Speeding Up the RUL− Dynamic-Controllability-Checking Algorithm for Simple Temporal Networks with Uncertainty

Luke Hunsberger1, Roberto Posenato2

1Department of Computer Science, Vassar College, Poughkeepsie, NY USA,
2Dipartimento di Informatica, Università di Verona, Verona, Italy

hunsberger@vassar.edu, roberto.posenato@univr.it

Abstract

A Simple Temporal Network with Uncertainty (STNU) includes real-valued variables, called time-points; binary difference constraints on those time-points; and contingent links that represent actions with uncertain durations. STNUs have been used for robot control, web-service composition, and business processes. The most important property of an STNU is called dynamic controllability (DC); and algorithms for checking this property are called DC-checking algorithms. The DC-checking algorithm for STNUs with the best worst-case time-complexity is the RUL− algorithm due to Cairo, Hunsberger and Rizzi. Its complexity is \(O(mn + k^2n + kn \log n)\), where \(n\) is the number of time-points, \(m\) is the number of constraints, and \(k\) is the number of contingent links. It is expected that this worst-case complexity cannot be improved upon. However, this paper provides a new algorithm, called RUL2021, that improves its performance in practice by an order of magnitude, as demonstrated by a thorough empirical evaluation.

Background

Simple Temporal Networks (STNs) were introduced by Dechter, Meiri, and Pearl (1991) to facilitate reasoning about time. An STN is a pair \((T, C)\), where \(T\) is a set of real-valued variables called time-points, and \(C\) is a set of binary difference constraints on those time-points. Each constraint in an STN has the form, \(Y - X \leq \delta\), where \(X, Y \in T\) and \(\delta \in R\). Typically, the number of time-points is denoted by \(n = |T|\), and the number of constraints by \(m = |C|\). Each STN has a corresponding graph \(G = (T, E)\), where the time-points serve as nodes, and the constraints correspond to edges. Specifically, for each constraint \(Y - X \leq \delta\) in \(C\), there is a labeled directed edge, called an ordinary edge, \(X \xrightarrow{\delta} Y\) in \(E\).

An STN is consistent (i.e., has a solution as a constraint satisfaction problem) if and only if its graph has no negative cycles (Dechter, Meiri, and Pearl 1991). The consistency of an STN can be determined, for example, by the Bellman-Ford (BF) Single-Source Shortest-Paths (SSSP) algorithm (Cormen et al. 2009). This paper uses the version of BF in which a new node \(S \notin T\) is used as the source node. For consistent networks, BF generates a distance function \(d\), where for each time-point \(X \in T\), \(d(X)\) equals the length of the shortest path from \(S\) to \(X\). (Initially, for each \(X \in T\), \(d(X) = 0\), simulating an edge \(S \xrightarrow{0} X\).) Such a \(d\) will be a solution to the original STN. Otherwise, BF detects a negative cycle.

The algorithms in this paper use variants of Dijkstra’s SSSP algorithm (Cormen et al. 2009), propagating either forward from a source node or backward from a sink node. Although Dijkstra typically applies only to STNs whose edge-weights are all non-negative, it may also be used for STNs having some negative edges—if those negative edges either all emanate from or all terminate in a single time-point (Morris 2014). As in Johnson’s algorithm (Cormen et al. 2009), a potential function can be used to convert edge-weights in a consistent STN to non-negative values, thereby enabling the use of Dijkstra to guide the traversal of shortest paths.

Simple Temporal Networks with Uncertainty

A Simple Temporal Network with Uncertainty (STNU) is an STN augmented with contingent links that can be used to represent actions with uncertain durations (Morris, Muscettola, and Vidal 2001). STNUs are used for robot control (Karpas et al. 2015), web-service composition (Franceschetti and Eder 2019), and business processes (Franceschetti and Eder 2020a,b). Faster algorithms for managing STNUs will make them practical for a wider range of applications.

An STNU is a triple \((T, C, L)\) where \((T, C)\) is an STN and \(L = \{(A_i, x_i, y_i, C_i)\}_{0 \leq i < k}\) is a set of contingent links, where for each \(i\), \(0 < x_i < y_i < \infty; A_i, C_i \in T\); and \(C_i \equiv C_j\) iff \(i = j\). The number of contingent links (CLs) is denoted by \(k\). For each \((A_i, x_i, y_i, C_i)\) \(\in L\), \(A_i\) is its activation time-point (ATP), \(C_i\) its contingent time-point (CTP), and \(A_i = y_i - x_i\) the uncertainty in its duration. We also let \(T_C = \{C_i | \exists (A_i, x_i, y_i, C_i) \in L\}\) denote the set of CTPs; and \(T_\oplus = T \setminus T_C\) the set of executable time-points. A system using an STNU controls the execution of the executable time-points (i.e., assigns values to them), but only observes the execution of contingent time-points as they occur.

