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Abstract

Exploring unknown environments is a fundamental task in
many domains, e.g., robot navigation, network security, and
internet search. We initiate the study of a learning-augmented
variant of the classical, notoriously hard online graph explo-
ration problem by adding access to machine-learned predic-
tions. We propose an algorithm that naturally integrates predic-
tions into the well-known Nearest Neighbor (NN) algorithm
and significantly outperforms any known online algorithm
if the prediction is of high accuracy while maintaining good
guarantees when the prediction is of poor quality. We provide
theoretical worst-case bounds that gracefully degrade with the
prediction error, and we complement them by computational
experiments that confirm our results. Further, we extend our
concept to a general framework to robustify algorithms. By
interpolating carefully between a given algorithm and NN,
we prove new performance bounds that leverage the individ-
ual good performance on particular inputs while establishing
robustness to arbitrary inputs.

Introduction
In online mapping problems, a searcher is tasked to explore
an unknown environment and create a complete map of its
topology. However, the searcher has only access to local
information, e.g., via optical sensors, and must move through
the environment to obtain new data. Such problems emerge
in countless real-life scenarios with a prominent example
being the navigation of mobile robots, be it a search-and-
rescue robot, an autonomous vacuum cleaner, or a scientific
exploration robot in the deep sea or on Mars. Less obvious but
equally important applications include crawling the Internet
or social networks for information and maintaining security
of large networks (Berman 1996; Rao et al. 1986; Gasieniec
and Radzik 2008).

We investigate the online graph exploration problem on
an undirected connected graph G = (V,E) with n vertices.
Every edge e ∈ E has non-negative cost c(e), and every
vertex v ∈ V has a unique label. Starting in a designated
vertex s ∈ V , the task of the searcher is to find a tour that
visits all vertices of G and returns to s. A priori, the searcher
does not know the graph. Instead, she gains local information
when traversing it: When for the first time visiting (exploring)
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a vertex, all incident edges, as well as their costs, and the
labels of their end points are revealed. This exploration model
is also known as fixed graph scenario (Kalyanasundaram and
Pruhs 1994). In order to explore a vertex v, the searcher may
traverse a path consisting of known edges that starts in the
searcher’s current location and ends in v. When the searcher
traverses an edge e, she pays its cost c(e). The goal is to
minimize the total cost for exploring all vertices.

Due to the lack of information, the searcher cannot expect
to find an optimal tour. We resort to standard competitive
analysis to measure the quality of our search algorithms.
That is, we compare the length of the tour found by the
searcher with the optimal tour that can be found if the graph
is known in advance. If the ratio between the costs of these
two tours is bounded by ρ ≥ 1 for every instance, then we say
that the online algorithm is ρ-competitive. The competitive
ratio of an algorithm is the minimum ρ for which it is ρ-
competitive. The offline problem of finding an optimal tour
on a known graph is the well-known Traveling Salesperson
Problem (TSP), which is NP-hard (Lawler et al. 1985).

Indeed, it appears extremely difficult to obtain solutions
of cost within a constant factor of an optimal tour. The best
known competitive ratio for arbitrary graphs is O(log n),
attained by the following two algorithms. The Nearest Neigh-
bor algorithm (NN) (Rosenkrantz, Stearns, and Lewis 1977)
greedily explores the unknown vertex closest to the current
position. While its performance is usually good in prac-
tice (Applegate et al. 2006), a matching lower bound of
Ω(log n) holds even for very simple graphs, e.g., unweighted
graphs (Hurkens and Woeginger 2004) or trees (Fritsch 2021).
The second algorithm is the hierarchical Depth First Search
algorithm (HDFS) (Megow, Mehlhorn, and Schweitzer 2012)
that, roughly speaking, executes depth-first searches (DFS)
on subgraphs with low edge costs, thereby limiting its traver-
sal to a minimum spanning tree (MST). Here, a matching
lower bound is attained on a weighted path.

Only for rather special graph classes it is known how to
obtain constant-competitive tours. Notable examples are pla-
nar graphs, with a competitive ratio of 16 (Kalyanasundaram
and Pruhs 1994; Megow, Mehlhorn, and Schweitzer 2012),
graphs of bounded genus g with a ratio of 16(1 + 2g) and
graphs with k distinct weights with a ratio of 2k (Megow,
Mehlhorn, and Schweitzer 2012). The latter emerges as some-
what of an exception since the HDFS algorithm achieves a
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performance that is both, good on a specific yet interesting
graph class and still acceptable on arbitrary instances. Be-
yond the above, results are limited to the most basic kind
of graphs, such as unweighted graphs (Miyazaki, Morimoto,
and Okabe 2009), cycles and tadpole graphs (Miyazaki, Mo-
rimoto, and Okabe 2009; Brandt et al. 2020), and cactus
and unicyclic graphs (Fritsch 2021). Conversely, the best
known lower bound on the competitive ratio of an online
algorithm is 10/3 (Birx et al. 2021). Despite ongoing efforts,
it remains a major open question whether there exists an
O(1)-competitive exploration algorithm for general graphs.

