
Homomorphisms of Lifted Planning Tasks:
The Case for Delete-Free Relaxation Heuristics

Rostislav Horčı́k1, Daniel Fišer1,2, Álvaro Torralba3

1 Czech Technical University in Prague, Faculty of Electrical Engineering, Prague, Czech Republic
2 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

3 Aalborg University, Denmark
xhorcik@fel.cvut.cz, danfis@danfis.cz, alto@cs.aau.dk

Abstract

Classical planning tasks are modelled in PDDL which is a
schematic language based on first-order logic. Most of the
current planners turn this lifted representation into a proposi-
tional one via a grounding process. However, grounding may
cause an exponential blowup. Therefore it is important to in-
vestigate methods for searching for plans on the lifted level.
To build a lifted state-based planner, it is necessary to invent
lifted heuristics. We introduce maps between PDDL tasks
preserving plans allowing us to transform a PDDL task into a
smaller one. We propose a novel method for computing lifted
(admissible) delete-free relaxed heuristics via grounding of
the smaller task and computing the (admissible) delete-free
relaxed heuristics there. This allows us to transfer the knowl-
edge about relaxed heuristics from the grounded level to the
lifted level.

Introduction
Classical planning tasks are usually modelled in the stan-
dard PDDL language based on first-order logic (McDermott
2000). Nevertheless, a vast majority of planners do not work
with this first-order (lifted) representation but with a simpler
one based on propositional logic (i.e., grounded represen-
tation); usually either STRIPS (Fikes and Nilsson 1971) or
SAS+ (Bäckström and Nebel 1995). In order to translate the
PDDL representation into a propositional one, one has to
go through the so-called grounding process where the first-
order action schemata are translated into propositional ones
by substituting all possible combinations of objects for the
variables. This typically results in an exponentially larger
representation than the original PDDL representation.

There are several approaches to address this problem. The
most common ones try to prune the resulting grounded rep-
resentation, e.g., by a relaxed reachability analysis (Hoff-
mann and Nebel 2001; Helmert 2009), or by detection of
unreachable and dead-end actions (Fišer 2020). Another ap-
proach is to avoid the grounding process altogether and work
directly with the PDDL representation. To do this one needs
two ingredients: a sufficiently fast algorithm computing suc-
cessor states in the search (Corrêa et al. 2020), and (admissi-
ble) lifted heuristics that help to navigate in the search space.

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Heuristics for lifted planning can be obtained by lifting ex-
isting algorithms computing heuristics on the grounded rep-
resentation, as was done for hadd and hmax by Corrêa et al.
(2021). An approximation of the Fast Forward (FF) and
causal graph heuristics was done by Ridder and Fox; Rid-
der (2014; 2014). Second, we might try to transform a given
PDDL task P into a smaller one P′ which can be grounded
and compute any heuristic in the grounded version of P′. It is
clear that such a transformation must preserve the existence
of a plan and, for optimal planning, the cost of optimal plans
in P′ must be the same or smaller. The second approach
was applied by Lauer et al. (2021), over-approximating n-
ary predicates by conjunctions of unary predicates. In this
paper, we investigate an alternative way of transforming the
task.

We introduce PDDL homomorphisms as maps between
PDDL tasks preserving plans and their costs. PDDL ho-
momorphisms generalize PDDL endomorphisms introduced
by Horčı́k and Fišer (2021). We employ PDDL homo-
morphisms similarly as abstractions are used in pattern
databases (Edelkamp 2001) or merge-and-shrink heuristics
(Helmert et al. 2014). On the propositional level, the large
underlying labelled transition system of a planning task is
succinctly represented via facts (i.e., ground atomic formu-
las). Consequently, abstractions on the propositional level
are defined in terms of facts. Our approach goes even lower
to the level of objects. PDDL tasks are defined over a set of
objects B serving as values to be substituted for the variables
during the grounding process. So we formulate our abstrac-
tions in terms of objects instead of facts.

We look for PDDL homomorphisms mapping the origi-
nal PDDL task P over a set of objects B into a PDDL task
P′ over a sufficiently small set of objects B′ ⊆ B. Conse-
quently, we use the standard grounding process on P′ and
compute an (admissible) heuristic. To construct P′, we con-
sider maps σ : B → B with a small image σ(B) serving
as the set of objects B′ of P′. Depending on the definition
of P′, the map σ : B → B has to satisfy several conditions
which we formulate in the definition of PDDL homomor-
phisms. Since this is an introductory paper on PDDL homo-
morphisms, we investigate rather simple and naive methods
defining the abstract PDDL task P′ and σ, and show that they
can be used to guide lifted search effectively. Since the most
complicated condition in the definition of PDDL homomor-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

9767



phism is easily satisfied when P′ has no delete effects, we
focus in this paper only on delete-relaxation heuristics. This
allows defining the abstract PDDL task P′ for almost any
map σ : B → B. Nevertheless, it is in principle possible to
keep some delete effects provided we restrict the maps σ.
We postpone this investigation for future work.

First-order Logic
We first recall a few definitions from first-order logic (for
details see e.g. (Hodges 1997, Chapter 1)) and we introduce
our notation and conventions. Given a set S, we denote a
tuple 〈s1, . . . , sn〉 of elements from S shortly by ~s. The i-th
component of ~s is denoted si ∈ S. The Cartesian product of
k-many copies of a set S is denoted Sk.