Each STNU \(S = (T, C, L)\) has a graph \(G = (T, E)\), where the time-points in \(T\) serve as nodes, and the constraints in \(C\) and contingent links in \(L\) together correspond to edges. Specifically, \(E = E_0 \cup E_1 \cup E_2\) where:

- for each ordinary constraint \((Y - X \leq \delta)\) in \(C\), there is an ordinary edge, \(X \xrightarrow{\delta} Y\) in \(E_0\) (as in an STN); and
- for each contingent link \((A_i, x_i, y_i, C_i)\) \(\in L\), there is a directed edge, \(A_i \xrightarrow{\delta} C_i\) in \(E_2\), where \(\delta = y_i - x_i\) is the uncertainty in its duration.

\footnote{The notation \(X \equiv Y\) represents that \(X\) and \(Y\) are the same variable, not that their values are equal.}
A sample STNU graph

\[X \xrightarrow{11} A_1 \xrightarrow{-7} C_1 \xrightarrow{8} C_2 \xrightarrow{-1} C_2 \xrightarrow{c_1} \xrightarrow{c_2} A_2 \]

Figure 1: A sample STNU graph

- for each contingent link \((A_i, x_i, y_i, C_i)\) in \(\mathcal{L}\), there is a lower-case (LC) edge \(A_i \xrightarrow{c_{i1}, y_i} C_i\) in \(\mathcal{E}_t\), and an upper-case (UC) edge \(C_i \xrightarrow{c_{i2}} A_i\) in \(\mathcal{E}_u\).

Figure 1 shows the graph for an STNU whose time-points are \(A_1, A_2, C_2\) and \(X\). The ordinary edges between \(X\) and \(C_1\), and between \(C_1\) and \(C_2\) correspond to ordinary constraints (as in an STN). \(A_1\) and \(A_2\) are ATPs, \(C_1\) and \(C_2\) are CTPs, and \(X, A_1\) and \(A_2\) are executable. The LC edges from \(A_1\) to \(C_1\), and \(A_2\) to \(C_2\) represent the uncontrollable possibilities that the durations of the contingent links, \((A_1, 1, 3, C_1)\) and \((A_2, 1, 10, C_2)\), may each turn out to be as low as 1. The UC-edges represent the uncontrollable possibilities that their durations may be as high as 3 and 10, respectively.

For convenience, an ordinary edge \(X \xrightarrow{=} Y\) may be notated as \((X, \delta, Y)\); an LC-edge \(A_{i1} \xrightarrow{c_{i1}, y_{i1}} C_{i1}\) as \((A_{i1}, c_{i1}\cdot x_{i1}, C_{i1})\); and a UC-edge \(C_{i2} \xrightarrow{c_{i2}} A_{i2}\) as \((C_{i2}, C_{i2}\cdot y_{i2}, A_{i2})\); and a path may be notated by combining its constituent edges within a single expression. For example, the path containing the edges \((A_{i1} c_{i1}, C_{i1}, C_{i2} y_{i2}, A_{i2})\), may be notated as \((A_{i1}, c_{i1}, 5, C_{i1}, 5, X, -7, Y, c_{i2}, -x, A_{i2})\). We also adopt the following notation from Hunsberger (2015): The \(\mathcal{L}\)-edges comprise the LC and ordinary edges (i.e., \(\mathcal{E}_t \cup \mathcal{E}_o\)); the \(\mathcal{L}\)-graph \(\mathcal{G}_o = (\mathcal{T}, \mathcal{E}_t \cup \mathcal{E}_o)\) contains just the \(\mathcal{L}\)-edges; the \(\mathcal{U}\)-edges comprise the ordinary and UC-edges (i.e., \(\mathcal{E}_o \cup \mathcal{E}_u\)); and the \(\mathcal{U}\)-graph \(\mathcal{G}_u = (\mathcal{T}, \mathcal{E}_o \cup \mathcal{E}_u)\) contains just the \(\mathcal{U}\)-edges.

Dynamic Controllability of an STNU

The most important property of an STNU is called dynamic controllability (DC) (Morris, Muscettola, and Vidal 2001). An STNU \((\mathcal{T}, \mathcal{C}, \mathcal{L})\) is DC if there exists a dynamic strategy for executing its\executeable time-points that guarantees that all ordinary constraints will be satisfied no matter how the durations of the contingent links turn out. Crucially, a dynamic strategy can react to observations of executions of contingent time-points, but its execution decisions cannot depend on advance knowledge of future events. This paper assumes the version of DC in which dynamic strategies can react \instaneously to observations of contingent executions (Morris 2006). Thus, execution decisions may depend on past or present observations. The formal definition of the DC property appears in Hunsberger and Posenato (2021).