The assumption of having no prior knowledge about the
graph may be overly pessimistic. Given the tremendous suc-
cess of artificial intelligence, we might have access to predic-
tions about good exploration decisions. Such predictions, e.g.,
machine-learned ones, are typically imperfect; they usually
have a good quality but may be arbitrarily bad.

A new line of research is concerned with the design of
online algorithms that have access to predictions of unknown
quality (Lykouris and Vassilvitskii 2018; Purohit, Svitkina,
and Kumar 2018; Medina and Vassilvitskii 2017). Ideally, al-
gorithms have the following properties: (i) good predictions
lead to a better performance than the best worst-case bound
achievable when not having access to predictions; (ii) the al-
gorithm never performs (asymptotically) worse than the best
worst-case algorithm even if the prediction is of poor quality;
and (iii) the performance gracefully degrades with decreas-
ing prediction quality. More formally, we define a parame-
ter η ≥ 0, called prediction error, that measures the quality
of a given prediction, where η = 0 refers to the case that the
prediction is correct, we also say perfect. We assess an algo-
rithm’s performance by the competitive ratio as a function
of the prediction error. If an algorithm is ρ(η)-competitive
for some function ρ, we call it α-consistent for α = ρ(0) and
β-robust if ρ(η) ≤ β for any prediction error η ≥ 0 (Purohit,
Svitkina, and Kumar 2018).

For the online graph exploration problem, we consider pre-
dictions that suggest a known, but unexplored vertex as next
target to a learning-augmented algorithm. In other words, a
prediction is a function that, given the current state of the
exploration, outputs an explorable vertex. Predictions may be
computed dynamically and use all data collected so far, which
is what one would expect in practice. This rather abstract re-
quirement allows the implementation of various prediction
models. In this paper, we consider two kinds of predictions,
namely tour predictions and tree predictions, where the sug-
gested vertex is the next unexplored vertex of a TSP tour or
of a Depth First Search (DFS) tour corresponding to some
predicted spanning tree, respectively. The prediction error η
is the difference between the total exploration cost of follow-
ing these per-step suggestions blindly and that of following
a perfect prediction w.r.t. the given prediction model (tour
respectively tree predictions).

Our results Our contribution is twofold. Firstly, we
present a learning-augmented online algorithm for the graph
exploration problem that has a constant competitive ratio
when the prediction error is small, while being robust to
poor-quality predictions. Our algorithm interpolates carefully

between the algorithms NN and Follow the Prediction (FP),
where the latter blindly follows a given prediction.

Theorem 1. For any λ > 0, there is an algorithm for
the online graph exploration problem that uses a predicted
spanning tree or tour such that the algorithm is κ(3 + 4λ)-
consistent and

(
1 + 1

2λ

)
(dlog(n)e+ 1)-robust, where κ = 1,

for tour predictions, and κ = 2, for tree predictions. With
growing prediction error, the competitive ratio degrades
gracefully with linear dependence on η.

The parameter λ can steer the algorithm towards one of
the underlying algorithms, e.g., towards NN when λ→∞.
It reflects our trust in the quality of the provided predictions.

Further, we show that our predictions (tour and tree) are
learnable in the sense of PAC learnability (Valiant 1984; Vap-
nik and Chervonenkis 2013) under the assumptions that the
given graph is complete and its size known. We show a bound
on the sample complexity that is polynomial in the number
of nodes and give learning algorithms with a polynomial run-
ning time in the case of tree predictions and an exponential
running time for tour predictions. The learnability results also
approximately bound the expected prediction error η, which
potentially can be taken into account when setting λ.

Our second main result is a general framework to robus-
tify algorithms. Given an online algorithm A with a certain
worst-case performance for particular classes of instances
but unknown, possibly unbounded, performance in general,
the robustification framework produces an algorithm with the
same good performance on special instances while guaran-
teeing the best-known worst-case performance O(log n) on
general instances. As it turns out, the idea of interpolating
between two algorithms that we used to design a learning-
augmented algorithm can be generalized to interpolating be-
tween the actions of an arbitrary algorithm A and NN.

