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Abstract

One of the most widespread human behavioral biases is the
present bias—the tendency to overestimate current costs by
a bias factor. Kleinberg and Oren (2014) introduced an ele-
gant graph-theoretical model of inconsistent planning captur-
ing the behavior of a present-biased agent accomplishing a set
of actions. The essential measure of the system introduced by
Kleinberg and Oren is the cost of irrationality—the ratio of
the total cost of the actions performed by the present-biased
agent to the optimal cost. This measure is vital for a task de-
signer to estimate the aftermaths of human behavior related
to time-inconsistent planning, including procrastination and
abandonment.
As we prove in this paper, the cost of irrationality is highly
susceptible to the agent’s choices when faced with a few pos-
sible actions of equal estimated costs. To address this issue,
we propose a modification of Kleinberg-Oren’s model of in-
consistent planning. In our model, when an agent selects from
several options of minimum prescribed cost, he uses a ran-
domized procedure. We explore the algorithmic complexity
of computing and estimating the cost of irrationality in the
new model.

1 Introduction
Time-inconsistent behavior is the term in behavioral eco-
nomics and psychology describing the behavior of an agent
optimizing a course of future actions but changing his op-
timal plans in the short run without new circumstances
(Thaler 2016). For example, why do we buy a year swim
membership and not go to the swimming pool after that?
Why do we procrastinate when it comes to paying off credit
card debt? Why do we want to eat healthier but have little
incentive to do so? As Socrates in Plato’s Protagoras asks, if
one judges a certain behavior to be the best course of action,
why would one do anything else?

A standard assumption in behavioral economics used to
explain the gap between long-term intention and short-term
decision-making is the notion of present bias. According to
(O’Donoghue and Rabin 1999), when considering trade-offs
between two future moments, present-biased preferences
give stronger relative weight to the earlier moment as it gets
closer.

Copyright © 2022, Association for the Advancement of Artificial
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The mathematical idea of present bias goes back to
1937 when (Samuelson 1937) introduced the discounted-
utility model. It has developed into the hyperbolic dis-
counting model, one of the cornerstones of behavioral eco-
nomics (Laibson 1994; McClure et al. 2004). A simple
mathematical model of present bias was suggested in (Ak-
erlof 1991). In Akerlof’s model, the salience factor causes
the agent to put more weight on immediate events than on
the future. Thus the cost of an action that will be perceived
in the future is assumed to be β times smaller than its actual
cost, for some present-bias parameter β < 1. It appears that
even a tiny salience factor could yield high extra costs for
the agent.

Kleinberg and Oren (Kleinberg and Oren 2014, 2018) in-
troduced an elegant graph-theoretic model encapsulating the
salience factor and scenarios of Akerlof. The approach is
based on analyzing how an agent traverses from a source s
to a target t in a directed edge-weighted graph G. Before
defining this model formally, we provide an illustrating ex-
ample. The example, up to small modifications, is borrowed
from (Kleinberg and Oren 2014) and originally due to Ak-
erlof (Akerlof 1991).

Example. One of the authors of this paper, we call him Bob,
is planning to write reviews for AAAI. He estimates the cost
(say, estimated time) of this task as c. While the definite
deadline is on Friday, Bob’s initial plan is to write reviews
on Monday. However, on Monday, Bob realizes that he also
needs to check Google Scholar to find out who cited his pa-
per. He estimates the cost of the other task as x. Now Bob
meets the dilemma. He can either (a) write reviews today or
(b) check Google Scholar today and write reviews tomor-
row. While estimating the costs, Bob uses the present-bias
parameter β. Thus he estimates the cost of (b) as x + βc. It
appears that x+βc < c, therefore Bob decides to pursue (b).
On Tuesday, the story repeats by procrastinating with Insta-
gram, and on Wednesday with Facebook, see Fig. 1. At the
end, Bob sends the reviews on Friday, spending on this job
totally 4x+ c instead of c.

Kleinberg-Oren’s Model. An instance of the time-
inconsistent planning model is a 5-tupleM = (G,w, s, t, β)
where:
• G = (V (G), E(G)) is a directed acyclic n-vertex graph

called a task graph. V (G) is a set of elements called ver-
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Figure 1: Task graph G with the source point s = Monday
and the target point t = Reviews. Assuming x + βc < c,
Bob will follow the blue path rather just writing the reviews
on Monday. The ratio between the costs of the path followed
by the agent and the optimal s-t path can be made arbitrarily
large by adding more days of procrastination.

tices, and E(G) ⊆ V (G) × V (G) is a set of arcs (di-
rected edges). The graph is acyclic, which means that
there exists an ordering of the vertices called a topologi-
cal order such that, for each edge, its first endpoint comes
strictly before its second endpoint in the ordering. Infor-
mally speaking, vertices represent states of intermediate
progress, whereas edges represent possible actions that
transitions an agent between states.