The sample STNU is not DC; i.e., there is no strategy for executing \(X, A_1\) and \(A_2\) that can guarantee that all ordinary constraints will be satisfied no matter how the contingent durations, \(C_1 - A_1\) and \(C_2 - A_2\), turn out. However, weakening the edge \((X, 11, C_1)\) to \((X, 14, C_1)\) would make it DC. In fact, the following dynamic strategy would ensure that all ordinary constraints would be satisfied: Execute \(X\) and \(A_2\) at time 0. If \(C_2\) happens to execute before time 6, then execute \(A_1\) at time \(C_2 + 1\).
generate UC-edges, the LR and Cr rules are not needed.

The RUL− algorithm focuses on the \(k \) UC edges, seeking to use the rules from Table 2 to generate (ordinary) edges that bypass the UC edges. Once all UC edges have been bypassed, the DC-checking problem reduces to checking the consistency of the LO-graph (including the bypass edges).

Figure 2 illustrates the two phases of processing for a sample UC edge \((C, C_1; -20, A)\), shown in red, associated with a contingent link \((A, 8, 20, C)\). In the first phase, the algorithm propagates backward from \(C \), along edges in the LO-graph, looking for opportunities to apply the R and L rules to generate new edges terminating at \(C \), shown as dotted edges at the top of Figure 2. (The rule used to generate each edge is given in parentheses.) For example, applying the R rule to the edges \((C_2, 3, X)\) and \((X, 1, C)\) generates the (dotted) edge \((C_2, 4, C)\); and then applying the L rule to \((A_2, c_2; 2, C_2)\) and \((C_2, 4, C)\) generates the (dotted) edge \((A_2, 6, C)\). Since the R and L rules only apply when the righthand edge has length less than \(\Delta_C = 20 - 8 = 12 \), this backward propagation stops when the edge \(T \\rightarrow X \\rightarrow C \) is generated, since \(14 \geq 12 \).

To make the first phase’s exploration of paths in the LO-graph efficient, the algorithm uses a potential function, as in Johnson’s algorithm, to re-weight the LO-edges to be non-negative. This enables the use of Dijkstra’s algorithm to guide the exploration of shortest LO-paths. (More on this later.)

In the second phase, for each (new or pre-existing) LO-edge terminating at \(C \), the algorithm uses the U rule to combine that edge with the (red) UC edge to generate a bypass edge. For example, applying the U rule to \((X, 1, C)\) and \((C, C_1; -20, A)\) generates the bypass edge \((X, -8, A)\), shown as a dashed edge at the bottom of Figure 2. This is an example of the non-length-preserving case of the U rule, which we call U\text{nlp}. In general, this case arises whenever \(v - y_i < -x_i \) (equiv., \(v < \Delta_i \)). In the example, \(v - y = 1 - 20 < -8 = -x \) (equiv., \(v = 1 < 12 = \Delta_C \)). Note that every edge terminating at \(C \) in Figure 2, except the last one, has length less than \(\Delta_C = 12 \). (That is why back-propagation in the first phase stopped at \(T \).) Therefore, every bypass edge, except the one from \(T \) to \(A \), has length \(-x \geq -8 \). In contrast, because the length of the edge \((T, 14, C)\) is \(14 \geq 12 = \Delta_C \), the length-preserving case of the U rule, which we call U\text{lp}, generates the edge \((T, -6, A)\), where \(-6 = 14 - 20 \).

The RUL− algorithm can now be summarized as follows:

1. It runs Bellman-Ford once to compute an initial potential function for the LO-graph;
2. It propagates backward from each of the \(k \) UC-edges along edges in the LO-graph, seeking to generate edges that bypass those UC-edges;
3. After each processing of a UC-edge, it incrementally updates the potential function; and
4. if the back-propagation from a UC-edge ever encounters another UC edge that has not already been processed, then it interrupts its processing of the first UC-edge; and
5. after an interruption, which typically generates new edges, the potential function is updated and the processing of the interrupted UC-edge is re-started from scratch.

Figure 3 illustrates how the RUL− algorithm discovers that the sample STNU from Figure 1 is not DC. In the figure, the UC edges are shown in red. First, back-propagation from the UC edge \((C_1, C_1; -3, A_1)\) generates the bypass edges \((C_1, 5, A_1)\) and \((X, 8, A_1)\), shown as blue dashed edges in Figure 3a. Next, back-propagation from the UC edge \((C_2, C_2; -10, A_2)\) generates the bypass edge \((X, -1, A_2)\), shown as an orange dashed edge in Figure 3b. With these bypass edges, there is now a negative cycle in the LO-graph: \((X, -1, A_2, C_2; 5, A_1, C_1; 1, C_1, -7, X)\), as shown in Figure 3c. Hence, the next attempt to update the potential function will fail, signaling that the STNU must be non-DC.

