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Abstract

Cooperative Pickup and Delivery Problem (PDP), as a vari-
ant of the typical Vehicle Routing Problems (VRP), is an im-
portant formulation in many real-world applications, such as
on-demand delivery, industrial warehousing, etc. It is of great
importance to efficiently provide high-quality solutions of co-
operative PDP. However, it is not trivial to provide effective
solutions directly due to two major challenges: 1) the struc-
tural dependency between pickup and delivery pairs require
explicit modeling and representation. 2) the cooperation be-
tween different vehicles is highly related to solution explo-
ration and is difficult to model. In this paper, we propose a
novel multi-agent reinforcement learning-based framework
to solve the cooperative PDP (MAPDP). First, we design a
paired context embedding to well measure the dependency of
different nodes considering their structural limits. Second, we
utilize cooperative multi-agent decoders to leverage the deci-
sion dependence among different vehicle agents based on a
special communication embedding. Third, we design a novel
cooperative A2C algorithm to train the integrated model.
We conduct extensive experiments on a randomly generated
dataset and a real-world dataset. Experiments result shown
that the proposed MAPDP outperforms all other baselines by
at least 1.64% in all settings, and shows significant computa-
tion speed during solution inference.

Introduction
Vehicle Routing Problem (VRP) has shown its importance
in formulating many real-world applications, including ex-
press systems, industrial warehousing, and on-demand de-
livery (Zong et al. 2021). A fleet of vehicles/couriers are
managed to fulfill given demands, while the goal is to op-
timize the routing plan to reduce traveling expenses. In real-
world scenarios, a given demand order usually has its own
origination and a designated delivery destination. Further-
more, routing tasks are usually assigned to multiple vehi-
cles simultaneously, which forms the Pickup and Delivery
Problem (PDP) (Savelsbergh and Sol 1995). For instance,
on-demand delivery couriers need to pick up the food first
from the restaurants and then deliver it to the corresponding
customers, as shown in 1. While in industrial manufactur-
ing, large amounts of materials, productions also need to be
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transported from specific factories and warehouses at multi-
ple sites (Li et al. 2021b). Efficiently generating high-quality
solutions of cooperative PDP can help reduce operating ex-
penses, improve public efficiency and thus bring significant
benefits.

Owing to the NP-hard nature, the cooperative PDP along
with other VRP variants is still difficult to be optimally
solved by exact methods (Toth and Vigo 2002; Mad-
sen, Fisher, and Jornsten 1997). Even though numerous
heuristic-based methods are developed to compute near-
optimal solutions, the solution generation process remains
time-consuming and there is still potential to find more ap-
proximate ones. The recent development of deep reinforce-
ment learning (DRL) offers its effectiveness in solving many
combinatorial optimization problems including VRPs, and
thus brings another perspective to solve PDP (Bello et al.
2016; Kool, van Hoof, and Welling 2019; Nazari et al. 2018;
Chen and Tian 2019; Lu, Zhang, and Yang 2019a). Benefit-
ing from learning a parameterized model instead of relying
on manually constructed rules to search for solutions, DRL
has shown its appealing performance in typical routing prob-
lems. Besides, by splitting the phases of training and online
inferring, DRL can generate results with much faster com-
putation. Inspired by both high solution quality and infer-
ence speed, it is prospective to well solve cooperative PDP
by constructing a DRL framework.

However, most existing DRL based methods can only be
applied to typical VRPs where the demands share a com-
mon final delivery site, i.e., either to be picked up or to be
delivered only. They are less effective when facing coop-
erative PDP with more detailed constraints and challenges
from the following two aspects. First, it is not trivial to mea-
sure and structural constraint of PDP among different nodes.
Compared to typical VRPs, complicated relations among all
nodes should be considered. Representation upon the rela-
tion between paired pickup and deliveries should differ from
that between unpaired ones. How to efficiently measure such
relations is essential for framework effectiveness. Second, it
is difficult to coordinate the cooperation within the vehicle
fleet. As all vehicles working simultaneously to accomplish
the pickup and delivery tasks, the potential decision space of
one is directly influenced by others. Optimizing the coordi-
nated routing plans as the global objective is different from
optimizing the one of a single vehicle, where the dependence
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Figure 1: An application visualization of the cooperative
PDP in on-demand delivery.