Theorem 2. For any λ > 0, there is a robustification frame-
workR for the online graph exploration problem that, given
an online algorithmA and an instance I = (G, s), produces
a solution of cost at most RI = min{(3 + 4λ) · AI ,

(
1 +

1
2λ

)
(dlog(n)e + 1) ·OPTI}, where OPTI and AI denote

the cost of an optimal solution and of the one obtained by A
on instance I, respectively.

This seems useful in situations where one may suspect
that an instance is of a certain type for which there exist
good algorithms. One would like to use a tailored algo-
rithm without sacrificing the general upper bound and good
average-case performance of NN in case the suspicion is
wrong. Two illustrative examples are as follows. (i) Planar
graphs: Many spatial networks, e.g., urban street networks,
can often be assumed to be (almost) planar (Barthelemy
2018; Boeing 2020). Here, the graph exploration algorithm
BLOCKING (Kalyanasundaram and Pruhs 1994; Megow,
Mehlhorn, and Schweitzer 2012) seems the best choice, given
its competitive ratio of 16. Yet, on general instances, the com-
petitive ratio may be unbounded and is known to be worse
than ω(log n) (Megow, Mehlhorn, and Schweitzer 2012), un-
derlining the need for robustification. (ii) Bounded number
of weights: Here, HDFS (Megow, Mehlhorn, and Schweitzer
2012) is the logical choice with a competitive ratio propor-
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tional to the number of weights and an asymptotically best-
known competitive ratio on general instances. Even here,
robustification is useful as it provides the good average-case
performance of NN and the slightly better competitive ratio
for general instances.

Interestingly, when considering the surprisingly good
average-case performance of NN in practice, our robusti-
fication framework may also be interpreted to be robustifying
NN and not the specifically tailored algorithm. Either algo-
rithm can possibly make up for the other’s shortcomings.

Our robustification scheme is conceptually in line with
other works combining algorithms with different perfor-
mance characteristics (Mahdian, Nazerzadeh, and Saberi
2012; Fiat et al. 1991; Blum and Burch 2000; Azar, Broder,
and Manasse 1993). However, it is nontrivial to implement
such concept for online graph exploration with the particu-
lar way in which information is revealed. Since the graph
is revealed depending on an algorithm’s decisions, the key
difficulty lies in handling the cost of different algorithms in
different metrics. This fact also prohibits the application of
previous learning-augmented algorithms, e.g., for metrical
task systems, in our setting.

We complement our theoretical results by empirically eval-
uating the performance of our algorithms on several real-
world instances as well as artificially generated instances.
The results confirm the power of using predictions and the
effectivity of the robustification framework.

Further related work The recent introduction of learning-
augmented online algorithms (Lykouris and Vassilvitskii
2018; Medina and Vassilvitskii 2017; Purohit, Svitkina, and
Kumar 2018) spawned a multitude of exciting works. These
provide methods and concepts for a flurry of problems includ-
ing, e.g., rent-or-buy problems (Purohit, Svitkina, and Kumar
2018; Gollapudi and Panigrahi 2019), scheduling/queuing
and bin packing (Purohit, Svitkina, and Kumar 2018; Lattanzi
et al. 2020; Mitzenmacher 2020; Angelopoulos et al. 2020;
Bamas et al. 2020; Azar, Leonardi, and Touitou 2021; Im et al.
2021), caching (Rohatgi 2020; Lykouris and Vassilvitskii
2018; Antoniadis et al. 2020), the secretary problem (Dütting
et al. 2021), revenue optimization (Medina and Vassilvitskii
2017), and matching (Kumar et al. 2019; Lavastida et al.
2021). It is a very active research area. We are not aware of
learning-augmented algorithms for online graph exploration.

Several works empirically study the use of machine learn-
ing to solve TSP (Khalil et al. 2017; Vinyals, Fortunato, and
Jaitly 2015; Bello et al. 2017; Kool, van Hoof, and Welling
2019) without showing theoretical guarantees. For example,
Khalil et al. (Khalil et al. 2017) use a combination of rein-
forcement learning, deep learning, and graph embedding to
learn a greedy policy for TSP. As the policy might depend
on information that is not accessible online, e.g., the degree
of an unexplored vertex, and constructs the tour in an offline
manner, the results do not directly transfer to our online set-
ting. However, similar approaches are conceivable and might
be an application for the robustification framework, espe-
cially since there already exist empirical results in related
settings for the exploration of unknown environments. For
example, one approach (Luperto and Amigoni 2019) uses

constructive machine learning tools to predict unknown in-
door environments, another approach (Chiotellis and Cremers
2020) considers online graph exploration as a reinforcement
learning problem and solves it using graph neural networks
(cf. (Zhou et al. 2020)), and a third approach (Dai et al. 2019)
uses reinforcement learning to explore a maximum number
of states in an unknown environment using a limited budget.
As those approaches do not give theoretical guarantees, they
are potential applications for the robustification framework.
One work (Elmiger et al. 2020) uses reinforcement learning
to find instances with a high competitive ratio for NN.