A New Approach to the RUL− Algorithm

This section introduces a new DC-checking algorithm for STNUs that we call RUL2021. It achieves an order of magnitude improvement in performance over the RUL− algorithm. Like the RUL− algorithm, the RUL2021 algorithm aims to generate edges that bypass UC edges; and its back-propagation in the LO-graph is guided by Dijkstra’s algorithm, using a potential function created by an initial call to Bellman-Ford, then incrementally updated as new edges are added. However, its substantial differences include:

- It dramatically reduces the number of edges that are inserted into the STNU graph, thereby significantly reducing the amount of constraint propagation required by the many calls to Dijkstra. In particular, the new algorithm:
 - only inserts (dashed) edges generated by the U\text{lp} rule.
(b) DC

Figure 4: Two scenarios in which back-propagation from the UC edge \((C, C: -10, A)\) encounters a non-negative cycle \(L\) from \(C\) back to \(C\) such that \(0 \leq |L| = 2 < 9 = \Delta_C\).

- only accumulates, but does not insert any (dotted) edges generated by the R or L rules; and
- does not use the (non-length-preserving) \(U_{nlp}\) rule.

As will be seen, not using the \(U_{nlp}\) rule sometimes requires making extra calls to Dijkstra to check whether certain non-negative cycles in the LO-graph lead to negative cycles in the OU-graph, making the STNU not DC. However, our extensive empirical evaluation shows that this cost is more than offset by the overwhelming benefit of reducing the number of edges inserted into the graph.

- The new algorithm keeps track of the work done so far while processing a UC edge so that when any interruptions (i.e., processes of other encountered UC edges) are finished, it can resume processing where it left off, even if the potential function has been updated multiple times in the interim. This enables the new algorithm to be implemented recursively, like Morris’ 2014 algorithm, making at most \(k\) recursive calls to process UC edges, instead of at most \(2k\) iterative calls in the RUL\(^-\) algorithm.
- When processing a UC edge, the new algorithm does not insert any new edges into the STNU graph until all recursive processing of any interrupting UC edges is completed, thereby requiring fewer updates of the potential function.

The novel features are described in more detail below.

Avoiding the \(U_{nlp}\) rule. The correctness proof for the RUL\(^-\) algorithm uses the \(U_{nlp}\) rule for only two purposes: (1) to prove that a cycle of interrupted processes of UC edges implies that the original STNU is not DC; and (2) to deal with the case where back-propagation from a UC edge \((C, C': y, A)\) encounters a non-negative cycle \(\mathcal{L}\) in the LO-graph from \(C\) back to \(C\), where \(0 \leq |\mathcal{L}| < \Delta_C\). Regarding Case (1), it is true that inserting the edges generated by the \(U_{nlp}\) rule ensures that a cycle of interruptions will be detected the next time the potential function for the LO-graph is updated, but it is not the only way. Instead, as in Morris’ 2014 algorithm, it suffices to merely monitor for the presence of a cycle of recursive interruptions and, if such a cycle is ever found, immediately conclude that the network is not DC.

Case (2) is illustrated by the contrasting scenarios shown in Figure 4: one non-DC, one DC. For each scenario, the bottom picture shows the STNU graph and the top shows the cycle being considered. In each scenario, processing the UC edge \((C, C: -10, A)\) involves back-propagating along a cycle \(\mathcal{L}\) from \(C\) to \(X\) to \(C\), where \(0 \leq |\mathcal{L}| = 2 < 9 = \Delta_C\); however, on the left, \(\mathcal{L} = (C, -2, X, 4, C)\), whereas on the right, \(\mathcal{L} = (C, 4, X, -2, C)\). This slight difference makes the left hand graph non-DC, and the righthand graph DC.

When the RUL\(^-\) algorithm processes the loth graph, the UC edge is immediately reduced away by applying the \(U_{nlp}\) rule to the edges \((X, 4, C)\) and \((C, C: -10, A)\), generating the (dashed) bypass edge \((X, -1, A)\). This creates a negative cycle \((A, c1, C, -2, X, -1, A)\) in the LO-graph, which the algorithm detects when it tries to update the potential function. The key features are that the lengths of the LC edge \((A, c1, C)\) and the generated edge \((X, -1, A)\) sum to zero, while the edge from \(C\) to \(X\) has negative length. In contrast, although back-propagating from \(C\) in the righthand graph also generates the dashed edge \((X, -1, A)\), no negative cycle in the LO-graph arises because, in this scenario, the weight on the edge \((C, 4, X)\) is non-negative. In particular, the cycle \((A, c1, C, 4, X, -1, A)\) has length \(4 \geq 0\).

While the RUL\(^-\) algorithm uses the \(U_{nlp}\) rule to distinguish the scenarios in Figure 4, our new algorithm distinguishes them without using \(U_{nlp}\). First, as it back-propagates from a UC edge \((C, C': y, A)\), the new algorithm keeps track of whether it ever encountered a cycle from \(C\) back to \(C\) of length less than \(\Delta_C\), which we call a CC loop. If so, after completing its back-propagation, it then carries out a separate forward propagation from \(C\) in the LO-graph, looking for opportunities to generate bypass edges for the lower-case edge \((A, c.x, C)\). This forward propagation is similar to that used by the Morris 2006 algorithm, except that: (1) it only visits LO-edges, not OU-edges; and (2) it only visits nodes that were encountered during the back-propagation from \(C\) along paths of length less than \(\Delta_C\) (i.e., those nodes for which the \(U_{nlp}\) rule would apply if it were being used). If it is able to generate a bypass edge for the LC edge, then the algorithm immediately halts, reporting that the STNU is not DC; otherwise, it resumes normal processing.