among them must be well modeled and measured.
To tackle the challenges above, we propose a novel end-

to-end cooperative multi-agent RL (MARL) based frame-
work to solve cooperative PDP (MAPDP). MAPDP learns
to generate the next node to visit step by step for each
vehicle agent and finally outputs a complete routing plan.
First, we develop a paired context embedding to represent
each pickup or delivery node in each order instance. The
paired context embedding well models the inter-relation in-
between that will further influence the potential solution
space. Second, we utilize cooperated decoders to leverage
the decision dependence among different vehicle agents.
Given the shared instance encoding results from former
module designs, each vehicle agent obtains its own partial
action results based on a special communication embedding.
Such multi-agent cooperation is trained and could be exe-
cuted in online inference via a centralized controlling frame-
work. Third, We also design a cooperative A2C algorithm
for the integrated model training, where a joint critic value
net estimates the state value.

To summarize, the main contributions of our work are
listed as follows:
• To the best of our knowledge, we are the first to explore

the cooperative PDP with multiple vehicle agents using
MARL.

• We design a centralized MARL framework to generate
cooperative decisions. We design a paired context em-
bedding to well capture the inter-dependency of hetero-
geneous nodes, and train different agents based on a com-
munication embedding via a specially designed coopera-
tive A2C algorithm.

• We evaluate the effectiveness of MAPDP on two
datasets. It outperforms other baselines by at least 1.64%
in all experiment settings and shows significant compu-
tation speed during solution inference.

The remainder of this paper is organized as follows. We
first introduce the related works in Section 2. We then for-
mulate cooperative PDP in Section 3, and introduce our
methodology in Section 4. The experiment results are pre-
sented in Section 5. Finally, we conclude our paper in Sec-
tion 6.

Related Works
In this section, we review the existing literature on conven-
tional heuristic methods for solving PDP and learning based

methods for routing problems. Besides, we also introduce
the recent research in multi-agent RL.

Heuristics for PDP
As an important variant of the typical vehicle routing prob-
lem (VRP), PDP considering pickups and deliveries was
first studied in (Savelsbergh and Sol 1995), and exact meth-
ods were put forward early as solutions (Ruland and Rodin
1997). However, trying to generate exact optimality suf-
fers from heavy computation given then exponential com-
plexity. As a substitution, more researchers tend to utilize
heuristics to generate approximate optimal solutions, which
could significantly increase the efficiency with small qual-
ity costs. A tabu-embedded simulated annealing algorithm
was proposed for solving large-scale PDP with time win-
dows (Ropke and Cordeau 2009). An adaptive large neigh-
borhood search heuristic method was presented in (Ropke
and Pisinger 2006) to solve PDP, incorporating regret inser-
tion method and six removal strategies.

Even though the heuristic-based methods could generate
near-optimal solutions within a more reasonable time in-
stead, they heavily rely on hand-crafted rules and are greatly
limited by human experience. Furthermore, the online in-
ference time of these methods is still not satisfactory when
facing high dynamics.

RL based Methods for Routing Problems
Due to the potential that taking feedback reward as train-
ing signals to action attempts when interacting with out-
side environments, RL has shown its effectiveness in solv-
ing many decision-making problems. Bello et al. first pro-
pose an RL-based algorithm to solve combinatorial opti-
mization problems, including the famous Traveling Sales-
man Problem (TSP) (Bello et al. 2016). Such an algorithm
borrows the idea from the constructive heuristics and utilizes
an agent to directly generate solutions from scratch in an
end-to-end manner. Following this idea, Nazari et al. utilize
RNN structures to further expand its capability on solving
capacitated VRP by generating decision sequences (Nazari
et al. 2018). Kool et al. (Kool, van Hoof, and Welling 2019)
further propose a attention based network to fully capture
the in-between relationships between different nodes. The
suitable neural network design greatly improves the solution
quality, and more routing variants are further evaluated. Xin
et al. develop a multi-decoder based framework to generate
fine-tuned solutions via a special beam-search.