Given two sets B,C and a map σ : B → C, we will ex-
tend σ element-wise to tuples, i.e., if~b = 〈b1, . . . , bn〉 ∈ Bn
then σ(~b) = 〈σ(b1), . . . , σ(bn)〉 ∈ Cn. In order to decrease
the amount of parentheses in mathematical expressions, we
adopt the common convention of removing parentheses in
σ(~b), i.e., writing σ~b instead. Further, we extend σ on sub-
sets of B. For B′ ⊆ B we define σ(B′) = {σ(b) | b ∈ B′}.

A relational first-order language L consists of a set of
variables V = {v1, v2, . . .} and a set of predicate symbols
P = {p1, p2, . . .}, each predicate symbol pi has its arity
ar(pi). Even though constants are allowed in PDDL, we do
not consider constants as a part of the first-order language
L in order to simplify our formalisms. Nevertheless, all our
results can be straigthforwardly reformulated for languages
with constants.

As we have no functional symbols in our first-order lan-
guage L, our atomic formulas (shortly atoms) are just ex-
pressions of the form p(~v) where p ∈ P is a predicate
symbol and ~v = 〈v1, . . . , vn〉 is an n-tuple of variables for
n = ar(p). The set of all atoms is denoted Φ(V).

If we have a set of objects B, we can define ground atoms.
Let σ : V → B be a map assigning objects to variables.
For each atom p(~v) such a map defines its corresponding
ground atom p(σ~v). The set of all ground atoms over the
set of objects B is denoted by Φ(B) = {p(σ~v) | p(~v) ∈
Φ(V), σ : V → B}.

An L-structure 〈B, ψ〉 is a set of objects B together with a
set of ground atoms ψ ⊆ Φ(B). The set ψ can be understood
as interpretations for predicate symbols.1

Let 〈B, ψ〉 and 〈B′, ψ′〉 be two L-structures. A map
σ : B → B′ is called a homomorphism if it preserves
ground atoms. More precisely, if p(~b) ∈ ψ then p(σ~b) ∈ ψ′.
Equivalently, σ is a homomorphism if σ(ψ) ⊆ ψ′ where
σ(ψ) = {p(σ~b) ∈ Φ(B′) | p(~b) ∈ ψ}. We will denote the
fact that σ is a homomorphism by σ : 〈B, ψ〉 → 〈B′, ψ′〉. We
will also need the following trivial lemma.

1The L-structures are usually defined in logic as sets of ob-
jects endowed with relations interpreting predicate symbols from
L. Here we identify these interpretations with the corresponding
set of ground atoms to be closer to the notation used in planning,
i.e., understanding a state as a set of ground atoms rather than an
L-structure.

Lemma 1. Let 〈B, ψ〉 be an L-structure and σ : B → B′ a
map into a set B′ then σ is a homomorphism from 〈B, ψ〉 to
〈B′, σ(ψ)〉.

PDDL Planning Tasks
We consider the normalized non-numeric, non-temporal
PDDL tasks without conditional effects, axioms, and nega-
tive preconditions, and with all formulas being conjunctions
of atoms (represented as sets of atoms). The types are mod-
elled as unary predicates. So for each type (i.e., a set of ob-
jects) there is a corresponding unary predicate interpreted by
that set of objects. We also split the effects of PDDL actions
into add effects (positive literals) and delete effects (nega-
tive literals) directly in the definition below to simplify the
presentation.

Similarly, as we fixed a relational first-order language L
and then defined its L-structures, we first define a domain
language D and then its PDDL tasks.

Definition 2. A domain language D = 〈V ,P,AS〉 is a
relational first-order language 〈V ,P〉 extended with a set of
action symbolsAS . Each action symbol a has its arity ar(a),
i.e., a number of variables it depends on.

Let a ∈ AS and ~v denote a tuple of pair-wise distinct
variables of length ar(a). An action schema a(~v) is a triple
a(~v) = 〈apre(~v), aadd(~v), adel(~v)〉 where apre(~v), aadd(~v)
and adel(~v) are sets of atoms built of variables ~v, called pre-
conditions, add effects, and delete effects, respectively.

Analogously to ground atoms, we define ground actions.
Given a set of objects B, a map σ : V → B and an ac-
tion schema a(~v), the corresponding ground action a(σ~v)
is created by substituting objects σ~v for variables ~v. Given
a set of action schemas A = {a(~v) | a ∈ AS} and a
set of objects B, the set of all ground actions is denoted
A(B) = {a(σ~v) | a(~v) ∈ A, σ : V → B}.
Definition 3. Let D be a domain language. A normalized
PDDL task over D is a tuple P = 〈B,A, ψI , ψG〉 where B
is a non-empty set of objects, A = {a(~v) | a ∈ AS} a set of
action schemas, one action schema for each action symbol,
ψI ⊆ Φ(B) and ψG ⊆ Φ(B) are sets of ground atoms, called
initial state and goal, respectively.