Figure 5 illustrates how our new algorithm deals with the scenarios in Figure 4. In each case, back-propagation from \(C\) does not use the \(U_{nlp}\) rule to generate a (dashed) bypass edge from \(X\) to \(A\). Instead, propagation from \(C\) continues past \(X\), using the R rule to generate (but not insert) the (dotted) edge/loop \((C, 2, C)\). Since \(0 \leq 2 < 9 = \Delta_C\), this CC loop triggers, in each scenario, a separate forward propagation from \(C\), looking for opportunities to bypass the LC edge.
\((A, c; 1, C) \). On the left, forward propagation generates the bypass edge \((A, x + \alpha, X)\) using the UC rule from Table 1, which creates a negative loop in the OU-graph, implying that the STNU is not DC. More generally, as shown in Figure 6, any such bypass edge \((A, x + \alpha, X)\) necessarily combines with the dotted edge \((X, \beta, C)\) and the UC edge \((C, C; y, A)\) to form a negative loop in the OU-graph, since \(\alpha\) must be negative, and \(\beta < \Delta C = y - x\). Our algorithm returns \(\perp\) as soon as a bypass edge is found. In contrast, on the right of Figure 5, forward propagation from \(C\) in the LO-graph ends at the other occurrence of \(C\), without generating a bypass edge. Hence, our algorithm would resume normal processing—if there were other UC edges to process.

Next, recall Figure 3 which shows how the RUL\(^{−}\) algorithm processes the STNU from Figure 1. Recall further that RUL\(^{−}\) uses the \(U_{up}\) rule to generate the edge \((X, -1, A_2)\) which contributes to a negative cycle in the LO-graph. Figure 7 shows how our new algorithm would process this STNU without using the \(U_{up}\) rule. First, the UC-edge \((C_1, C_1; -3, A_1)\) is processed as shown in Figure 7a. Next, as shown in Figure 7b, back-propagation from \(C_2\) detects a (red, dotted) loop from \(C_2\) back to \(C_2\) of length \(5 < \Delta C_2\). This triggers a separate forward propagation from \(C_2\) which, as shown in Figure 7c, generates a bypass edge (dashed, green) for the LC-edge \((A_2, c_2; 1, C_2)\). Hence, the algorithm immediately halts: because the analysis always comes out the same, as shown previously in Figure 6 and here in Figure 7d.

Efficiently dealing with interruptions. If, while processing a UC edge \(E\), back-propagation encounters an as-yet-unprocessed UC edge \(E'\), the RUL\(^{−}\) algorithm interrupts its processing of \(E\) to deal with \(E'\). Once it has generated all bypass edges for \(E'\), it updates the potential function and restarts its processing of \(E\) from scratch. Additional interruptions may require additional restarts. In all, this leads to a maximum of \(2k\) processings of UC edges (including restarts).

Like Morris’ 2014 algorithm, our new algorithm is recursive, which facilitates keeping track of information accumulated prior to interruptions so that, once interruptions are finished, processing can resume from where it left off—even if the potential function has been updated in the interim.

Figure 8 illustrates the approach using the sample STNU, but starting by attempting to process the UC edge \((C_2, C_2; -10, A_2)\) first, as shown in Figure 8a. In this case, an interruption is encountered at \(A_1\). The relevant feature is that the distance from \(A_1\) to \(C_2\) is 0 which, being less than \(\Delta C_2\), would warrant further back-propagation; however, back-propagation is not allowed past an unstarted UC edge. Therefore, the processing of \((C_2, C_2; -10, A_2)\) is interrupted. However, the accumulated information (i.e., the distance values shown on the righthand side) is not thrown away. After \((C_1, C_1; -3, A_1)\) has been fully processed, as seen before in Figure 7a, and the potential function has been updated, the processing of \((C_2, C_2; -10, A_2)\) resumes. First, the queue for the Dijkstra back-propagation is initialized with just \(A_1\). The key for \(A_1\) in the queue is computed using the updated potential function. (If there had been multiple interruptions, the queue would have been updated with the ATPs for all the interrupting UC edges.) Figure 8b shows how back-propagation continues from \(A_1\). When \(X\) is visited, it reveals a shorter distance to \(C_2\) when \(C_2\) is visited, a loop from \(C_2\) to \(C_2\) of length \(5 < \Delta C_2\) is detected which would trigger a separate forward propagation that, as seen before, would show the network to be non-DC.