Despite the idea of directly generate final solution from
scratch as the output results for VRP, researchers also at-
tempts to augment RL into local solution improvement.
Chen et al. (Chen and Tian 2019) formulates the solution im-
provement process as keeping rewriting based on the current
ones. Following this idea, Lu et al. (Lu, Zhang, and Yang
2019b) further combined RL with Operation Research oper-
ators to keep updating the current solutions based on multi-
ple in-hand operators.

However, most existing RL based approaches can only
solve typical VRPs, while the cooperative PDP problem with
structural dependency and vehicle cooperation requires spe-
cific modeling. Even though Li et al. (Li et al. 2021b) pro-
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posed a framework to solve dynamic PDP, the agent model
is only used to dispatch new orders to one of the vehicles,
while the real routing process is processed via enumera-
tion. Such a pure dispatching framework suffers from lim-
its on exploration to global optimization. Li et al. (Li et al.
2021a) proposed a heterogeneous attention based network
to solve single-vehicle PDP, but finding solutions for co-
operative PDP remains unsolved. In contrast, our proposed
MAPDP could well model both pickup-delivery dependency
and vehicle cooperations.

Multi-Agent Reinforcement Learning
In many practical decision-making problems, cooperation or
competition among different agents requires specific model-
ing, thus the multi-agent reinforcement learning (Buşoniu,
Babuška, and De Schutter 2010; Lowe et al. 2017) has at-
tracted much attention. Tampuu et al. (Tampuu et al. 2017)
analyzed the cooperation and competition among two agents
in reinforcement learning by carefully designing the reward
schemes. Lin et al. (Lin et al. 2018) designed a multi-
agent model to manage multiple vehicles operating simulta-
neously in the city. Lee et al. (Lee and Lee 2019) further im-
proved cooperative models by mixing demonstrations from
the centralized policy.

As for the variants of VRPs, Zhang et al. (Zhang et al.
2020) proposed a MARL-based framework to solve VRP
with soft time windows for a fleet of vehicles. However,
their multi-agent modeling relies on manually crafted rules
in which vehicles take turns to make decisions. Furthermore,
all vehicles share the same policy network, which makes the
framework a single agent control indeed. In contrast, we de-
velop independent policy networks without any manual rules
in vehicle coordination and thus could enlarge the explo-
ration space of all vehicle agents.

Problem Formulation
In this section, we provide the mathematical formulation of
cooperative PDP.

With N delivery nodes and N pickup nodes are included
in a given problem instance, the node set including the ini-
tial depot v0 where all vehicle starts can be represented as
V = {v0, v1, ..., vN , vN+1, vN+2, ..., v2N , v2N+1}, and
v2N+1 is the copy of the depot. For simplification, we as-
sume that vi(1 ≤ i ≤ N) has parcels to be picked-up and
vi(N < i ≤ 2N) is the target to be delivered to. vi and vN+i

form a corresponding pair. The spatial distances between
different nodes can be further represented as E = {eij},
where 0 ≤ i ≤ 2N , 0 ≤ j ≤ 2N . Each pickup order has a
demand volume represented as di, where d0 = d2N+1 = 0.
A demand is noted as a positive value for pickups and neg-
ative for deliveries, where di > 0 if 1 ≤ i ≤ N , di < 0
if N + 1 ≤ i ≤ 2N and di = −di+N . All PDP tasks are
assigned to K vehicles with Ck denoting the individual ca-
pacity of the k-th vehicle.