A state in P is a set of ground atoms s ⊆ Φ(B). A ground
action a(~b) is applicable in a state s if apre(~b) ⊆ s. In
other words, a(~b) is applicable if all its preconditions hold
in the structure 〈B, s〉. The resulting state of applying an
applicable action a(~b) in a state s is the state a(~b)JsK =

(s \ adel(~b)) ∪ aadd(~b).
A sequence of ground actions π = 〈a1(~b1), . . . , an(~bn)〉

is applicable in a state s0 if there are states s1, . . . , sn such
that ai(~bi) is applicable in si−1 and si = ai(~bi)Jsi−1K for
i ∈ {1, . . . , n}. The resulting state of this application is
πJs0K = sn. Let s be a state. The sequence π is called an
s-plan if π is applicable in s and πJsK ⊇ ψG. In partic-
ular, if s = ψI then π is called simply a plan. A state s
is reachable if there exists an action sequence π such that
πJψIK = s. In case of optimal planning, we assume that for

9768



s t

s′ t′

a(~b)

σ σ

a(σ~b)

(a)

s s1 . . . sn

s′ s′1 . . . s′n

a1(~b1)

σ σ

a2(~b2) an(~bn)

σ

a1(σ~b1) a2(σ~b2)

(b)

an(σ~bn)

Figure 1: (a) the condition (P3), (b) the plan preservation

each action schema a(~v) there is a cost function ca assign-
ing a cost ca(~b) to the ground action a(~b). It allows defining
a cost of the plan π as cπ =

∑n
i=1 cai(

~bi). A plan with a
minimum cost is called optimal.

PDDL Homomorphisms
In this section, we introduce the notion of PDDL homo-
morphism as a map between two sets of objects. Later, we
show that given a PDDL task P, we can use a PDDL homo-
morphism σ to construct another smaller task P′ preserving
plans in a sense that if π is a plan in P, then its homomorphic
image σ(π) is a plan in P′ and the cost of σ(π) is at most
the cost of π.

Definition 4. Let D be a domain language and P =
〈B,A, ψI , ψG〉, P′ = 〈B′,A′, ψ′I , ψ′G〉 PDDL tasks over D.
A map σ : B → B′ is called a PDDL homomorphism, de-
noted by σ : P → P′, if the following conditions are satis-
fied:

(P1) σ is a homomorphism from 〈B, ψI〉 to 〈B′, ψ′I〉,
(P2) σ(ψG) ⊇ ψ′G,
(P3) for each reachable state s in P, each state s′ in P′ and

each ground action a(~b) applicable in s if σ : 〈B, s〉 →
〈B′, s′〉 and t = a(~b)JsK then a(σ~b) is applicable in s′

and σ : 〈B, t〉 → 〈B′, t′〉 for t′ = a(σ~b)Js′K.
(P4) for optimal planning, we further require that ca(σ~b) ≤

ca(~b) for all ground actions a(~b).

The condition (P1) states that the ground atoms in the ini-
tial state ψI are preserved. (P2) states that the goal ψ′G is
weaker than the σ-image of ψG. The condition (P3) states
that whenever we have a reachable state s in P and a state s′
in P′ such that σ is a homomorphism from 〈B, s〉 to 〈B′, s′〉
and a ground action a(~b) is applicable in s, then the ground
action a(σ~b) is applicable in s′ and σ remains a homomor-
phism after applications of a(~b) and a(σ~b) as depicted in
Figure 1 (a). Finally, (P4) ensures that ground actions in P
are mapped by σ to cheaper actions in P′.

PDDL homomorphisms generalize the notion of PDDL
endomorphisms. A PDDL homomorphism σ : P → P′ is
a PDDL endomorphism if P = P′; see (Horčı́k and Fišer
2021). Analogously to PDDL endomorphisms, we can show
that PDDL homomorphisms preserve plans.

Theorem 5. Let σ : P → P′ be a PDDL homomorphism,
s a reachable state in P and s′ a state in P′ such that

σ : 〈B, s〉 → 〈B′, s′〉. If π = 〈a1(~b1), . . . , an(~bn)〉 is an s-
plan in P, then π′ = 〈a1(σ~b1), . . . , an(σ~bn)〉 is a s′-plan
in P′. In particular, if π is a ψI -plan, then π′ is a ψ′I -plan.
Moreover, cπ′ ≤ cπ .

Proof. Let π = 〈a1(~b1), . . . , an(~bn)〉 be a plan and σ a
PDDL homomorphism. Consider the diagram depicted at
Figure 1 (b). In the upper row there is the s-plan π lead-
ing to a goal state sn ⊇ ψG. By assumption σ : 〈B, s〉 →
〈B′, s′〉 is a homomorphism. Applying (P3), we infer that
σ : 〈B, s1〉 → 〈B′, s′1〉 is a homomorphism, where s′1 =

a(σ~b1)Js′K. Applying (P3) repeatedly, we finally get that
σ : 〈B, sn〉 → 〈B′, s′n〉. Thus σ(sn) ⊆ s′n. By (P2) we have
ψ′G ⊆ σ(ψG) ⊆ σ(sn) ⊆ s′n. Consequently, π′ is a s′-plan.
The particular case for the initial state holds by (P1). The
condition (P4) ensures that cπ′ ≤ cπ .

Corollary 6. Let σ : P → P′ be a PDDL homomorphism,
and let s denote a reachable state in P. The cost of an opti-
mal σ(s)-plan in P′ is an admissible heuristic value for s in
P.

Proof. If there is no s-plan in P, then any heuris-
tic value is admissible. Given an optimal s-plan π =

〈a1(~b1), . . . , an(~bn)〉, the image σ(s) ⊆ Φ(B′) of s is a
state in P′. By Lemma 1, σ is a homomorphism from 〈B, s〉
to 〈B′, σ(s)〉. Thus π′ = 〈a1(σ~b1), . . . , an(σ~bn)〉 is a σ(s)-
plan in P′ whose cost is at most cπ by Theorem 5.