In general, recursion enables handling interruptions more efficiently, avoiding redundant propagations incurred by the
Algorithm 1: The UpdPF function

| Input: G, an STNU graph; A, an activation time-pt.; h, a potential function for G_A, excluding edges ending at A |
| Output: A potential function h' for G_A (including edges terminating at A); or \perp if G_A is inconsistent |

1. $h' := \text{copy-vector}(h)$
2. $Q := \text{new empty priority queue}$
3. $Q,.insert(A, 0)$ // Init. queue for back-prop from A
4. while (!Q,.empty()) do
5. $(V, \text{key}(V)) := Q,.extractMinNode()$
6. // Back-prop along ordinary edges ending at V
7. foreach $((U, \delta, V) \in \mathcal{E}_o)$ do
8. if (UpdVal($(U, \delta, V), h, h'$) == \perp) then return \perp
9. // Back-prop along LC-edge ending at V, if any
10. if $(V$ is contingent) then
11. $(A_v, x_v, y_v, V) := \text{contingent link for } V$
12. if (UpdVal($(A_v, x_v, V), h, h', Q) == \perp) then return \perp
13. return h'

Algorithm 2: UpdVal, helper for UpdPF

| Input: $h, h',$ potentials; $(U, \delta, V),$ an edge; and $Q,$ a priority queue |
| Output: \top iff h' can be updated to satisfy (U, δ, V) without detecting a negative loop |

1. if ($h'(U) < h(V) - \delta$) then $h'(U) := h(V) - \delta$
2. if (Q.state$(U) == \text{notYetInQ}$) then
3. Q,.insert$(U, h(U) - h'(U))$
4. else if (Q.state$(U) == \text{inQ}$) then
5. Q,.decreaseKey$(U, h(U) - h'(U))$
6. else return \perp
7. return \top

Pseudocode

Pseudocode for the RUL2021 algorithm is given as Algorithms 1 to 7, discussed in detail below.

Updating the Potential Function. Like the RUL algorithm, whenever new bypass edges are inserted into the LO-graph, the RUL2021 algorithm incrementally updates the potential function for the LO-graph using a propagation-based algorithm similar to that of Ramalingam et al. (1999). Pseudocode for the UpdPF (i.e., update potential) function is given as Algorithm 1. Its inputs include an activation time-point A, and a function h that satisfies all the edges in the LO-graph, except possibly edges ending at A (e.g., new bypass edges). It aims to return a function h' that satisfies all of the LO-edges, including those terminating at A.

Initially, h' is the same as h. UpdPF then propagates backward from A along LO-edges, adjusting the values of h' as necessary to satisfy the edges it encounters. It uses a priority queue Q where the key for each node X reflects the amount by which $h'(X)$ had to be changed. Propagation ceases at nodes for which no adjustment of h' is necessary.

For each encountered edge (U, δ, V), the UpdVal (i.e., update value) function in Algorithm 2 adjusts $h'(U)$ if necessary to ensure that it satisfies the constraint $V - U \leq \delta$. If U is not yet in the queue, it inserts U into the queue; if U is already in the queue, it decreases the key for U to reflect the new value of $h'(U)$; but if U has already been popped from the queue, it immediately returns \perp, since this can only happen if this edge completed a negative cycle back to A.

Phase I. The first phase of processing a UC-edge involves propagating backward from its contingent time-point C, along edges in the LO-graph, looking for opportunities to apply the R and L rules from Table 2. The phase1 function in Algorithm 3 uses a potential function to re-weight the edges in the LO-graph to enable a (single-sink) Dijkstra-like traversal of the shortest paths. The key for each node X in the priority queue is the distance from X to C in the re-weighted graph, while δ_{xc} is the corresponding distance in the original LO-graph. When X is popped from the queue, significant processing only continues if $\delta_{xc} < \Delta C$. (For now, ignore the $\text{loc. dist}[X]$ variable.) The first three cases are those in which back-propagation does not continue past X.

In Case 1, $X \equiv C$. If $\delta_{xc} < 0$, then a negative cycle has been found and \perp is immediately returned. Otherwise, a flag loc.ccLoop is set, indicating that a non-negative cycle from C back to C has been found. (More on this later.)

In Case 2, X is the ATP for a UC-edge E_X that the algorithm has not yet started processing. For now, that UC-edge is accumulated in loc.UUCEs (i.e., unstarted UC-edges).

In Case 3, X is the ATP for a UC-edge E_X that the algorithm has started processing, but not yet finished. In other words, a cycle of interrupted processings of UC edges has been detected. Thus, the function immediately returns \perp.

Case 4 is where back-propagation from X continues. The apRL (i.e., apply relax/lower) function in Algorithm 4 considers each LO-edge $e = (W, \theta, X)$ incoming to X and accumulates (but does not insert) a new edge from W to C by applying the R or L rule to e and (X, δ_{xc}, C). The edges (W, δ_{xc}, C) returned by apRL are then used in Case 4 to either insert W into the priority queue or decrease its key if it is already in the queue. When W is eventually popped off the queue, back-propagation from W will then be considered.