Let xijk ∈ {0, 1} denote whether the vehicle k travels
directly from node vi to node vj , and Ti as the arrival time
at node vi. S ⊆ V denotes a consecutive routing sequence
from v0 and ends at v2N+1 and does not include v0 in the

middle, the cooperative PDP can be further formally formu-
lated as follows:

min
K∑
k=1

2N∑
i=0

2N+1∑
j=1

eijxijk, (1)

s.t.
K∑
k=1

2N+1∑
j=1

xijk = 1, ∀i ∈ [0, 2N ], (2)

K∑
k=1

2N∑
i=0

xijk = 1, ∀j ∈ [1, 2N + 1], (3)∑
i∈S′

di ≤ Ck, ∀S′ ⊆ S, ∀k ∈ [1,K], (4)

2N+1∑
j=1

xi,jk =
2N+1∑
j=0

xi+N,jk, ∀k ∈ [1,K], i ∈ [1, N ],

(5)
Ti ≤ Ti+N , ∀i ∈ [1, N ]. (6)

The overall objective is to minimize the total traveling dis-
tance of all vehicles. Constraint (2) and (3) guarantee that
each node is visited and only visited once. (4) guarantees
that a vehicle never carries parcels out of its capacity limit.
(5) satisfies the structural limit that each parcel should be
delivered by the same vehicle as it was picked up, and (6)
guarantees that a pickup is always the precondition of its
own delivery.

Methodology
To solve the above formulated cooperative PDP, we take ad-
vantage of MARL to explicitly learn the effective cooper-
ation among different vehicles. We develop an end-to-end
framework, MAPDP, to generate partial solution sequence
continuously by combining current routing actions of differ-
ent agents together, as shown in Figure 2. Different agent
networks share a common public context encoder to capture
problem instance representations and learn their own policy
via independent decoders. We further train the entire net-
work by computing a common critic value as an approxima-
tion to the cooperation quality.

Multi-Agent Reinforcement Learning Setting
The construction for PDP solutions can be formulated as
a sequence generation process. The sequence is completed
gradually and can be modeled as a Markov Decision Process
(MDP). We define the essential elements within as follows.

• State: The state of agent k at step t includes the remain-
ing available capacity Ctk the current traveling trajectory
Stk. Specifically, the current location, i.e., the last node
visited by agent k is represented as vItk , where Itk is the
node index. Note that vI0k = v0 and C0

k = Ck. In the
cooperative PDP setting, we assume that all vehicles can
communicate via a centralized control so that all states
are fully observable.
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Figure 2: The overall model structure. Different agents share the same paired context embedding and context encoder structure,
while learns individual policies using individual decoders.

• Action: The action at step t for vehicle agent k is to de-
termine a node as its next target, represented as v(k, t).

• Transition: The transition between adjacent states is to
replace every agent to its target node as its current ac-
tion. Then we update both the trajectory and the re-
maining capacity of each agent: St+1

k = (Stk; {vItk}),
Ct+1
k = Ctk − dItk , where ; means concatenating the par-

tial solution with the new selected node.
• Reward: To optimize the overall routing solution qual-

ity, all agents share a common objective, which is to min-
imize the accumulated traveling distance of all agents in
the entire episode. In each decision step, the one-step re-
ward rtk = −eItk,It+1

k
is the negative of the length of the

newly established arc. The final episode reward R can be

computed as R =
k=K∑
k=1

T−1∑
t=0

rtk, where T is the decision

step amount in a complete episode and I0k = 0 means
that all vehicles start from the depot v0.

Paired Context Embedding and Context Encoding
Due to the structural dependency in-between the nodes, it is
critical to measure the inter-node relationship between one
and another and provide effective representations for such a
To better capture the structural dependency in-between, we
develop a paired context embedding to better characterize
the attributes of different nodes.

Given the demand di of node vi and its original 2-D loca-
tion information Li which could be used to calculate node-
wise Euclidean distances directly, we formulate the origi-
nal node embeddings by concatenating the two features and
map them into one dense vector as xi = W x[Li, di] + bx.
When an agent decides whether to adopt a pickup request
and head for its pickup location vi, it means that the agent
also has to visit the corresponding paired delivery vi+N af-
terwards. Thus, a complete representation on vi should con-
sider the information of its paired delivery vi+N . Mean-

while, the agent is only allowed to visit vi+N when vi is
already visited. A policy evaluation upon vi+N does not rely
on vi any more. Motivated by this, we update the represen-
tation of pickup nodes by concatenating their paired deliv-
eries, i.e. xi = [xi;xi+N ]. We further compute the linear
projection of such augmented representations to generate the
final paired context embeddings:

h0i =


W x

0 xi + bx0 , i = 0,

W x
p [xi;xi+N ] + bxp , 1 ≤ i ≤ N,

W x
d xi + bxd , N + 1 ≤ i ≤ 2N,

(7)

