What They Don’t Know? In International Conference
on Learning Representations.
Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and
Ng, A. Y. 2011. Reading digits in natural images with unsu-
pervised feature learning. NIPS Workshop on Deep Learning
and Unsupervised Feature Learning.
Nguyen, A.; Yosinski, J.; and Clune, J. 2015. Deep neural
networks are easily fooled: High confidence predictions for

10058



unrecognizable images. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 427–436.
Ovadia, Y.; Fertig, E.; Ren, J.; Nado, Z.; Sculley, D.;
Nowozin, S.; Dillon, J.; Lakshminarayanan, B.; and Snoek,
J. 2019. Can you trust your model’s uncertainty? Evaluat-
ing predictive uncertainty under dataset shift. Advances in
Neural Information Processing Systems, 32: 13991–14002.
Peters, J.; Bühlmann, P.; and Meinshausen, N. 2016. Causal
inference by using invariant prediction: identification and
confidence intervals. Journal of the Royal Statistical Society.
Series B (Statistical Methodology), 947–1012.
Ren, J.; Liu, P. J.; Fertig, E.; Snoek, J.; Poplin, R.; Depristo,
M.; Dillon, J.; and Lakshminarayanan, B. 2019. Likelihood
ratios for out-of-distribution detection. In Advances in Neural
Information Processing Systems, 14680–14691.
Rosenfeld, E.; Ravikumar, P. K.; and Risteski, A. 2021. The
Risks of Invariant Risk Minimization. In International Con-
ference on Learning Representations.
Roy, A. G.; Ren, J.; Azizi, S.; Loh, A.; Natarajan, V.; Mustafa,
B.; Pawlowski, N.; Freyberg, J.; Liu, Y.; Beaver, Z.; et al.
2021. Does Your Dermatology Classifier Know What It
Doesn’t Know? Detecting the Long-Tail of Unseen Condi-
tions. arXiv preprint arXiv:2104.03829.
Sagawa, S.; Koh, P. W.; Hashimoto, T. B.; and Liang, P. 2019.
Distributionally robust neural networks for group shifts: On
the importance of regularization for worst-case generaliza-
tion. International Conference on Learning Representations,
ICLR.
Sastry, C. S.; and Oore, S. 2020. Detecting Out-of-
Distribution Examples with In-distribution Examples and
Gram Matrices. In Proceedings of the 37th International
Conference on Machine Learning.

Serrà, J.; Álvarez, D.; Gómez, V.; Slizovskaia, O.; Núñez,
J. F.; and Luque, J. 2020. Input Complexity and Out-of-
distribution Detection with Likelihood-based Generative
Models. In International Conference on Learning Repre-
sentations.
Sun, B.; and Saenko, K. 2016. Deep coral: Correlation align-
ment for deep domain adaptation. In European conference
on computer vision, 443–450. Springer.
Torralba, A. 2003. Contextual priming for object detection.
International journal of computer vision, 53(2): 169–191.
Wang, Y.; Li, H.; and Kot, A. C. 2020. Heterogeneous domain
generalization via domain mixup. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 3622–3626. IEEE.
Winkens, J.; Bunel, R.; Roy, A. G.; Stanforth, R.; Natara-
jan, V.; Ledsam, J. R.; MacWilliams, P.; Kohli, P.; Karthike-
salingam, A.; Kohl, S.; et al. 2020. Contrastive training
for improved out-of-distribution detection. arXiv preprint
arXiv:2007.05566.
Xiao, K. Y.; Engstrom, L.; Ilyas, A.; and Madry, A. 2021.
Noise or Signal: The Role of Image Backgrounds in Ob-
ject Recognition. In International Conference on Learning
Representations.

Xiao, Z.; Yan, Q.; and Amit, Y. 2020. Likelihood Regret: An
Out-of-Distribution Detection Score For Variational Auto-
encoder. Advances in Neural Information Processing Systems,
33.
Xu, P.; Ehinger, K. A.; Zhang, Y.; Finkelstein, A.; Kulka-
rni, S. R.; and Xiao, J. 2015. Turkergaze: Crowdsourcing
saliency with webcam based eye tracking. arXiv preprint
arXiv:1504.06755.
Yu, F.; Seff, A.; Zhang, Y.; Song, S.; Funkhouser, T.; and
Xiao, J. 2015. Lsun: Construction of a large-scale image
dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365.
Zech, J. R.; Badgeley, M. A.; Liu, M.; Costa, A. B.; Titano,
J. J.; and Oermann, E. K. 2018. Variable generalization
performance of a deep learning model to detect pneumonia
in chest radiographs: a cross-sectional study. PLoS medicine,
15(11).
Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D.
2018. mixup: Beyond Empirical Risk Minimization. In
International Conference on Learning Representations.
Zhou, B.; Lapedriza, A.; Khosla, A.; Oliva, A.; and Torralba,
A. 2017. Places: A 10 million image database for scene recog-
nition. IEEE transactions on pattern analysis and machine
intelligence, 40(6): 1452–1464.
Zhu, Z.; Xie, L.; and Yuille, A. 2017. Object Recognition
with and without Objects. In Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence,
IJCAI-17, 3609–3615.

10059