The RUL2021 algorithm. Algorithm 5 gives the high-level structure of the RUL2021 algorithm. It takes an STNU graph G as its input. It outputs \top if and only if G is DC. It first initializes a global data structure glo, whose fields are pf and status. The pf field is initialized to a potential function for the LO-graph obtained from a call to Bellman-Ford. The status field is a vector that holds the processing status of each UC-edge. The initial status of each UC-edge is nYet (i.e., not yet started). It then calls the recursive helper function RULbp (Algorithm 6) on each UC-edge.

The RULbp (RUL back-prop) function first checks the status of the input UC-edge E (Lines 3 to 4). If E is already started, then a negative cycle of recursive calls has been detected, and RULbp returns \perp. Alternatively, if E has already
Algorithm 3: The \textit{phasel} function

\textbf{Input:} $G = (\mathcal{T}, \mathcal{E})$, an STNU graph; $C \in \mathcal{T}_C$, a contingent TP;
Q, a priority queue; glo, instance of global struct; loc, instance of local struct

\textbf{Output:} \perp, iff back-prop. from C reveals G to be not DC

\begin{algorithmic}
\STATE $h := \text{glo}.pf$ // Potential fn., a solution to the LO-graph
\STATE $st := \text{glo}.status$ // Gives status of UC-edges
\STATE loc.UUCEs := $\{\}$ // Collects unstarted UC-edges
\WHILE{not Q empty() \DO
\STATE $// \text{key}(X) = \text{dist. from } X \text{ to } C$, adjusted using pot. fn.
\STATE $(X, \text{key}(X)) := Q$.extractMinNode()
\STATE $\delta_{xc} := \text{key}(X) - h(X)$ \quad // $\delta_{xc} = \text{XC dist. in } G$
\IF{X is an ATP, then E_X is corresp. UC-edge; else \perp}
\STATE $E_X := G.UCEdgeFromATP(X)$
\ENDIF
\IF{$(\delta_{xc} < \Delta_{C}) \text{ then}$}
\STATE $\text{// Record shorter length}$
\ENDIF
\IF{$(\delta_{xc} \geq \Delta_{C}) \text{ then}$}
\STATE // Back-propagate
\ENDIF
\IF{$(X \equiv C) \text{ then}$}
\STATE $\text{// Case 1: CC loop of length } \delta_{xc} < \Delta_C$
\ELSIF{$(\delta_{xc} > 0) \text{ then return } \perp$ \quad // Neg. cycle}
\ELSE $\text{loc.cclLoop := } T$ \quad // Alert fwd. prop.
\ENDIF
\IF{$(E_X \text{ and } \text{ст}[E_X] = \text{nYet}) \text{ then}$}
\STATE $\text{// Case 2: } E_X \text{ is an unstarted UC-edge}$
\STATE $\text{loc.UUCEs.add}(E_X, X)$
\ELSIF{$(E_X \text{ and } \text{ст}[E_X] = \text{std}) \text{ then}$}
\STATE $\text{// Case 3: Cycle of interruptions: not DC}$
\STATE \text{return } \perp
\ELSE $\text{// Case 4: Back-prop. along LO-edges}$
\STATE $\text{foreach } (W, \delta_{WC}) \in \text{apRL}(G, X, \Delta_C, \delta_{xc}) \DO$
\STATE $\text{if } \delta_{WC} < G.\text{ordEdgeWt}(W, C) \text{ then}$
\STATE $\text{newKey} := \delta_{WC} + h(W)$
\STATE Q.insOrDecrKey(W, newKey)
\STATE $\text{return } T$
\ENDWHILE
\end{algorithmic}

been fully processed, then RULbp returns T. The rest of RULbp deals with the two-phase processing of E.

First, a local data structure loc is initialized. Its ccLoop field is set to \perp because no loop from C back to C has yet been found; and its dist vector is initialized so that $\text{dist}[X] = \infty$ for each X, representing that no path from any X to C has yet been explored. Next (Lines 10 to 11) a priority queue Q is initialized to include each X for which there is an ordinary edge (X, δ_{xc}, C), terminating at C. Back propagation during phase one will begin at one of these Xs.