PDDL Homomorphisms and Delete Relaxation
So far, we have introduced a general notion of PDDL ho-
momorphisms. Now, the question is how to find and use
PDDL homomorphisms in practice. Especially finding suf-
ficient conditions to satisfy the condition (P3) may be non-
trivial in the general case. Here, we focus on the case of
delete relaxed planning tasks P+. It turns out that any map
σ : B → B can be used to generate a homomorphic image of
P+.

Definition 7. Let P = 〈B,A, ψI , ψG〉 be a PDDL
task over a domain language D. We define its delete
relaxation as P+ = 〈B,A+, ψI , ψG〉 where A+ =
{〈apre(~v), aadd(~v), ∅〉 | 〈apre(~v), aadd(~v), adel(~v)〉 ∈ A}.

Starting from P+ and a σ : B → B, we can construct
a new PDDL task over the same domain language D as
σ(P+) = 〈σ(B),A+, σ(ψI), σ(ψG)〉.

In case of optimal planning, we must modify the costs
of actions in A+ as follows: ca(σ~b) = min{ca(~c) | ~c ∈
Bar(a), σ~c = σ~b}. In other words, the cost of a(σ~b) is
the minimum from the costs of all actions a(~c) which are
mapped to a(σ~b) by σ.

Now we get to the main result of this section showing that
any σ : B → B is a PDDL homomorphism from P to σ(P+).

Theorem 8. Let P be a PDDL task with a set of objects B
and σ : B → B. Then σ is a PDDL homomorphism from P
to σ(P+).

9769



Proof. (P1) follows from Lemma 1. (P2) and (P4) hold by
the construction. We check (P3). Suppose that s is a state in
P such that σ : 〈B, s〉 → 〈σ(B), s′〉 and a(~b) is applicable in
s. First, we have to prove that a(σ~b) is applicable in s′. Note
that apre(σ~b) = σ(apre(~b)) ⊆ σ(s) ⊆ s′. Thus a(σ~b) is ap-
plicable in s′. It remains to prove that σ : 〈B, t〉 → 〈σ(B), t′〉
for t = a(~b)JsK and t′ = a(σ~b)Js′K. Consider p(~c) ∈ t. If
p(~c) ∈ aadd(~b), then p(σ~c) ∈ aadd(σ~b). Thus p(σ~c) ∈ t′

in this case. If p(~c) 6∈ aadd(~b), then p(~c) ∈ s and conse-
quently p(σ~c) ∈ s′ since σ is a homomorphism. As the ac-
tion schemas in σ(P+) has no delete effects, we must have
p(σ~c) ∈ t′.

Moving from theory to practice, Theorem 8 and Corol-
lary 6 can be used to compute (admissible) heuristics in the
following way. First, we find a map σ : B → B with suf-
ficiently small image σ(B). Then we construct the reduced
PDDL task σ(P+). And finally, σ(P+) is grounded into a
STRIPS task Π. Now, we can use the ground task Π to com-
pute a heuristic value for the states in P: For each state s
from P, we apply the map σ, ground the state σ(s) to the
corresponding ground state t in Π, and compute the heuris-
tic value for t which is used as the heuristic value for the
PDDL state s. Moreover, if we use an admissible heuristic
for STRIPS, the heuristic estimate is also admissible for our
original planning task in PDDL (Corollary 6).

The grounding of σ(P+) can also safely utilize some
pruning techniques. Applying reachability analysis, such
as simple relaxed reachability or h2 heuristic (Bonet and
Geffner 2001), is always safe, because this type of pruning
removes only facts that cannot be part of σ(s). Moreover,
a standard part of the grounding process is removing static
facts, i.e., facts that are part of all reachable states. Static
facts can be part of σ(s) and they do not have their counter-
parts in the STRIPS task Π, but they can be safely ignored.

In the process described above, we decrease the number
of objects in order to decrease the number of ground actions
in the resulting PDDL task σ(P+) in comparison with the
original PDDL task P. This is usually the case. Nevertheless,
in some cases, the number of ground actions can increase in
σ(P+) due to pruning techniques. More precisely, collaps-
ing objects can cause that some unreachable states become
reachable. Consider for instance the transportation domain
and a task where we have a road map of locations (i.e., a
graph) with two disconnected componentsC1,C2 so thatC1

is unreachable from C2. It is clear that if σ(c1) = σ(c2) for
c1 ∈ C1 and c2 ∈ C2, the components become connected in
σ(P+). Consequently, the relaxed reachability analysis gen-
erates more ground actions.

Experimental Evaluation
The accuracy of the heuristic function highly depends on
σ, which ideally should preserve the structure of the origi-
nal planning task as much as possible while making σ(P+)
small enough to be grounded and used for efficiently com-
puting heuristic values during the search. Here, we focus on
analyzing the behavior of randomly generated PDDL homo-
morphism maps. More precisely, we generate a sequence of

mappings σ1, . . . , σn in the following way. For each σi, two
random objects o and o′ from the same minimal type (i.e., a
type that has no sub-types) are selected, and σi is set to be
identity except for σi(o) = o′. This process is repeated un-
til σ1(· · ·σn(P+) · · · ) has only r objects, or no such pair of
objects exists. The resulting homomorphism map is then the
composition σ = σ1 ◦ . . .◦σn. We call this strategy rnd-t,
as the result is a random mapping that preserves object types.

Moreover, we also try a variant, where we enforce σ to
be identity on all objects from the goal of P. This strategy,
denoted rnd-g, preserves both object types and the goal,
in order to preserve at least some information about goal-
distance. However, this can prevent us from significantly re-
ducing the task size if the goal depends on many objects.