• w : E(G) → N is a function representing the costs
of transitions between states. The transition of the agent
from state u to state v along arc uv ∈ E(G) is of cost
w(uv).

• The agent starts from the start vertex s ∈ V (G).
• t ∈ V (G) is the target vertex.
• β ≤ 1 is the agent’s present-bias parameter.

An agent is initially at vertex s and can move in the graph
along arcs in their designated direction. The agent’s task is
to reach the target t. The agent moves according to the fol-
lowing rule. When standing at a vertex v, the agent evaluates
(with a present bias) all possible paths from v to t. In partic-
ular, a v-t path P ⊆ G with edges e1, e2, . . . , ep is evaluated
by the agent standing at v to cost

ζM (P ) = w(e1) + β ·
p∑
i=2

w(ei).

We refer to this as the perceived cost of the path P . For a
vertex v, its perceived cost to the target is the minimum per-
ceived cost of any path to t,

ζM (v) = min{ζM (P ) | P is a v-t path}.

We refer to an v-t path P with perceived cost ζM (v) as to a
perceived path. Thus when in vertex v, the agent picks one
of the perceived paths and traverses its first edge, say vu.
After arriving to the new vertex u, the agent computes the
perceived cost to the target ζM (u), selects a perceived u-t
path , and traverse its first edge. This repeats until the agent
reaches t.

Let Pβ(s, t) be a s-t path followed by an agent with
present-bias β and let cβ(s, t) be the cost of this path. Let

d(s, t) be the distance, that is the cost of a shortest s-t path.
Then Kleinberg and Oren defined the measure describing the
“price of irrationality” of the system.

Definition 1 (Cost of irrationality (Kleinberg and Oren
2014)). The cost of the irrationality of the time-inconsistent
planning model M = (G,w, s, t, β) is

cβ(s, t)

d(s, t)
.

Thus in our example in Fig. 1, the cost of irrationality is
4x+c
c . One omitted detail in the definition makes the mean-

ing of the cost of irrationality ambiguous. It could be that
several paths with minimum perceived cost ζM (v) lead from
v. In this situation an agent in the state v might be indifferent
between several arcs leaving v—they both evaluate to equal
perceived costs. Hence there could be several different fea-
sible paths Pβ(s, t) which the agent could follow. While for
the agent standing in a vertex v the perceived costs of all per-
ceived paths are the same, the actual costs of feasible paths
could be different.

Two approaches to address this ambiguity could be found
in the literature. First, one can assume that an agent uses
a consistent tie-breaking rule. For example, Kleinberg and
Oren in (Kleinberg and Oren 2014) suggest selecting the
node that is earlier in a fixed topological ordering of
G. Kleinberg, Oren, and Raghavan (Kleinberg, Oren, and
Raghavan 2016) consider the situation when the arcs are or-
dered, and an agent selects the largest available arc. The dis-
advantage of this approach is that it is hard to imagine some-
one building their plans based on a topological ordering of
tasks or arbitrarily labeled arcs in a real-life scenario. An-
other approach taken by Albers and Kraft (Albers and Kraft
2019) and by Fomin and Strømme (Fomin and Strømme
2020) is to break ties arbitrarily. As we will see, depend-
ing on how an agent breaks the ties, the cost of irrational-
ity could change exponentially in the number of vertices.
Therefore, with the second approach, the value of the cost
of irrationality is not well-defined.

Because of that, we revisit the model of Kleinberg and
Oren in (Kleinberg and Oren 2014) and redefine the cost of
irrationality. Our approach is natural —when in doubt, toss
a coin! When several paths of minimum prescribed cost lead
from v, the agent selects one of them with some probability
and traverses the first arc of this path.

More precisely, we view the graph as a Markov decision
process. Thus the instance of the time-inconsistent plan-
ning model is a 6-tuple M = (G,w, s, t, p, β), where for
each edge uv of the task graph, we assign the probability
p(u, v) of transition u → v. Here for every u ∈ V (G),∑
uv∈E(G) p(u, v) = 1.