Other than intuitive context embeddings upon each node
directly, we further generate encoded node embeddings con-
sidering the entire graph structure of the given instances. We
adopt the Transformer Model (Vaswani et al. 2017) based
encoding structure. The initial paired context embedding
h0i is processed through L attention layers, each of which
consists of a multi-head attention layer (MHA), a skip-
connection layer (He et al. 2016), a feed-forward layer, and
batch normalization (BN) layers (Ioffe and Szegedy 2015).
Formally, each node embedding is updated in the `-th layer
as follows,

ĥi = BN `(h`−1i +MHA`i(h
`−1
1 , h`−12 , · · ·h`−12N )), (8)

h`i = BN `(ĥi + FF `(ĥi)). (9)

The core of an attention layer above is the multi-head atten-
tion block and can be defined as follows:

Qhi ,K
h
i , V

h
i =Wh

Qhi,W
h
Khi,W

h
V hi, (10)

Ahi = softmax(QhiK
hT /

√
dk)V

h
j , (11)

MHAi = Concat(A1
i , A

2
i , ..., A

H
i )WO, (12)

where h = 1, 2, ...,H and dk = dh/H . H is to amount of
attention heads, Qhi ,K

h
i , V

h
i are the query, key and value

vectors respectively. WO is the projection matrix used to
project the final MHA output. The final embedding of each
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node hi = hLi can thus be obtained from the consecutive
L attention layers. Furthermore, we also generate a graph

embedding h = 1
2N

2N∑
i=0

hi as the average of all nodes in the

problem instance, which represents the global aggregated in-
formation.

It is worthy to note that even though different agents
generate their individual policies via different decoders, the
paired context embedding and context encoding upon all
nodes are shared. This is because, in a fully cooperative
PDP scenario, different vehicle agents can share their ob-
servations under centralized agent control. Thus the repre-
sentations of nodes from the environment are consistent and
can be learned jointly. In addition, learning a shared context
encoder also accelerates the training stage significantly and
helps reduce computational costs.

Cooperative Multi-Agent Decoders
Given both node-wise and global representations, each ve-
hicle agent learns its own policy via its individual decoder
network, as depicted in Figure 2. Each agent decoder selects
the next node vItk to visit at step t based on the current obser-
vations of all agents. The agents work in a cooperative way,
and each one of them only visits a part of the overall pickup-
delivery pairs within each episode for a complete solution
construction.

For better cooperation between different agents, we main-
tain a communication layer to record the updated states of
different agents as follows:

Commt = [hIt1 ;C
t
1;hIt2 ;C

t
2; ...;hItK ;CtK ] (13)

Leveraging the up-to-date communication embedding, each
agent decoder utilizes an MHA-based structure to eval-
uate the probability of selecting each node at step t.
We first generate a special context embedding htk,(c) =

[h;hItk ;C
t
k;Comm

t] for agent k to concatenate necessary
information used in decision making, including the static
global representation, the agent’s current state and the states
of others. The context embedding htk,(c) is further taken as
the single query vector and processed via another MHA
layer. Finally, the output gtk is used to compute the com-
patibility of choosing a node, and the final probabilities are
computed via softmax. Such a decoding process is as fol-
lows:

gtk =MHAk,(c)(h1, h2, ..., h2N ), (14)

Qtk,K
t
k,i =WQ,kg

t
k,WK,khi, (15)

utk,i = Dtanh(Qtk
T
Kt
k,i/

√
dk), (16)

pθk,φ(v(k, t)) = softmax(Maskt(utk,i)), (17)

where WQ,k and WK,k are the weight matrices of the last
single-head attention, D=10 is the clip rate for better explo-
ration (Bello et al. 2016). Maskt resets all compatibility
value of unfeasible (already visited) nodes to −∞. In ad-
dition, θk is the parameter set for the agent decoder k, and φ
is used. to parameterize the common paired context embed-
ding and context encoder.