Each iteration of the while loop (Lines 13 to 22) attempts to start/re-start processing the UC-edge E by calling the \textit{phasel} function (Line 14). After that (Line 15), the loc.UUCEs field is checked to see whether any unstarted UC-edges were encountered by \textit{phasel}. If so, processing of E is interrupted to allow all of those as-yet-unstarted UC-edges to be processed (Line 17). Any of these may, in turn, result in further recursive calls to RULbp. If any of these interrupting calls fail, then RULbp immediately returns \perp. Otherwise, at Lines 18 to 20, it prepares the queue for re-starting the phase-one processing of E in the next iteration of the while loop. After clearing the queue, the activation time-
from the contingent time-point C looking for opportunities to reduce away the corresponding LC-edge (A, cx, C). Intuitively, if any time-point X in that CC loop is constrained to occur before C, the network must not be DC, since the loop has less flexibility than the contingent link. The forward propagation restricts attention to time-points X for which $\text{loc. dist}[X] < \Delta_c$. It uses the potential function to re-weight the LO-edges so that Dijkstra can be used to guide the exploration of paths. If it ever finds a path from C to some X of negative length, it immediately returns \top, indicating that the LC-edge can be reduced away.

Experimental Evaluation

The performance of our new RUL2021 DC-checking algorithm was compared against that of the pre-existing RUL$^-$ and Morris 2014 algorithms. All algorithms/procedures were implemented in Java and run on a JVM 11 having 8GB of heap memory on a Linux box with one Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz. The implementations are freely available as a Java library (Posenato 2022).

Due to space limitations, we present here a summary of the tests and results. Full details are available from Hunsberger and Posenato (2021).

We set up a generator that randomly generates realistic STNUs with a chosen topology, tunable by multiple parameters. The benchmarks are available from Posenato (2022). Because DC STNUs tend to be more challenging for DC-checking algorithms, this section focuses on DC STNUs.

Test 1: Execution-time vs. number of nodes. For each $n \in \{500, 1000, 1500, 2000, 2500\}$, we randomly generated 200 DC and 200 non-DC STNUs, each having n nodes, $k = n/10$ contingent links, and $m \approx 6n$ edges.

Figure 9 displays the average execution times of the algorithms for the DC networks. Each plotted point represents the average execution time for an algorithm on the 200 instances of the given size; each error bar shows the 95% confidence interval. These results demonstrate that RUL2021 performs significantly better (by an order of magnitude) than the other algorithms over DC instances. Results for non-DC networks were similar.

One of our principal motivating hypotheses was that our new algorithm would be significantly faster than the RUL$^-$
1500 nodes and between 150 and 500 contingent links. We algorithms inserted 20 built eight new benchmarks—four with 200 DC instances slowly than that of the RUL firms that the RUL2021 algorithm is fastest even when the execution time of the Morris14 algorithm increases more number of contingent links increases until, eventually, the Morris14 algorithm (when there are 500 contingent links). We believe this occurs because:

(1) just as the RUL2021 algorithm only inserts edges needed to reduce away upper-case edges, the Morris14 algorithm only inserts edges needed to reduce away negative edges; and (2) as the number of contingent links increases, the numbers of negative nodes and contingent links converge, hence the max number of times the main processing functions of the two algorithms are called also converge. These conjectures are supported by extra plots in (Hunsberger and Posenato 2021), including cases where \(k \approx \sqrt{n} \).

Summary. The RUL2021 algorithm achieves a dramatic improvement over the performance of the RUL\(^-\) algorithm on STNU graphs by (1) inserting fewer edges into the STNU graph to speed up the many instances of Dijkstra-like traversals; and (2) avoiding redundant computations when the processing of one UC edge is interrupted by one or more other UC edges. The first goal was achieved by, first, only computing path-lengths associated with applications of the L and R rules while refraining from inserting any new edges associated with those paths and, second, only using the length-preserving case of the U rule. Although avoiding the non-length-preserving case occasionally requires performing separate forward propagations, the savings from not inserting so many edges far outweighs the cost of those rare forward propagations. The second goal was achieved by implementing the processing of UC edges recursively, not inserting any new edges until all recursive interruptions are completed, and keeping track of work done prior to interruptions so that propagation can continue from where it left off, even if the potential function has been updated in the interim.

We conjecture that our RUL2021 algorithm provides the most improvement over the RUL\(^-\) algorithm in networks with multiple pathways of relatively small non-negative weights terminating in contingent time-points (i.e., in networks where tasks with uncertain durations face multiple short-range deadlines arising from interactions with other tasks). If there are only long-range (e.g., global) deadlines, then the performance of the algorithms may be closer.

Conclusions

The STNU model is an established formalism for representing and reasoning about time. The most important problem associated with STNUs is the DC-checking problem (i.e., checking whether a given STNU is dynamically controllable). The RUL\(^-\) DC-checking algorithm has the best worst-case time-complexity: \(O(mn + k^2n + kn\log n) \). We believe that this theoretical complexity cannot be improved upon. However, our empirical evaluation demonstrates that the performance of our new RUL2021 algorithm can be up to ten times faster. This improved performance is expected to increase the practicality of STNUs for real-world applications.

All implementations and benchmarks used for our evaluation are freely available at (Posenato 2022).

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 1909739.

Experiments supported by Centro Piattaforme Tecnologiche (CPT) at University of Verona, Italy.
References