Moreover, the probability can be positive only for edges
that could serve for transitions of the agent. In other words,
p(u, v) > 0 only if there is a u-t path P of perceived cost
ζM (u) whose first edge is uv. The selection of probability
p corresponds to some predictions or future preferences in
breaking the ties. For example, when the agent at stage u
faces ` u-t paths of minimum perceived cost and has no pref-
erences over any of them, it would be natural to assign each
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transition from u the probability 1/`. On the other hand, if
the agent has preferences in selecting from paths of equal
costs, this can be controlled by a different selection of p.
With these settings, we call an s-t path P feasible, if with a
non-zero probability the present-biased agent will follow P .

Now we can define the cost of the agent with present-bias
β as discrete random variable Cβ with Pr(Cβ = W ) being
the probability that the path traversed by the agent is of cost
W . Then we can redefine the cost of irrationality as follows.

Definition 2 (Revised cost of irrationality). The cost of the
irrationality of the time-inconsistent planning model M =
(G,w, s, t, p, β) is

Xβ =
Cβ

d(s, t)
.

Let us note that when no ties occur, our definition coin-
cides with the definition of Kleinberg and Oren. Estimating
the cost of irrationality Xβ could help the task-designer to
evaluate the chances of abandonment, the situation when an
agent realizes that accomplishing the task takes much more
effort than he presumed initially, and thus ultimately gives
up.

Example cont. In the example in Fig. 1, let us put c = 6,
x = 3, and β = 1

2 . We also assume that Bob does not have
preferences between two actions of minimum perceived
costs and thus pursue one of the actions with probability
p = 1/2. On Monday, Bob selects between two options of
perceived costs 6: either to write reviews that costs c = 6, or
to check Google Scholar and write reviews tomorrow, which
costs x + βc = 6. The probability that Bob will finish re-
views on Monday, and thus will spend c = 6 hours, is 1/2.
The optimal cost d(s, t) = c = 6. Hence Pr(Cβ ≤ 6) = 1

2

and thus Pr(Xβ ≤ 1) = 1
2 . The probability that Bob fin-

ishes the job on Tuesday and thus will spend x + c = 9,
is
(
1
2

)2
. Therefore, Pr(Xβ ≤ 9/6 = 3/2) = 1

2 +
(
1
2

)2
.

The situation repeats up till Thursday, and we have that for

1 ≤ i ≤ 4, Pr(Xβ ≤ 1 + (i − 1)/2) =
∑i
j=1

(
1
2

)j
. Bob

has to submit by Friday, so Pr(Xβ ≤ 3) = 1.

Our contribution. We introduce the randomized version of
the cost of irrationality and initiate its study from the com-
putational perspective. To support our point of view on the
cost of irrationality, we start from the combinatorial result
(Theorem 1), showing that there are time-inconsistent plan-
ning models with exponentially (in n) many feasible paths
of different costs. It yields that in the deterministic model of
Kleinberg and Oren (Definition 1) there could be exponen-
tially many different costs of irrationality.

To study the cost of irrationality Xβ , we define the fol-
lowing computational problem.

ESTIMATING THE COST OF IRRATIONALITY (ECI)
Input: A time-inconsistent planning model M =
(G,w, s, t, p, β), and W ≥ 0.
Task: Compute Pr(Xβ ≤W ).

We show in Theorem 2 that ECI is #P-hard. Thus com-
putationally, ECI is not easier than counting Hamiltonian
cycles, counting perfect matching, satidying assignments,
and all other #P-complete problems. Our hardness proof
strongly exploits the fact that the edge weightw of the model
are exponential in the n, the number of vertices of G. We
show that when the edge weights are bounded by some poly-
nomial of n, then ECI is solvable in polynomial time. We
also obtain polynomial time algorithms, even for exponen-
tial weights, for the important “border” cases: minimum,
maximum, and average. More precisely, we prove that each
of the following tasks

(a) finding the minimum value W such that Pr(Xβ ≤W ) is
positive and computing Pr(Xβ ≤W ) (Theorem 3),