A recent line of research considers data-driven algorithm
design with theoretical performance guarantees, where the
task is to select the algorithm with the best expected perfor-
mance for an unknown distribution over instances from a
fixed set of algorithms; see (Balcan 2020) for a survey of
recent results. We are not aware of such results for online
graph exploration. While our results on PAC learnability have
a similar flavor, there are major differences. In contrast to
data-driven algorithms, we learn predictions to minimize the
error η, which is related to the worst-case guarantees of our al-
gorithms but does not directly bound their expected objective
values. Instead, a function depending on the error (cf. Theo-
rem 1) upper bounds the expected objective values. This may
be seen as a disadvantage, but also means that our learned
predictions are independent of the used algorithm.

Another line of research studies graph exploration with ad-
vice (Böckenhauer, Fuchs, and Unger 2018; Dobrev, Královic,
and Markou 2012; Komm et al. 2015). Here, an algorithm is
also equipped with advice that can convey arbitrary informa-
tion and the goal is to find a competitive solution while using
advice of small encoding size. The advice is assumed to be
correct which is crucially different from our model.

A General Robustification Scheme
In this section, we introduce the robustification scheme R
from Theorem 2 that, given an algorithm A for the online
graph exploration problem, robustifies its worst-case perfor-
mance guarantee. In the course of the exploration, the set
of vertices known to the searcher can be partitioned into ex-
plored and unexplored vertices, i.e., vertices that have already
been visited by the searcher, or not, respectively. The robusti-
fication scheme uses the algorithm A as a blackbox. That is,
we treat A as a function that, given the current position, cur-
rently known subgraph, and set of already explored vertices,
returns the next vertex to explore. The learning-augmented
algorithm from Theorem 1 emerges as an application of the
robustification scheme and is discussed in the next section.

The Robustification Scheme
Intuitively, the robustification schemeR, summarized in Al-
gorithm 1, balances the execution of algorithmA with that of
NN by executing the algorithms in alternating phases. These
phases are budgeted so that their costs are roughly propor-
tional to each other, with a parameter λ > 0 dictating the
proportionality. Specifically, whenever A is at position v and
about to explore a vertex u via some path PAu , we interruptA
and, instead, start from v a phase of exploration via NN. This
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Algorithm 1: Robustification schemeR.
Input: Partially explored graph G, start vertex s,

algorithm A, and parameter λ > 0
1 GA ← G // subgraph revealed to A
2 while G has an unexplored vertex do
3 u← next unexplored node to be visited by A,

computed via Algorithm 2
4 PAu ← shortest s-u-path in G
5 u′ ← nearest unexplored neighbor of s, b← 0

6 while b < λ · c(PAu ) and s 6= u do
7 traverse a shortest s-u′-path Pu′ and update G
8 s← u′, b← b+ c(Pu′)
9 u′ ← nearest unexplored neighbor of s

10 traverse a shortest known path to u, set s← u and
update G

11 update GA to reflect exploration of u
12 traverse a shortest path in G to the start vertex

Algorithm 2: Computes next unexplored node vis-
ited by A and updates GA.

Input: Partially explored graph G, blackbox
graph GA, start vertex s and algorithm A

1 while next vertex u explored by A, given GA and s, is
explored in G do

2 update GA by adding previously unknown edges
incident to u, and mark u as explored

3 s← u

4 return u, GA

phase ends when the cost incurred by NN reaches λc(PAu )
or when NN is about to explore u (Lines 6 to 9). Only af-
terwards does the scheme explore the vertex u and resumes
exploration via A (Line 10).

Note that we do not reveal to A information gained by
exploring vertices during the nearest-neighbor phase (Lines 6
to 9). If A decides to explore a vertex u next that is already
known toR, we only simulate A without actually executing
any traversals (Line 3 resp. Algorithm 2). This is possible
since the new information thatAwould obtain by exploring u
is already known toR.

Recall that, given an online algorithm A and a graph ex-
ploration instance I, the terms AI and OPTI refer to the
costs incurred by A and an optimal solution on instance I,
respectively. To prove Theorem 2, we bound the cost incurred
byR during the NN phases in terms of OPTI .

Lemma 3. The cost κN of all traversals in Line 7 is at most
1
2 (dlog ne+ 1)OPTI .