We implemented a lifted planner with the aforementioned
strategies in C.2 Our planner uses a successor generator
based on the SQLite database system3 implementing ideas
laid out by Corrêa et al. (2020). We compared our imple-
mentation of blind search with the one of Corrêa et al. and
the planners seem to be competitive. Moreover, we use the
same basic code based on SQLite for grounding (on fd con-
figurations described below) to get more comparable results.

We used a cluster of computing nodes with Intel Xeon
Scalable Gold 6146 processors. The time and memory lim-
its were set to 30 minutes and 8 GB, respectively, for each
task. As the main purpose of using homomorphisms is to
compute heuristics at a lifted level, we focus our evaluation
on hard-to-ground instances. We use the same benchmark
set used in previous work for lifted classical planning (Lauer
et al. 2021). When reporting on the results, we merged dif-
ferent variants of childsnack and visitall into one whenever
our method showed similar behavior, leaving 9 domains.

We evaluate our heuristics on satisficing and optimal plan-
ning. For satisficing planning we use Greedy Best-First
Search (GBFS) with the FF heuristic (Hoffmann and Nebel
2001) computed on the grounded σ(P+) task. For optimal
planing, we use A∗ search (Hart, Nilsson, and Raphael 1968)
with the LM-cut heuristic (Helmert and Domshlak 2009)
computed on the grounded σ(P+) task. We remark that, in
principle, one can use any heuristic. However, FF and LM-
cut are particularly suitable for our purposes since they are
informative heuristics that ignore the delete-effects therefore
they are not affected by the fact that we apply the mapping
σ to the delete-relaxed task, P+.

Evaluation of PDDL Homomorphisms
First, we evaluate the impact that homomorphisms have on
the heuristic computation, both in terms of heuristic accu-
racy and in how much they reduce the computational ef-
fort of computing the heuristics. Of course, this greatly de-
pends on the selection of the map σ. For each of the strate-
gies, rnd-t and rnd-g, we generate 50 random mappings
on each instance and measure the reduction in task size
(in terms of the number of operators of the grounded task
with/without reduction) and heuristic accuracy (by compar-
ing the heuristic value of the initial state with/without reduc-

2https://gitlab.com/danfis/cpddl, branch aaai22-lifted-hmorph
3https://www.sqlite.org/index.html

9770



100

101

102

0 rnd-t

fu
ll

rnd-t rnd-t rnd-t

100 101 102

100

101

102

0

0 rnd-g

25% reduction

fu
ll

100 101 1020

rnd-g

50% reduction
100 101 1020

rnd-g

75% reduction
100 101 1020

rnd-g

95% reduction

blocksworld
childsnack
GED
logistics
organic-synth
pipesworld
rovers
visitall-close
visitall-far

Figure 2: LM-cut heuristic value for the initial state: median value from 50 runs of rnd-t (above) and rnd-g (below).

100 102 104 106

100

102

104

106

rnd-t: 25% reduction

fu
ll

100 102 104 106

rnd-t: 75% reduction
100 102 104 106

rnd-g: 25% reduction
100 102 104 106

rnd-g: 75% reduction

Figure 3: Number of operators of the grounded task with/without reduction. For each instance, we select the same homomor-
phism as the one used in Figure 2, i.e., the one with a median value for the heuristic value of the initial state.

tion). In most domains, the results have a large variance with
respect to the choice of the random mapping both in terms of
grounded task size and/or heuristic accuracy. However, there
is often not a direct correlation, i.e., in most cases, there are
mappings with the same heuristic accuracy and very differ-
ent task size or vice-versa. To report representative results,
we choose the mapping resulting in the median heuristic
value for the initial state. This ensures that the task reduc-
tions shown correspond with the reported heuristic values.

Figure 2 shows the LM-cut heuristic value4, compared
to the baseline where the instances are fully grounded, for
different mappings that reduce the number of objects by a
given percentage. Note that in some instances, it is not pos-
sible to define mappings that reduce the given percentage of
objects while preserving object types (for rnd-t) and goals
(rnd-g). Therefore, the plots with higher percentage reduc-
tion have fewer points, as the cases where not enough objects
were eliminated are excluded. We observe that, when the re-
duction is small, the heuristic values are close to the original

4Results with the FF heuristic are very similar, suggesting that
our conclusions generalize to other heuristics as well.

value and, as the reduction increases, the heuristic accuracy
decreases. However, in many cases, we can significantly re-
duce the number of objects while still obtaining an informa-
tive heuristic (greater than 0). Therefore, PDDL homomor-
phisms are a flexible way to trade off task size and heuris-
tic accuracy. Compared to rnd-t, rnd-g obtains slightly
better accuracy (e.g., childsnack, pipesworld), so mappings
preserving the goal are mildly beneficial. For larger reduc-
tions, we observe that rnd-g is almost always somewhat
informative, whereas rnd-t sometimes returns a heuristic
value of 0. However, this is only possible on instances where
the goal does not depend on more than 5% of the objects.