(b) finding the minimum valueW such that Pr(Xβ ≤W ) =
1 (Theorem 3), and

(c) computing E(Xβ) (Theorem 5),

can be done in polynomial time.
We also take a look at ECI from the perspective of

structural parameterized complexity. Structural parameter-
ized complexity is the common tool in graph algorithms for
analyzing intractable problems. Thus we are interested how
the structure of the graph G in the time-inconsistent model
could be used to design efficient algorithms. For example,
the problem of finding a maximum weight set of indepen-
dent vertices is an NP-hard problem. However, it becomes
tractable when the treewidth of the input graph is bounded.
We will have more discussions about parameterized com-
plexity in Section 5. The most popular graph parameters in
parameterized complexity are the treewidth of a graph, the
size of a minimum feedback vertex set and vertex cover (Cy-
gan et al. 2015). For a directed graph G, let tw(G), fvs(G),
and vc(G) be the treewidth, the minimum size of a feedback
vertex set and the minimum size of a vertex cover of the un-
derlying undirected graph of G, correspondingly. We prove
the following

• ECI is #P-hard even when in the time-inconsistent plan-
ning model M = (G,w, s, t, p, β), we have tw(G) = 2.
(This result actually follows directly from the reduction
of Theorem 2.)

• ECI is W[1]-hard parameterized by fvs(G) and by vc(G)
(Theorem 6). On the other hand, ECI is solvable in times
nO(fvs(G)) and nO(vc(G)).

On the other hand, when parameterized by the minimum size
of the feedback edge set of the underlying graph, fes(G), that
is the set of edges whose removal makes the graph acyclic,
the problem becomes fixed-parameter tractable.

Our results demonstrate that while computing the cost of
irrationality is intractable in the worst-case, in many interest-
ing situations this parameter could be computed efficiently.

Related Work. The graph-theoretical model we use in this
paper for time-inconsistent planning is due to (Kleinberg
and Oren 2014, 2018). We refer to these papers for a survey
of earlier work on time-inconsistent planning, with connec-
tions to procrastination, abandonment, and choice reduction.
There is a significant amount of the follow-up work on the
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the model of Kleinberg and Oren. Albers and Kraft (Albers
and Kraft 2019) studied the ability to place rewards at nodes
for motivating and guiding the agent. They show hardness
and inapproximability results and provide an approximation
algorithm whose performances match the inapproximabil-
ity bound. The same authors considered another approach
in (Albers and Kraft 2017) for overcoming these hardness
issues by allowing not to remove edges but to increase their
weight. They were able to design a 2-approximation algo-
rithm in this context. Tang et al. (Tang et al. 2017) also
proved hardness results related to the placement of rewards
and showed that finding a motivating subgraph is NP-hard.
Fomin and Strømme (Fomin and Strømme 2020) studied the
parameterized complexity of computing a motivating sub-
graph in the model of Kleinberg and Oren.

2 Exponential Number of Different Cost of
Irrationality

In this section we provide an example supporting our defi-
nition of the cost of irrationality (Definition 2). In our con-
struction, the agent following from s to t could follow one
of exponentially many feasible paths of different final costs.
It implies that the cost of irrationality in deterministic (Def-
inition 1) could vary exponentially depending on how the
agent selects between paths of equal perceived costs. The
construction we use to prove Theorem 1 is also used to ob-
tain the complexity result.

Theorem 1. There is a graph with an exponential (in the
number of vertices) number of feasible paths of different
costs.

For the omitted proof please consult the supplementary
material.

Remark 1. By Theorem 1, the difference between the costs
of the minimum and maximum feasible paths in the graph
can be exponential from the number of vertices.

3 Estimating the Cost of Irrationality
In this section, we will evaluate the complexity of estimating
a random valueXβ . We give a parsimonious reduction of the
following problem to ECI.

COUNTING PARTITIONS
Input: Set of positive integers S = {s1, . . . , sn}.
Task: Count the number of partitions of S into sets S1

and S2 such that the sums of numbers in both sets are
equal.

COUNTING PARTITIONS is known to be #P-hard (Dyer
et al. 1993).

Theorem 2. The ECI problem is #P-hard.

Proof. Let’s reduce the COUNTING PARTITIONS to our
problem. For an instance S = {s1, . . . , sn} we construct
a time-inconsistent planning model M = (G,w, s, t, p, β).

Every s-t paths in G will be feasible and there will be a bi-
jection between feasible paths of certain cost in G and parti-
tions of the set S into two parts. Thus the number of feasible
paths will be the solution to COUNTING PARTITIONS.