The lemma can be shown by following the approach
of (Rosenkrantz, Stearns, and Lewis 1977). While one con-
secutive nearest-neighbor search is considered there, our al-
gorithm starts and executes multiple (incomplete) nearest-
neighbor searches with different starting points. The adapted
proof can be found in the full version (Eberle et al. 2021).

Proof of Theorem 2. Fix λ > 0, an algorithmA for the graph
exploration problem, and an instance I. Denote by RI the
cost incurred on instance I by the robustification schemeR
applied to A with parameter λ. We showRI ≤ (3 + 4λ)AI
andRI ≤

(
1+ 1

2λ

)
(dlog(n)e+1)OPTI separately. For each

iteration i of the outer while loop, denote by κNi the traversal
cost incurred by the inner while loop (Line 7), and by κAi the
cost of the traversal in Line 10. Then,RI =

∑
i(κ
A
i + κNi ).

Proof of RI ≤ (3 + 4λ)AI : For iteration i of the outer
while loop, in which A wants to explore u, let PAi be the
shortest s-u-path in Line 4. Since Line 3 resp. Algorithm 2
only simulate traversals, the PAi may not match the actual
traversals that are due to algorithm A. Specifically, it might
be the case that

∑
i c(P

A
i ) 6= AI . However, since PAi is

a shortest path in the currently known graph G which con-
tains GA after executing the simulated traversals, it cannot
exceed the sum of the corresponding simulated traversals.
Thus,

∑
i c(P

A
i ) ≤ AI .

Consider an iteration i and the traversal cost κNi + κAi
incurred during this iteration. We start by upper bounding κNi .
Let κ′i be the cost of the inner while loop (Lines 6 to 9)
excluding the last iteration. By definition, κ′i < λ · c(PAi ).

Let Pi be the path traversed in the last iteration of the inner
while loop, s′ its start vertex, and u′ its end vertex. Recall
that u is the endpoint of PAi . Before executing the inner while
loop, the cost of the shortest path from the current vertex to u
was c(PAi ). By executing the inner while loop, excluding
the last iteration, the cost of the shortest path from the new
current vertex to u can only increase by at most κ′i < λ ·
c(PAi ) compared to the cost of PAi . Since Pi is the path to the
nearest neighbor of the current vertex, c(Pi) cannot be larger
than the cost of the shortest path to vertex u. Thus, c(Pi) ≤
c(PAi ) + κ′i < (1 + λ) · c(PAi ), and κNi = κ′i + c(Pi) ≤
(1 + 2λ) · c(PAi ).

To bound κAi , consider the traversal of the shortest s-
u-path in Line 10. Before executing the inner while loop,
the cost of the shortest path from the current vertex to u
was c(PAi ). By executing the while loop, the cost of the
shortest path from the new current vertex to u can increase
by at most κNi ≤ (1 + 2λ) · c(PAi ) compared to c(PAi ).
This implies κAi ≤ (2 + 2λ) · c(PAi ). Using κAi + κNi ≤
(3 + 4λ) · c(PAi ), we conclude

RI =
∑
i

(
κAi +κNi

)
≤ (3+4λ)

∑
i

c(PAi ) ≤ (3+4λ)AI .

Proof of RI ≤
(
1 + 1

2λ

)
(dlog(n)e + 1)OPTI: We

have κAi ≤ c(PAi ) + κNi . If the inner while loop was aborted
due to s = u, then κAi = 0. Otherwise, κNi ≥ λ · c(PAi ), and
thus, κAi ≤ (1 + 1

λ )κNi . We concludeRI = κN +
∑
i κ
A
i ≤(

2 + 1
λ

)
κN . Lemma 3 directly implies the result.

Reducing the Overhead for Switching Algorithms
The robustification scheme R balances the execution of a
blackbox algorithm A and a nearest-neighbor search via
the parameter λ, that allows us to configure the proportion
at which the algorithms are executed. Even for arbitrarily
small λ > 0, the worst-case cost of R on instance I is
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still (3 + 4λ)AI ≈ 3AI . The loss of the factor 3 is due to
the overhead created by switching between the execution of
algorithm A and NN. To reduce this overhead, we propose
a modification of R. At the cost of a slightly worse worst-
case guarantee, we significantly improve the average-case
performance as our experimental results show. The main
reason is that worst-case instances with cost roughly 3AI are
very particular. We give the full algorithm and its analysis in
the full version of our paper (Eberle et al. 2021).