But, how much impact does it have to reduce the number
of objects on the size of the grounded task? Figure 3 mea-
sures this by comparing the number of grounded operators
of the fully grounded task against that of the reduced task,
using the same homomorphisms as in Figure 2. As heuristic
computation is often polynomial in the size of the grounded
task, this is representative of the effort on computing the
heuristic. On one hand, significant reductions of several or-
ders of magnitude can be attained even when only reducing

9771



domain
optimal (A? + lmc) satisficing (GBFS + hff)

rnd-t rnd-g rnd-t rnd-g
25 50 75 95 25 50 75 95 bl pl fd 25 50 75 95 25 50 75 95 fd pl plgb ur

blocksworld (40) 4 5 6 9 4 6 9 11 0 0 4 1 1 2 8 1 1 3 9 2 5 1 6
childsnack (144) 4 4 4 4 5 5 4 4 4 1 8 57 43 24 16 62 50 43 38 50 75 34 94
GED (156) 18 17 16 16 18 18 18 18 16 16 18 24 20 18 20 82 83 83 83 66 139 103 156
logistics (40) 9 12 16 19 9 13 20 27 5 3 12 8 6 5 3 10 9 9 5 29 40 3 0
organic-synth (56) 21 20 28 44 28 29 29 29 44 43 33 21 20 29 45 28 29 30 30 32 47 45 46
pipesworld (50) 8 9 12 11 7 11 15 15 11 8 8 11 13 11 11 11 12 13 13 17 28 21 13
rovers (40) 11 7 3 2 10 6 5 3 0 1 12 13 5 3 1 11 4 5 5 30 33 11 16
visitall-close (90) 29 39 46 35 29 42 55 55 34 49 30 35 50 60 36 36 51 72 71 30 88 78 81
visitall-far (90) 3 2 0 0 3 2 0 0 0 19 25 18 10 1 0 21 13 12 11 30 56 39 67
Σ (706) 107 115 131 140 113 132 155 162 114 140 150 188 168 153 140 262 252 270 265 286 511 335 479

Table 1: Coverage results for optimal and satisficing planning.

the number of objects by 25%. On the other hand, the size
of the ground representation can also increase when reduc-
ing the number of object (as already discussed). Therefore,
under the right mapping, PDDL homomorphisms can enable
the computation of heuristics at the lifted level.

Optimal Planning Results
To analyze whether lifted homomorphisms can produce use-
ful heuristics in practice, we analyze their performance on
a lifted search, and compare them against other lifted and
grounded planning approaches. In order to choose an infor-
mative homomorphism, we use our strategies, rnd-t and
rnd-g, to generate 5 different homomorphisms and select
the one with the highest heuristic value for the initial state.
Note that in this case, whenever it is not possible to reduce
the number of objects, the method uses the highest possible
reduction it was able to achieve. For example, rnd-g-95%
will often preserve all objects in the goal and map all other
objects to a single non-goal object per type.

As a baseline for optimal planning, we use lifted blind
search (bl), the PowerLifted planner with A? and the lifted
hmax heuristic (pl) (Corrêa et al. 2020, 2021), and we also
compare against the grounded variant of our heuristics (fd)
implemented in the Fast Downward planner (Helmert 2006).

The left side of Table 1 shows coverage results for op-
timal planning. As we can see, the results are quite com-
petitive for all our variants, clearly outperforming the blind
search. Setting the target reduction as high as possible of-
ten improves the results, though there are some exceptions
like rovers. Preserving goal objects (rnd-g) performs better
than rnd-t. The reason is that, these strategies reduce the
task as much as possible, while keeping some information
regarding goal distance. While our results show that pre-
serving goal objects can attain more informative heuristic
values, this only pays off whenever a good mapping is se-
lected, which is not guaranteed with our random selection.

Figure 4 also compares our best configuration against the
two baselines, bl and fd, in terms of expanded nodes and
runtime. The plots confirm the trends shown in the previ-
ous section. In terms of heuristic accuracy and expanded
nodes, the lifted homomorphism heuristics (LHH) are a mid-
dle ground between not using any heuristic and using the
heuristic on the fully grounded task. However, there is a sig-
nificant reduction in the grounded task size, which reflects
on the time for computing the heuristic. The results in terms

of runtime are quite diverse. LHH can pay off in several do-
mains (e.g., blocksworld, logistics, pipesworld, and visitall-
close), as shown by the coverage results and runtime plots.
Despite expanding more nodes than the fully grounded ver-
sion and taking longer for the successor generation (fd),
our heuristics greatly reduce the grounding effort, achiev-
ing significant runtime advantages when grounding was a
bottleneck. Compared to the lifted hmax heuristic (pl), we
observe that LHH outperforms it except in organic-synth,
visitall-far and some tasks from visitall-close, as LM-cut on
the reduced task can be more informative than hmax on the
full task, and our method is often orders of magnitude faster.

Satisficing Planning Results
For satisficing planning, we run GBFS with hFF. As base-
lines, we consider the (fully grounded) Fast Downward plan-
ner with GBFS and hFF (fd); the PowerLifted planner with
GBFS and the lifted hadd (plgb); lazy evaluation with pre-
ferred operators and the same heuristic (pl) (both Corrêa
et al. 2020, 2021); and GBFS with goal counting breaking
ties with the unary-relaxation heuristic (ur) (Lauer et al.
2021). The overall performance is not close to the current
state-of-the-art satisficing lifted planners pl and ur. How-
ever, note that we run LHH with a vanilla GBFS, with-
out other search enhancements like lazy evaluation and
preferred operators (pl), or combining multiple heuris-
tics (ur). To more closely evaluate the performance of the
heuristics, Figure 5 compares the expanded nodes and run-
time against GBFS with the fully grounded hFF and the lifted
hadd heuristics. Here, we see a similar picture as in opti-
mal planning, where our heuristic is less informative than
the grounded hFF or lifted hadd, but can be computed with
less overhead, e.g., in GED and visitall-close (for grounded
hFF), or childsnack and pipesworld (for lifted hadd).