Our construction works for any present bias β < 1. Con-
sider a graph consisting of “diamond” gadgets. The diamond
consists of 2 vertices connected by 2 paths of length 2, see
Fig. 2. The graph consists of n diamonds D1, . . . , Dn con-
catenated together. The weights of the edges are defined as
follows. Let W be an integer that is greater than all si. For
every i ∈ {1, . . . , n}, the edges of the first path of the dia-
mondDi obtain weights si and W−si

β . The edges of the sec-
ond path of the diamond Di obtain weights −si and W+si

β .
This completes the construction of G.

We also add that we can get rid of the negative weights of
the edges by adding the same additive to all the edges, it is
easy to understand that the agent’s solution will not change
from this additive.

Let us note that for the agent standing in the first vertex v
of a diamond Di there are exactly two perceived paths, the
first of which starts with the upper (si)-path of the diamond
Di, the second with the bottom (−si)-path, and both of them
continue with the upper (shortest) paths of all the remaining
diamonds. In the Markov decision process, we assume that
the agent select one of these edges with probability p = 1/2.
Since each of the s-t paths in model M is feasible, each of
these paths will be used with probability (1/2)n.

Figure 2: Gadget used in the proof of the theorem.

Now let us show the bijection between feasible paths of
cost n·Wβ and equal partitions of S.

In one direction, let A and B be a partition of S such that∑
s∈A s =

∑
s∈B s. We take the path corresponding to this

partition. When passing through diamond Di, the path goes
through edge of weight si is si ∈ A and −si otherwise. We
define {

δ = 0, if si ∈ A
δ = 1, if si ∈ B.

Then the total cost of such a path is equal to
n∑
i=1

(−1)δ · si +
n∑
i=1

W + (−1)δ+1 · si
β

=
n ·W
β

.

For the opposite direction. Let P be a path of cost n·Wβ .
The way P traverses through each of the diamonds, spec-
ify a partition of S into two sets A and B. We claim that∑
s∈A s =

∑
s∈B s. Targeting towards a contradiction, as-

sume that Q =
∑
s∈A s−

∑
s∈B s > 0. (The arguments for

Q =
∑
s∈A s−

∑
s∈B s < 0 are similar.)
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Then the cost of P is equal to
n∑
i=1

(−1)δ · si +
n∑
i=1

W + (−1)δ+1 · si
β

= Q+
n ·W −Q

β
<
n ·W
β

.

But this is a contradiction to our assumption that the cost of
P is n·W

β .
We have constructed a parsimonious reduction of the par-

titioning problem to the problem of counting the number of
feasible paths of cost n·Wβ . Thus, by counting the number of
different feasible paths of cost n·Wβ , we can count the num-
ber of different solutions for the partition problem.

Let T = n·W
β . We already established that counting the

number of s-t paths of cost T in G is #P-hard. Now we
show that computing Pr(Cβ ≤ T ) is #P-hard. Note that
in our graph all paths are feasible to the agent. Thus each
of the paths will be traversed by the agent with the same
probability ( 1

2 )n. Let P≤T be the number of paths of length
at most T and P=T be the number of paths of length exactly
T . Then

Pr(Cβ ≤ T ) =
P≤T
2n

=
P=T + P≤T−1

2n

=
PT
2n

+ Pr(Cβ ≤ T − 1).

Therefore, the existence of a polynomial time algorithm
computing Pr(Cβ ≤ T ) would allow us to count in poly-
nomial time the number of paths of cost T .

Finally, let us remind that Xβ =
Cβ
d(s,t) . Since the mini-

mum cost d(s, t) is computable in polynomial time by mak-
ing use of the Bellman-Ford algorithm, a polynomial time
algorithm computing Pr(Xβ ≤ T/d(s, t)) would allow to
compute in polynomial time Pr(Cβ ≤ T ), which is #P-
hard.

Although in general ECI appears to be a difficult problem,
in some interesting cases described below, it can be solved
in polynomial time. We define the following two “extremal”
cases of the problem. In the first one we estimate the proba-
bility that the agent will follow one of the feasible paths of
minimum cost. The second is to compute the maximum cost
of a feasible path.

MINIMUM COST OF IRRATIONALITY (MCI)
Input: A time-inconsistent planning model M =
(G,w, s, t, p, β).
Task: Compute the minimum value W such that
Pr(Xβ ≤W ) > 0 and compute Pr(Xβ ≤W ).

MAXIMUM COST OF IRRATIONALITY
Input: A time-inconsistent planning model M =
(G,w, s, t, p, β).
Task: Compute the minimum value W such that
Pr(Xβ ≤W ) = 1.