Here, we briefly highlight the differences to Algorithm 1.
Intuitively, the modified robustification schemeR reduces the
overhead for switching between algorithms by extending the
individual phases. To prevent from frequently interrupting A,
we introduce a budget for its execution that is now propor-
tional to the cost of all past nearest neighbor phases. In turn,
we also increase the budget for NN to match these larger
phases of executing A: We introduce budgets bA and bN ,
initialized to 0, that represent the budget generated by A
for executing NN and the budget generated by NN for ex-
ecuting A, respectively. Essentially, we then modify R by
repeating Lines 3 to 5, i.e., exploration according to A, until
the budget 1

λbN would be exceeded, and by replacing c(PA)

with (bA + c(PA)) in Line 6. Further, we update bA and bN
such that they reflect the cost incurred during the last phase
of A and during all NN-phases, respectively.

Theorem 4. Given an algorithm A for the online graph
exploration problem and λ > 0, the modified robustification
schemeR solves a graph exploration instance I with cost

RI ≤ min
{

(3+4λ)AI ,
(

1 +
1

λ

)
(dlog(n)e+1)OPTI

}
.

The analysis of the modified robustification schemeR re-
mains essentially the same. The second term in the minimum
of the worst-case guarantee is slightly higher since the algo-
rithm might terminate directly after executing an extended
phase of A without giving NN a chance to compensate for
possible errors. The first term, (3+4λ)AI , remains the same
since the cost of an iteration of the outer while-loop remains
bounded by (3+4λ) times the cost of an extended phase ofA
plus the cost of reaching the next target of A after that phase.

Online Graph Exploration with Untrusted
Predictions

In this section, we apply the previously introduced robustifica-
tion scheme in the context of learning-augmented algorithms
and present an algorithm that satisfies the criteria in Theo-
rem 1. This algorithm is provided with untrusted predictions
that come in the form of a fixed exploration order of the
vertices, given by a spanning tree or a tour. The learnability
of such predictions is discussed at the end of this section.

A Learning-Augmented Online Algorithm
We consider prediction models which upfront fix an explo-
ration order τp of the vertices. Such an order can be predicted
directly (tour predictions) or is given by the traversal order of
a Depth First Search (DFS) on a predicted spanning tree Tp
(tree predictions). Recall that a prediction is a function that

outputs for a given exploration state an explorable vertex,
and, given an order τp, this vertex is the first unexplored
vertex in τp w.r.t. the current state. Due to this mapping, we
also call τp a prediction. Denote by c(τp) the cost of execut-
ing FP with the prediction τp. A perfect prediction τ∗ is, in
the case of tour predictions, an optimal tour and, in the case
of tree predictions, the DFS traversal order of a Minimum
Spanning Tree (MST) T ∗. The prediction error is defined
as η = c(τp) − c(τ∗). Regarding tree predictions, the defi-
nition of DFS ensures that each edge in T ∗ is traversed at
most twice, thus c(τ∗) ≤ 2c(T ∗). Using c(T ∗) ≤ OPTI ,
this implies the following lemma.
Lemma 5. For an instance I , following tree predictions has
cost FPI ≤ 2OPTI + η.

Naively calling FP might lead to an arbitrarily bad com-
petitive ratio of FP. Theorem 2 provides us with a tool to
mitigate this possibility. Using FP within the robustification
scheme of Algorithm 1 allows us to bound the worst-case
performance. Denote byR(FP, G) the performance of this
strategy. With Lemma 5, and given an instance I with tree
predictions, we can upper boundR(FP, G) by

min{(3+4λ)(κOPTI+η), (1+
1

2λ
)(dlog(n)e+1)OPTI},

with κ = 2. For tour predictions, observe that FPI =
OPTI + η. Thus, we obtain the same bound on R(FP, G)
but with κ = 1. This concludes the proof of Theorem 1.

PAC Learnability of the Predictions
We briefly discuss the learnability of tree and tour predic-
tions. To allow for predicted tours or trees that are consistent
with the graph to be explored, we assume that the set of n
(labeled) vertices is fixed and the graph G is complete. This
may seem like a strong restriction of general inputs to the
graph exploration problem. However, notice that the cost c(e)
of an edge e is still only revealed when the first endpoint of e
is explored. There is no improved online algorithm known
for this special case.

Firstly, we show PAC learnability of tree predictions. Our
goal is to predict a spanning tree in G of low expected cost
when edge costs are drawn randomly from an unknown dis-
tribution D. We assume that we can sample cost vectors c
efficiently and i.i.d. from D to obtain a training set. Denote
by H the set of all labeled spanning trees in G, and, for
each T ∈ H, let η(T, c) = c(T ) − c(T ∗) denote the error
of T with respect to the edge costs c, where T ∗ is an MST
of G with respect to the edge costs c. As c is drawn randomly
from D, the value η(T, c) is a random variable. Our goal is
to learn a prediction Tp ∈ H that (approximately) minimizes
the expected error Ec∼D[η(T, c)] over all T ∈ H.