During the cooperation of different agents, it is possible
that several agents make the same decision to the same node.
However, due to the constraint that each node can only be
visited once as shown in equation (2) and (3), we design a
special fleet handler to resolve such a conflict. It randomly
maintains the action of one agent from all candidates to the
node and keeps the others stay at their current location vItk .
When all delivery and pickup nodes are visited and all agents
return to the initial depot v0, the episode ends.

Training via Cooperative A2C
The Advantage Actor-Critic (A2C) (Konda and Tsitsiklis
2000) is a well-known policy gradient approach that has
shown its effectiveness. Leveraging the cooperation between
different vehicle agents, we design a special cooperative
A2C to train the proposed MAPDP.

Besides generating individual policies via individual de-
coders, we also formulate a centralized critic network
V πω (s) to estimate the state-values. In detail, we compute
a weighted sum based on the output policy pθk,φ(v(k, t)) at
step t and the node-wise embeddings hi. Then the weighted
sum vector of all agents is processed with linear projection
into a single vector vc with dc = 128. Finally, we obtain
a single critic value from vc through two dense layers. The
entire critic network is parameterized by ω.

We then compute the loss of both networks and update
θk, γ, ω as follows:

Aπ(s, a) = r(s, a) + V πω (s′)− V πω (s) (18)
∇L(θk) = E∇θk logπθk,φAπ(s, a) (19)

∇L(φ) = 1/K
k=K∑
k=1

E∇θk,φlogπθk,φA(s, a) (20)

∇L(ω) = E∇ω(Aπ(s, a))2 (21)

Experiments and Evaluation
In this section, we conduct extensive experiments on two
datasets to answer the following research questions:

• RQ1: How does our proposed MAPDP perform on coop-
erative PDP compared to other heuristics and RL based
methods?

• RQ2: How balance is the cooperation between different
agents when incorporating the fleet handler?

• RQ3: How effective is the multi-agent formulation and
the communication embedding?

• Random Generated Dataset. We first generate a random
dataset with randomly distributed node locations with de-
mands for efficient performance comparison. The location
of node vi, L = (xi, yi) , is uniformly sampled from a
5 × 5 square. Both the x and y coordinates are uniformly
distributed in (0,5). The demand volume of a pickup node
di is uniformly sampled from (1,10), and the capacity
limit of each vehicle is 10.

• Real-World Dataset. We collect real-world data from
an online logistic platform providing services in Guang-
dong, China, including more than 100 thousand order
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Model
Random Dataset

2N = 20, K=2 2N = 50, K=5 2N = 100, K=10
Cost Gap Time Cost Gap Time Cost Gap Time

ACO (Gambardella, Taillard, and Agazzi 1999) 34.73 39.60% 6min 79.94 52.01% 32min 136.89 53.86% 51min
Tabu Search (Glover 1990) 29.76 19.67% 7min 64.57 22.78% 34min 112.38 26.31% 51min
OR-Tools (Google 2021) 25.91 4.18% 4min 54.64 3.90% 31min 94.25 5.93% 49min

RL-VRP (Nazari et al. 2018) 26.79 7.72% 1s 63.12 20.02% 5s 101.13 13.67% 9s
AM-VRP (Kool, van Hoof, and Welling 2019) 26.64 7.12.% 1s 67.41 28.18% 4s 105.91 19.04% 8s

MDAM (Xin et al. 2021) 25.98 4.46% 8s 67.24 27.86% 25s 105.11 18.14% 51s
MAPDP 24.87 0.00% 1s 52.59 0.00% 4s 88.97 0.00% 7s

Model
Real-World Dataset

2N = 20, K=2 2N = 50, K=5 2N = 100, K=10
Cost Gap Time Cost Gap Time Cost Gap Time

ACO (Gambardella, Taillard, and Agazzi 1999) 812 30.13% 6min 1205 35.39% 34min 2054 20.47% 53min
Tabu Search (Glover 1990) 834 33.65% 6min 1197 34.49% 34min 2033 19.24% 51min
OR-Tools (Google 2021) 749 20.03% 4min 1056 18.65% 31min 1811 6.22% 50min