Algorithm 1: Dynamic programming for ECI
Input: M = (G,w, s, t, p, β), W ≥ 0
Output: Pr(Cβ ≤ bW ·d(s, t)c )

1: Let A – an array of topologically sorted vertices, s =
A[0], t = A[n]

2: Ps = [1, 0, 0, . . . , 0]
3: Pv = [0, 0, 0, . . . , 0] ∀v 6= s
4: for v ∈ A do
5: U - the set of neighbors of the vertex v, such that from

u the agent can go to v
6: for k := 0 to bW · d(s, t)c do
7: Pv[k] :=

∑
U ′ Pu[k−w(u, v)] ·Pr(u→ v), where

U ′ = {u ∈ U | w(uv) ≤ k}
8: end for
9: end for

10: return
∑bW ·d(s,t)c
k=0 Pt[k]

Theorem 3. MINIMUM COST OF IRRATIONALITY and
MAXIMUM COST OF IRRATIONALITY admits an algorithm
with running time O(n3).

For the omitted proof please consult the supplementary
material.

Finally we prove that if the weights of edges are polyno-
mial in n, then ECI is solvable in polynomial time.

Theorem 4. ECI admits an algorithm with running time
O(bW · d(s, t)c · n2 + n3).

Proof. We will traverse the vertices in the order of their
topological sorting. For each vertex v, we will calculate the
array Pv , numbered 0, . . . , bW · d(s, t)c, where cell Pv[k]
will store the probability that the agent arrived at the vertex
v along the path of cost k. See Algorithm 1.

It is possible to make a topological sorting of the vertices
of the graph G and obtain an array A in time O(n2). Note
that having first counted the shortest paths in the graph be-
tween any pair of vertices in time O(n3), for each vertex
v we can find the set U from line 5 of the Algorithm 1 in
time O(n2), going through all ancestors of v, and for each
of them by modeling the agent’s estimate in linear time.

Note that in line 7 of our algorithm, for each vertex v and
each possible cost of the path k, the probability that the agent
will arrive at the vertex v along the path of cost k is correctly
calculated, since the events of arrival at the vertex from dif-
ferent neighbors are inconsistent and the total probability of
getting to the vertex v is calculated as the sum of the proba-
bilities for all available neighbors.

So the total running time of the algorithm is O(n3) +
O(bW · d(s, t)c · n2).

4 Computing Expected Cost
We proved that the ECI problem is #P -hard. In this sec-
tion we show that computing the expectation E(Xβ) and
the variance Var(Xβ) of random variable Xβ can be done
in polynomial time.
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Theorem 5. For the input M = (G,w, s, t, p, β) of ECI,
the values E(Xβ) and Var(Xβ) are computable in time
O(n3).

For the omitted proof please consult the supplementary
material.

The algorithms for the mean and the variance could be
useful to motivate the agent. Let us consider the situa-
tion when for time-inconsistent planning model M =
(G,w, s, t, p, β), we can choose a reward to motivate an
agent to achieve a goal (target vertex). At every step, the
agent decides whether he wants to proceed further based on
the following estimations. The agent compares the perceived
cost of the remaining tasks, taking into account the present
bias, and the reward: if the reward is greater than the estimate
of the remaining path, then the agent moves further, other-
wise he abandon his attempts to reach the goal. Then the
natural algorithmic question in time-inconsistent planning
(Kleinberg and Oren 2014), is how to identify the minimum
reward that will allow the agent to reach his goal?

With the mean and variance, we can estimate the mini-
mum award that can help to avoid abandonment. We need
the Chebyshev’s inequality:

Pr(|Cβ −E(Cβ)| ≥ a) ≤ Var(Cβ)

a2
.

For a = 2
√
Var(Cβ), we have

Pr(|Cβ −E(Cβ)| ≤ 2
√
Var(Cβ)) ≥ 3

4
.

Then, as a reward, we take E(Cβ)+2
√
Var(Cβ). With such

reward the probability that the agent will reach his goal is at
least 3/4.

One can also consider a model in which the costs that
the agent already has spent are deducted from the reward.
(Imagine the situation when the agent has some resources
and will not reach the goal when the resources are ex-
hausted). In this case, the reward must be at least the cost
of the perceived path. In this situation, the reward provided
by the Chebyshev’s inequality is optimal for a probability 3

4
of reaching the goal.