Related Work
The idea of aggregating similar objects has been used in
the past in different contexts. Sievers et al. (2019) define
structural symmetries as PDDL automorphisms, i.e., per-
mutations of the planning task that preserve some proper-
ties. Röger, Sievers, and Katz (2018) use a similar notion to
compute reachability on a reduced task while ensuring that
relaxed reachability is preserved. Compared to them, we fo-
cus on obtaining heuristic functions. Our mappings are more

9772



100 103 106
100

103

106

uns.

uns.

rnd-g 95% reduction
Expanded States

b
l

100 103 106
100

103

106

uns.

uns.

rnd-g 95% reduction
Expanded States

f
d

10−1 100 101 102 103
10−1

100

101

102

103

uns.

uns.

rnd-g 95% reduction
Runtime (s)

b
l

10−1 100 101 102 103
10−1

100

101

102

103

uns.

uns.

rnd-g 95% reduction
Runtime (s)

f
d

Figure 4: Expanded nodes and runtime for optimal planning, versus blind search (bl), and fully grounding the task (fd).

100 103 106
100

103

106

uns.

uns.

rnd-g 75% reduction
Expanded States

f
d

100 103 106
100

103

106

uns.

uns.

rnd-g 75% reduction
Expanded States

p
l
g
b

10−1 100 101 102 103
10−1

100

101

102

103

uns.

uns.

rnd-g 75% reduction
Runtime (s)

f
d

10−1 100 101 102 103
10−1

100

101

102

103

uns.

uns.

rnd-g 75% reduction
Runtime (s)

p
l
g
b

Figure 5: Expanded nodes and runtime for satisficing planning, versus fully grounding the task (fd) and GBFS with lifted hadd.

flexible, though possibly incurring an information loss as
they do not guarantee preserving relaxed reachability. Rid-
der and Fox (2014) compute relaxed-plan heuristics, such
as the FF heuristic, by aggregating some objects during the
computation of the relaxed planning graph. As opposed to
them, we focus on a general framework, where any given ob-
ject mapping can be used to define a grounded task on which
any existing heuristic function can be computed. An interest-
ing open question is whether these methods can be tailored
towards defining informative PDDL homomorphisms.

Abstraction heuristics, such as Pattern
Databases (Edelkamp 2001), Merge-and-Shrink (Helmert
et al. 2014) and Cartesian abstractions (Seipp and Helmert
2018), also induce a homomorphism on the state space
of the planning task. However, the abstract mappings rely
on a grounded task so it is not clear how to use those
methods at a lifted level. Note that the success of abstraction
heuristics has been enabled by a significant research effort
on strategies for finding good mappings (Edelkamp 2006;
Haslum et al. 2007; Franco et al. 2017; Fan, Müller, and
Holte 2014; Sievers, Wehrle, and Helmert 2016)), as well
as on combining multiple estimates (e.g., additively (Felner,
Korf, and Hanan 2004), or by using cost-partitioning (Seipp,
Keller, and Helmert 2020)). Even though those methods are
not directly applicable to lifted object mappings, this is a
promising direction for future research.

An alternative line of research for hard-to-ground in-
stances is to ground only a subset of the task, by identify-
ing which objects and/or actions are relevant and ignoring

the rest (Gnad et al. 2019; Silver et al. 2021). These ap-
proaches rely on learning from previously solved instances
in the same domain to determine which objects or actions
are relevant. Moverover, as excluded objects are entirely ig-
nored, the resulting task does not preserve solvability so it
cannot be used to derive (admissible) heuristic functions.

Conclusion
We introduced a general framework to investigate a wide
class of lifted heuristics based on collapsing objects. In par-
ticular, we defined the notion of a PDDL homomorphism
between two PDDL tasks, which is a map on objects pre-
serving (optimal) plans. To test this framework, we focused
on delete-relaxation heuristics as they are conceptually the
simplest ones. We proved that each map σ on objects in-
duces admissible heuristics by grounding the σ-image of the
delete-relaxation of the original problem and then comput-
ing an arbitrary heuristic.

In the experiments, we investigated how the choice of σ
influences the quality of the resulting heuristics, in partic-
ular, its informativeness and the size of the grounded σ-
image. It turned out that our lifted heuristics can reduce the
computational resources needed to navigate a lifted planner
in the hard-to-ground domains while preserving a reasonable
amount of informativeness. However, there is still a margin
to improve the overall performance of our lifted planner to
the level of state-of-the-art planners, e.g., by inventing better
selection strategies and/or combining multiple mappings.

9773



Acknowledgements
We thank Augusto B. Corrêa for helping us with the
experimental evaluation, in particular the implementation
of A? algorithm in the PowerLifted planner. Rostislav
Horčı́k was supported by the OP VVV funded project
CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for
Informatics”. Daniel Fišer was supported by the Czech Sci-
ence Foundation (GAČR) under the project No. 19-22555Y.