RL-VRP (Nazari et al. 2018) 714 14.42% 1s 1130 26.97% 5s 1842 8.04% 9s
AM-VRP (Kool, van Hoof, and Welling 2019) 661 5.93% 1s 942 5.84% 4s 1759 3.17% 9s

MDAM (Xin et al. 2021) 638 2.24% 8s 941 5.73% 25s 1733 1.64% 52s
MAPDP 624 0.00% 1s 890 0.00% 4s 1705 0.00% 7s

Table 1: Overall performance comparison. The best result in each column is bolded. The improvement row shows the perfor-
mance gain of our solution compared to the best baseline.

pairs within a month. Delivery and pickup orders are pro-
vided one day in advance so that the platform could pro-
vide solutions within a rather static scenario. The capacity
of each vehicle is 6. We collect historical order instances
that were accomplished by a fixed fleet.

In the evaluation for both datasets, we construct experi-
ments with three different scales, 2N = 20, 50, 100, and
fix the agent amount with K = 2, 5, 10 accordingly. The
networks are trained via Adam optimizer with L = 3,
dk = 128, H = 8 and learning rate lr = 0.001. All experi-
ments are conducted using Pytorch 1.7 on 4 2080Ti GPUs.

Performance Comparison
Baselines We first compare our DRLPR with the three
widely recognized heuristics methods:

• Ant Colony Optimization(ACO) (Gambardella, Tail-
lard, and Agazzi 1999) constructs number of ant colonies
are established to model and optimize the objective func-
tions.

• Tabu Search (Glover 1990) as a classic heuristic involves
an enormous exploration space and keeps searching local
solutions in the neighborhood based on the current one.

• OR Tools (Google 2021) is Google’s vehicle routing
problem solver that utilizes a set of metaheuristics.

We also compare the most up-to-date RL-based ap-
proaches:

• RL-VRP (Nazari et al. 2018) proposed an RL-based
framework using an encoder-decoder framework. The
model utilizes an RNN model and generates the solution
in a sequential manner.

• AM-VRP (Kool, van Hoof, and Welling 2019) utilize the
transformer structure in both encoder and decoder. The

agent network is trained via REINFORCE, and the results
are decoded via a greedy method.

• MDAM (Xin et al. 2021) updates the encoding contin-
uously via an embedding glimpse layer and further gen-
erates solutions based on a set of decoders with an addi-
tional training loss considering the KL divergence.

Since all RL baselines are only able to solve the stan-
dard CVRP, we manually add an additional mask for pickup-
delivery constraints at the decoder of the three methods to
guarantee that the output solutions are feasible. As for the
cooperation among different vehicles, we set a vehicle as-
signment order so that the vehicles will take turns to be as-
signed with the decoded nodes.

Overall Comparison The comparison results of the over-
all performance are shown in Table ??. We report the total
distance, the gap of each method to the best among all, and
the time spent during inference in both two datasets with
three different customer scales. The best results are bolded.

In terms of the solution quality, we demonstrate that
MAPDP outperforms all other baselines in all experiment
settings. The closest baseline is MDAM in the Real-World
dataset with 2N = 100 but still suffers from a 1.64% per-
formance gap from MAPDP. The state-of-the-art RL-based
methods are less effective in the cooperative PDP settings
due to 1) the paired dependency are not explicitly repre-
sented, and 2) the cooperation between different vehicles
can not be modeled. In fact, manually fixing the assignment
order of different vehicles greatly limits the potential of ex-
ploring more solutions, and thus influences the effectiveness
of reinforcement learning. The cooperative multi-agent de-
coding process alternatively accepts more possible solution
explorations. Thus, MAPDP shows its effectiveness in the
practical cooperative PDP scenarios.
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(a) Random Dataset.

(b) Real-World Dataset.

Figure 3: Case studies on vehicle cooperation analysis from
two datasets.