5 Parameterized Complexity of ECI
In this section we investigate parameterized complexity of
ESTIMATING THE COST OF IRRATIONALITY. A parame-
terized problem is a language Q ⊆ Σ∗ × N where Σ∗ is
the set of strings over a finite alphabet Σ. Respectively, an
input of Q is a pair (I, k) where I ⊆ Σ∗ and k ∈ N; k is
the parameter of the problem. A parameterized problemQ is
fixed-parameter tractable (FPT) if it can be decided whether
(I, k) ∈ Q in time f(k) · |I|O(1) for some function f that de-
pends of the parameter k only. Respectively, the parameter-
ized complexity class FPT is composed by fixed-parameter
tractable problems. The W-hierarchy is a collection of com-
putational complexity classes: we omit the technical defi-
nitions here. The following relation is known amongst the
classes in the W-hierarchy: FPT = W[0] ⊆W[1] ⊆W[2] ⊆
. . . ⊆ W[P ]. It is widely believed that FPT 6= W[1], and
hence if a problem is hard for the class W[i] (for any i ≥ 1)

then it is considered to be fixed-parameter intractable. For
our purposes, to prove that a problem is W[1]-hard it is suf-
ficient to show that an FPT algorithm for this problem yields
an FPT algorithm for some W[1]-complete problem. We re-
fer to (Cygan et al. 2015) for the detailed introduction to
parameterized complexity.

In graph algorithms, one of the most popular parameter
is the treewidth of (an undirected) graph. Many NP-hard
problems are FPT parameterized by the treewidth of the in-
put graph. We refer (Cygan et al. 2015) for the definition of
treewidth. For directed graph G, let tw(G) be the treewidth
of its underlying undiricted graph. In Theorem 2, we have
proved that ECI is #P -hard. The underlying undirected
graph used in the reduction in Theorem 2, has treewidth at
most 2. (See Fig. 2). Thus we immediately obtain the fol-
lowing corollary.

Corollary 1. The ECI problem remains #P -hard even
when the graph G in the time-inconsistent model has
tw(G) ≤ 2.

Besides the treewidth of the graph, another popular in the
literature graph parameters are vertex cover and feedback
vertex set. Let us remain, that for an undirected graph G,
a vertex cover of G is a set of vertices S ⊆ V (G), such
that every edge of G has at least one endpoint in S. In other
words, the graph G−S has no edges. For directed graph G,
we use vc(G) to denote the minimum size of a vertex cover
in the underlying undirected graph of G. A feedback vertex
set of an undirected graph G is the set of vertices S such
that every cycle in G contains at least one vertex from S. In
other words, graph G− S has no cycles and thus is a forest.
For directed graphG, we use fvs(G) to denote the minimum
size of a feedback vertex cover in the underlying undirected
graph of G. Let us note that

tw(G) ≤ fvs(G) ≤ vc(G).

In what follows, we prove that ECI is W[1]-hard pa-
rameterized by vc(G). Since fvs(G) ≤ vc(G), it also
yields that ECI is W[1]-hard parameterized by fvs(G). On
the other hand, we will give an algorithm solving ECI in
time nO(fvs(G)). Thus the problem is XP parameterized by
fvs(G). Since fvs(G) ≤ vc(G) it also implies that the prob-
lem is XP parameterized by vc(G).

We start from the lower bound. We reduce the following
W[1]-hard problem to ECI.

MODIFIED k-SUM
Input: Sets of integers X1, X2, . . . , Xk and integer T
Parameter: k
Task: Decide whether there is x1 ∈ X1, x2 ∈ X2, . . . ,
xk ∈ Xk such that x1 + . . .+ xk = T .

The following lemma is a folklore. We could not find its
proof in the literature and provide a sketch in the supplemen-
tary materials.

Lemma 1. The MODIFIED K-SUM problem is W[1]-hard
with respect to the parameter k.
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Theorem 6. The ECI problem is W[1]-hard parameterized
by vc(G) and by fvs(G).

Proof. We construct a parameterized reduction of the MOD-
IFIED K-SUM problem to the ECI problem.

Let’s give an instance of the MODIFIED K-SUM prob-
lem: X1, X2, . . . , Xk and T . Similarly to the proof of #P
hardness, we construct for each set Xi a gadget in which all
paths will be perceived for the agent and will be evaluated in
W (for an edge ci, an additional edge will have the weight
W−ci
β ), where W is an integer greater than all x ∈ ∪iXi.