We show that there is an efficient learning algorithm that
determines a tree prediction that has nearly optimal expected
cost with high probability and has a sample size polynomial
in n and ηmax, an upper bound on η(T, c). The existence
and value of such an upper bound depends on the unknown
distributionD. Thus, to select the correct value of ηmax when
determining the training set size, we require such minimal
prior knowledge of D, which does not seem unreasonable in
applications.

9736



Theorem 6. Let ηmax be an upper bound on η(T, c) and
T̄ = arg minT∈H Ec∼D[η(T, c)]. Under the assumptions
above (in particular, that the graph is complete and has a
fixed number n of vertices), and for any ε, δ ∈ (0, 1), there
exists a learning algorithm that returns a Tp ∈ H such that
Ec∼D[η(Tp, c)] ≤ Ec∼D[η(T̄ , c)] + ε with probability at
least (1 − δ). It does so using a training set of size m ∈
O
( (n·log n−log δ)·η2max

ε2

)
and in time polynomial in n and m.

We show a similar result for learning a predicted tour.
Again, assume that G = (V,E) is complete and let T be
the set of all tours, i.e., the set of all permutations of V . Let
η(τ, c) = c(τ)− c(τ∗), where τ ∈ T , τ∗ is an optimal tour
w.r.t. cost vector c, and c(τ) is the cost of tour τ assuming
that the next vertex v in τ is always visited via a shortest path
in the graph induced by the previous vertices in τ and v. Our
goal is to learn a predicted tour τp ∈ T that (approximately)
minimizes the expected error Ec∼D[η(τ, c)] over all τ ∈ T .
As |T | = n! ∈ O(nn), and assuming an upper bound ηmax

on η(τ, c), we apply ERM with the same sample complexity
as in Theorem 6. However, the problem of computing a τ ∈
T that minimizes the empirical error in training set S contains
TSP. Thus, unless P 6= NP , we settle for an exponential
running time; cf. our full version (Eberle et al. 2021).

Experimental Analysis
We present the main results of our empirical experiments
and discuss their significance with respect to our algorithms’
performance. More details can be found in the full version of
the paper (Eberle et al. 2021).

We analyze the performance of the robustification scheme
for various instances, namely, real world city road networks,
symmetric graphs of the TSPlib library (Reinelt 1991, 1995),
and special artificial graphs. We use the empirical competi-
tive ratio as performance measure; for an algorithm A, it is
defined as the average of the ratio AI/OPTI over all input
instances I in our experiments. Since the offline optimum
OPTI is the optimal TSP tour which is NP-hard to compute,
we lower bound this value by the cost of an MST for instance
I , which we can compute efficiently. This leads to larger em-
pirical competitive ratios, but the relative differences between
any two algorithms remains the same.

To evaluate learning-augmented algorithms, we compute
a (near) perfect prediction and iteratively worsen it to get
further predictions. Again, due to the intractability of the un-
derlying TSP problem, we use heuristics to determine a “per-
fect” prediction, namely Christofides’ algorithm (Christofides
1976) and 2-opt (Croes 1958). Such weaker input disfavors
our algorithms as having better predictions can only improve
the performance of our learning-augmented algorithms. The
relative prediction error is defined as the ratio between the
prediction error and the cost of an MST for the instance.

For the experiments, we consider the classical exploration
algorithms depth first search (DFS), nearest neighbor (NN),
and hierarchical depth first search (HDFS), as well as the
constant-competitive algorithm for graphs of bounded genus,
including planar graphs, called BLOCKING (Kalyanasun-
daram and Pruhs 1994; Megow, Mehlhorn, and Schweitzer
2012). Regarding learning-augmented algorithms we look at
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(a) Results for TSPLib instances.
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(b) Results for Rosenkrantz graphs.

Figure 1: Evaluation of the robustification scheme on TSPlib
and Rosenkrantz graphs.