Besides the significant performance on solution quality,
MAPDP also shows fast computation speed in solution gen-
eration. Compared to the heuristic baselines, we notice that
MAPDP is able to infer solutions faster with a maximum
of 400+ times with 2N = 100. In real-world application
scenarios, the logistic order requests may change continu-
ously and even rapidly, including previous orders canceled
and new orders accepted. A fast response-ability is of great
significance for an online policy-making system to be adap-
tive to any new changing dynamics.

Case Studies on Vehicle Cooperation
To further investigate the cooperation between different ve-
hicles in solving cooperative PDP, we compute the indi-
vidual traveling distance of each vehicle with 2N = 50
in both datasets in two case studies, as shown in Figure 3.
Besides, since making decisions simultaneously might meet
conflicts with other agents, the fleet handler is used to deal
with such conflicts and keep the other vehicles halting where
they are. We also compute and report the halting ratio =
haltingtimes/T of each agent k.

We notice that the balance among different agent’s work-
load is greatly affected by the dataset. In the random dataset
where all nodes distribute randomly and are centered within
the unit square, different agent decoder ends up with similar
workloads. However, in the real-world dataset where nodes
distribute unbalanced and even some locate distantly, agents
show significant differences. This is because, in the same
decision step, some vehicles might be assigned with one of

the distant nodes, which greatly increases their total trav-
eling distance. The agent with the longest traveling distance
we investigated traveled 212 spatial units, while the one with
the shortest trajectory only traveled 103 units. Meanwhile, in
both datasets, we demonstrate that the agent that was halted
the most ends up with the lowest workload. This is because
such an agent skips the decision step while others continue
to travel on the instance graph.

Ablation Studies on Multi-Agent Design

We further investigate how effective each part of the
MAPDP design is as shown in Tabel 2. Two additional vari-
ants of MAPDP are trained and evaluated following the
same evaluation protocols: MAPDP-SP stands for the sim-
plified model where all agent decoders share the same pa-
rameters. Thus all agents become homogeneous to generate
individual solutions. MAPDP-NC stands for the multi-agent
framework without consideration on the communication em-
bedding. It generates context embeddings only based on the
agent’s own state and the global graph embedding.

Dataset Model 2N=20 2N=50 2N=100

Random
MAPDP 24.87 52.59 88.97

MAPDP-SP 24.99 53.61 89.78
MAPDP-NC 26.89 68.78 108.12

Real
MAPDP 624 890 1705

MAPDP-SP 639 943 1721
MAPDP-NC 731 1033 1896

Table 2: Ablation study on the multi-agent structure design.

Results show that both MAPDP variants are outperformed
by the original MAPDP. MAPDP-SP is slightly outper-
formed and is still superior to many other baselines. This
shows that the multi-agent modeling along with a compre-
hensive communication mechanism is the core of perfor-
mance improvement, while heterogeneous training can fur-
ther slightly improve its effectiveness based on pure param-
eter sharing. However, MAPDP-NC is even outperformed
by many other baselines. This is because, in a fully cooper-
ative scenario, up-to-date communication with other agents
is critical to effective coordination.

Conclusion
In this paper, we propose a multi-agent reinforcement learn-
ing framework to solve cooperative pickup and delivery
problems (MAPDP). We design a special paired context em-
bedding to explicitly represent the structural dependency
among different nodes within the instance graph. We de-
velop special cooperative multi-agent decoders to learn the
individual policies of different agents. We also design a co-
operative A2C algorithm for the integrated model training,
where a joint critic value net estimates the state value. Ex-
tensive experiments demonstrate that MAPDP outperforms
other baselines in all experiment settings and shows signifi-
cant computation speed during solution inference.
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Buşoniu, L.; Babuška, R.; and De Schutter, B. 2010. Multi-
agent reinforcement learning: An overview. Innovations in
multi-agent systems and applications-1, 183–221.
Chen, X.; and Tian, Y. 2019. Learning to perform local
rewriting for combinatorial optimization. In Advances in
Neural Information Processing Systems, 6278–6289.

Gambardella, L. M.; Taillard, É.; and Agazzi, G. 1999.
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