The graph G consists of k gadgets concatenated together.
As β, we take any constant from 0 to 1, for example, β = 1

2 .

Figure 3: Gadget used in W[1]-hardness proof.

Let’s set the target weight of the path to the agent as fol-

lows: Y = T · (1 − 1

β
) +

k ·W
β

. The task parameter is the

vertex cover or feedback vertex set will be equal to O(k).
We now show that the answer to the MODIFIED K-SUM

problem is positive if and only if the answer to the ECI prob-
lem is positive. Let there be a set xi ∈ Xi, which in total
gives T , then the agent, choosing a path in the i gadget, the
first edge of which has a weight of xi, will get a path whose
total weight is∑

i

xi +
W − xi
β

= T +
k ·W
β
− T

β
.

Conversely, let the agent find the path of the desired
weight Y , denote the weight of the first edge in the i gad-
get in this path for xi. Let

∑
xi = T ′. Then

T · (1− 1

β
) +

k ·W
β

= Y =
∑
i

xi +
W − xi
β

=

= T ′ +
k ·W
β
− T ′

β
= T ′ · (1− 1

β
) +

k ·W
β

.

We get that T ′ = T .
We already established that existence of s-t paths of

cost Y in G is W[1]-hard. Now we show that computing
Pr(Cβ ≤ Y ) is W[1]-hard. Note that

Pr(Cβ = Y ) = Pr(Cβ ≤ Y )− Pr(Cβ ≤ Y − 1).

Thus, if Pr(Cβ = Y ) > 0, then there is a feasible path of
cost Y . Therefore, the existence of a FPT algorithm com-
puting Pr(Cβ ≤ Y ) would allow us to check for existence
the paths of cost Y in FPT time.

Theorem 6 rules out the existence of an algorithm solving
ECI in time f(vc(G))nO(1) for any function f of vc(G)
only. (Unless FPT =W[1].) In what follows, we prove that
when fvs(G) is a constant, then the problem is solvable in
polynomial time, that is, is in XP parameterized by fvs(G)
(and hence by vc(G)).

For the omitted proofs of the last four results please con-
sult the supplementary materials.

We start from the following combinatorial lemma.
Lemma 2. Let fvs(G) = k. Then the number of different s-t
paths in G is at most kknO(k).

By making use of Lemma 2, we prove the following the-
orem.
Theorem 7. The ECI problem admits an algorithm of run-
ning time nO(fvs(G)) · fvs(G)fvs(G).

Because of Theorem 6, the running time provided by The-
orem 7 is basically the best we can hope for. However, the
ECI problem is FPT being parameterized by the feedback
edge set of the underlying undirected graph. Let us remind,
that a feedback edge set of an undirected graph is a set of
edges whose removal makes the graph acyclic. For directed
graph G, we use fes(G) to denote the minimum size of a
feedback edge set of its underlying undirected graph.

First we bound the number of paths in a graph by a func-
tion of fes(G).
Lemma 3. Let fes(G) = k. Then the number of different s-t
paths in G is at most 2k.

By Lemma 3, we obtain that ECI is FPT parameterized
by fes(G).

Theorem 8. The ECI problem is solvable in time 2fes(G) ·
poly(n).

6 Conclusion
We introduced the new model of the cost of irrationality. For
future research we present two open algorithmic questions
related to our model.

The first question concerns the motivation and establish-
ing rewards (Albers and Kraft 2019). Assume that by achiev-
ing the goal t the agent hopes to receive a reward. If at some
moment the perceived costs becomes larger than the reward,
the agent abandons the mission. For a given probability p,
how difficult is to compute (exactly or approximately) the
minimum reward that would allow the agent not to abandon
his mission with probability at least p?

The second question is related to the question of finding a
motivating subgraph (Kleinberg and Oren 2014; Fomin and
Strømme 2020). We gave a polynomial time algorithm com-
puting the expected cost of irrationality E(Xβ). Consider
the following algorithmic task: delete at most k edges (or
vertices) such that in the resulting graph the expected cost of
irrationality is less than E(Xβ). Of course, there is a brute-
force algorithm solving the problem in time nO(k) by call-
ing our polynomial-time algorithm for each of the

(
n
k

)
pos-

sibilities of deleting k edges (or vertices). But whether the
problem is FPT parameterized by k, is an interesting open
question.
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