the algorithm that follows a prediction (FP). We denote by
R(A, λ) the modified robustification scheme with parameter
λ > 0 applied to an algorithm A.
TSPLib instances We consider the 72 graphs of the TSPlib
library with at most 600 nodes (for performance reasons) and
evaluate the classical exploration algorithms as well as their
robustified variants. The results are displayed in Figure 1a.
Observe that NN outperforms HDFS and BLOCKING. While
for small values of λ the performance of the robustified algo-
rithms stays close to that of their base variants, it improves
quickly with an increasing λ and eventually converges to that
of NN. This illustrates that if NN performs well, our robustifi-
cation scheme exploits this and improves algorithms perform-
ing worse. Note that TSPlib provides complete graphs and
our implementation of DFS explores a closest unexplored
child first. Thus, DFS and NN act identically.
Rosenkrantz graphs This experiment looks at graphs
on which NN is known to perform badly. Specifically, we
consider a family of graphs that are artificially constructed
in (Rosenkrantz, Stearns, and Lewis 1977) in order to show
a lower bound of Ω(log n) on the competitive ratio. Each
member of the family corresponds to a size parameter i and
consists of n = Θ(2i) nodes. The cost of a NN tour in-
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creases linearly with i. We refer to this family as Rosenkrantz
graphs. There exist variations of the Rosenkrantz construc-
tion, that suggest that we can expect similar experimental
results, even for Euclidean graphs and unit weights (Hurkens
and Woeginger 2004). Besides NN, we consider the algo-
rithms BLOCKING, HDFS and FP (relative error of 5) with
robustification parameters 0, 1, and 20, respectively. Again,
DFS acts like NN on these graphs. For the sake of clarity,
we deferred results for BLOCKING to the full version (Eberle
et al. 2021).

The results (Figure 1b) show that the slight robustification
R(FP, 1) improves FP’s performance significantly. This re-
mains true for large i, even though NN is performing increas-
ingly bad here. If we increase the amount of robustification,
i.e.,R(FP, 20), the slope is equal to NN’s slope, but it still
outperforms NN and FP. Surprisingly, for HDFS, this draw-
back does not appear: R(HDFS, 20) does indeed perform
worse than for smaller λ’s, but its competitive ratio does not
grow as i increases. ForR(HDFS, 1) there is almost no drop
in performance when compared to HDFS.

In summary, we have indications that even a slight robusti-
fication clearly improves algorithms that otherwise perform
badly without the performance degrading too much when NN
performs poorly. Even more interestingly, these experiments
actually show that the robustification scheme applied to an
online algorithm robustifies NN as well. Since NN generally
performs notably well, c.f. Figure 1a, this may be useful in
practice as protection against unlikely but possible bad sce-
narios for NN; in particular, in safety relevant applications
where solutions have to satisfy strict performance bounds.

City road networks Finally, we provide experiments to
evaluate our learning-augmented algorithm in the context
of the real-world task of exploring a city road network. To
this end, we consider the ten largest (by population) capitals
in Europe with a population less than one million. Our in-
stances represent the road networks of these cities, built with
OSMnx (Boeing 2017) from OpenStreetMap data (Open-
StreetMap contributors 2017). For each instance, we generate
150 predictions with relative errors ranging from 0 up to 30.
The average results (Figures 2a and 2b) indicate that, for rela-
tive errors less than 2.5, we improve upon the best performing
classical algorithms NN and DFS by usingR(FP, λ) with
λ < 1, while the increase of FP for large errors is signifi-
cantly smaller after robustification. Moreover, R(FP, 0.5)
and R(FP, 0.75) perform only slightly worse than HDFS
and BLOCKING for large relative errors.

We conclude that, given predictions of somewhat reason-
able quality, it is possible to beat the best known online
algorithms in terms of solution quality, while still providing
the security that, even if some predictions turn out to be bad,
the consequences are not too harsh. While “somewhat reason-
able” appears to be a relative error of roughly 2.5, recall that
our perfect predictions are only approximate tours, which
may be a constant factor away from the optimal tour. With
logistic companies in mind, where margins are tight and ev-
ery potential for optimization needs to be taken advantage of
(while still making sure that trucks do arrive eventually), this
seems to be a potentially useful outcome.
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(a) Whole picture: results for large relative errors.
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Figure 2: Average performance of classical and learning-
augmented algorithms on city networks.

Conclusion

We initiate the study of learning-augmented algorithms for
the classical online graph exploration problem. By carefully
interpolating between the algorithm that blindly follows any
given prediction and Nearest Neighbor, we are able to give
a learning-augmented online algorithm whose theoretical
worst-case bound linearly depends on the prediction error. In
particular, if the prediction is close to perfect, this substan-
tially improves upon any known online algorithm without
sacrificing the worst-case bound. We complement these the-
oretical results by computational experiments on various in-
stances, ranging from symmetric graphs of the TSPLib library
and Rosenkrantz graphs to city road networks. Moreover, we
design a framework to robustify any given online algorithm
by carefully interpolating between this algorithm and Nearest
Neighbor. This is potentially very interesting also in the area
of stochastic optimization or when designing data-driven
algorithms, that typically provide probabilistic guarantees
but may perform very poorly in the worst case. It remains
open whether online graph exploration (without additional
information) allows for any constant-competitive algorithm.
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