References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence, 129(1–2): 5–33.
Corrêa, A. B.; Francès, G.; Pommerening, F.; and Helmert,
M. 2021. Delete-Relaxation Heuristics for Lifted Classical
Planning. In Proceedings of the 31st International Confer-
ence on Automated Planning and Scheduling (ICAPS’21),
94–102. AAAI Press.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Francès,
G. 2020. Lifted Successor Generation Using Query Opti-
mization Techniques. In Proceedings of the 30th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’20), 80–89. AAAI Press.
Edelkamp, S. 2001. Planning with Pattern Databases. In
Cesta, A.; and Borrajo, D., eds., Proceedings of the 6th Eu-
ropean Conference on Planning (ECP’01), 13–24. Springer-
Verlag.
Edelkamp, S. 2006. Automated Creation of Pattern Database
Search Heuristics. In Proceedings of the 4th Workshop on
Model Checking and Artificial Intelligence (MoChArt 2006),
35–50.
Fan, G.; Müller, M.; and Holte, R. 2014. Non-Linear Merg-
ing Strategies for Merge-and-Shrink Based on Variable In-
teractions. In Edelkamp, S.; and Bartak, R., eds., Proceed-
ings of the 7th Annual Symposium on Combinatorial Search
(SOCS’14). AAAI Press.
Felner, A.; Korf, R.; and Hanan, S. 2004. Additive Pattern
Database Heuristics. Journal of Artificial Intelligence Re-
search, 22: 279–318.
Fikes, R. E.; and Nilsson, N. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence, 2: 189–208.
Fišer, D. 2020. Lifted Fact-Alternating Mutex Groups
and Pruned Grounding of Classical Planning Problems.
In Conitzer, V.; and Sha, F., eds., Proceedings of the
34th AAAI Conference on Artificial Intelligence (AAAI’20),
9835–9842. AAAI Press.
Franco, S.; Torralba, A.; Lelis, L. H.; and Barley, M. 2017.
On Creating Complementary Pattern Databases. In Sierra,
C., ed., Proceedings of the 26th International Joint Con-
ference on Artificial Intelligence (IJCAI’17), 4302–4309.
AAAI Press/IJCAI.
Gnad, D.; Torralba, Á.; Domı́nguez, M. A.; Areces, C.; and
Bustos, F. 2019. Learning How to Ground a Plan - Partial

Grounding in Classical Planning. In Hentenryck, P. V.; and
Zhou, Z.-H., eds., Proceedings of the 33rd AAAI Confer-
ence on Artificial Intelligence (AAAI’19), 7602–7609. AAAI
Press.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern
Database Heuristics for Cost-Optimal Planning. In Howe,
A.; and Holte, R. C., eds., Proceedings of the 22nd National
Conference of the American Association for Artificial In-
telligence (AAAI’07), 1007–1012. Vancouver, BC, Canada:
AAAI Press.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. Artificial Intelligence, 173: 503–
535.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Criti-
cal Paths and Abstractions: What’s the Difference Anyway?
In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I.,
eds., Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), 162–169.
AAAI Press.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge & Shrink Abstraction: A Method for Generat-
ing Lower Bounds in Factored State Spaces. Journal of the
Association for Computing Machinery, 61(3): 16.1–16.63.
Hodges, W. 1997. A Shorter Model Theory. Cambridge
University Press. ISBN 978-0-521-58713-6.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of
Artificial Intelligence Research, 14: 253–302.
Horčı́k, R.; and Fišer, D. 2021. Endomorphisms of Lifted
Planning Problems. In Proceedings of the 31st Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’21), 174–183. AAAI Press.
Lauer, P.; Torralba, Á.; Fišer, D.; Höller, D.; Wichlacz, J.;
and Hoffmann, J. 2021. Polynomial-Time in PDDL Input
Size: Making the Delete Relaxation Feasible for Lifted Plan-
ning. In Zhou, Z., ed., Proceedings of the 30st Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’21),
4119–4126.
McDermott, D. 2000. The 1998 AI Planning Systems Com-
petition. The AI Magazine, 21(2): 35–55.
Ridder, B. 2014. Lifted heuristics : towards more scalable
planning systems. Ph.D. thesis, King’s College London, UK.
Ridder, B.; and Fox, M. 2014. Heuristic Evaluation based
on Lifted Relaxed Planning Graphs. In Chien, S.; Do, M.;
Fern, A.; and Ruml, W., eds., Proceedings of the 24th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’14). AAAI Press.
Röger, G.; Sievers, S.; and Katz, M. 2018. Symmetry-
Based Task Reduction for Relaxed Reachability Analysis.

9774



In Proceedings of the 28th International Conference on Au-
tomated Planning and Scheduling (ICAPS’18), 208–217.
AAAI Press.
Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
Journal of Artificial Intelligence Research, 62: 535–577.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. Journal of Ar-
tificial Intelligence Research, 67: 129–167.
Sievers, S.; Röger, G.; Wehrle, M.; and Katz, M. 2019. The-
oretical Foundations for Structural Symmetries of Lifted
PDDL Tasks. In Proceedings of the 29th International Con-
ference on Automated Planning and Scheduling (ICAPS’19),
446–454. AAAI Press.
Sievers, S.; Wehrle, M.; and Helmert, M. 2016. An Anal-
ysis of Merge Strategies for Merge-and-Shrink Heuristics.
In Coles, A.; Coles, A.; Edelkamp, S.; Magazzeni, D.; and
Sanner, S., eds., Proceedings of the 26th International Con-
ference on Automated Planning and Scheduling (ICAPS’16),
294–298. AAAI Press.
Silver, T.; Chitnis, R.; Curtis, A.; Tenenbaum, J. B.; Lozano-
Pérez, T.; and Kaelbling, L. P. 2021. Planning with Learned
Object Importance in Large Problem Instances using Graph
Neural Networks. In Leyton-Brown, K.; and Mausam, eds.,
Proceedings of the 35th AAAI Conference on Artificial Intel-
ligence (AAAI’21), 11962–11971. AAAI Press.

9775


